llvm/lib/IR/InlineAsm.cpp
Chandler Carruth e3e43d9d57 Sort the remaining #include lines in include/... and lib/....
I did this a long time ago with a janky python script, but now
clang-format has built-in support for this. I fed clang-format every
line with a #include and let it re-sort things according to the precise
LLVM rules for include ordering baked into clang-format these days.

I've reverted a number of files where the results of sorting includes
isn't healthy. Either places where we have legacy code relying on
particular include ordering (where possible, I'll fix these separately)
or where we have particular formatting around #include lines that
I didn't want to disturb in this patch.

This patch is *entirely* mechanical. If you get merge conflicts or
anything, just ignore the changes in this patch and run clang-format
over your #include lines in the files.

Sorry for any noise here, but it is important to keep these things
stable. I was seeing an increasing number of patches with irrelevant
re-ordering of #include lines because clang-format was used. This patch
at least isolates that churn, makes it easy to skip when resolving
conflicts, and gets us to a clean baseline (again).

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@304787 91177308-0d34-0410-b5e6-96231b3b80d8
2017-06-06 11:49:48 +00:00

291 lines
9.2 KiB
C++

//===- InlineAsm.cpp - Implement the InlineAsm class ----------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the InlineAsm class.
//
//===----------------------------------------------------------------------===//
#include "llvm/IR/InlineAsm.h"
#include "ConstantsContext.h"
#include "LLVMContextImpl.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Compiler.h"
#include <algorithm>
#include <cassert>
#include <cctype>
#include <cstddef>
#include <cstdlib>
using namespace llvm;
InlineAsm::InlineAsm(FunctionType *FTy, const std::string &asmString,
const std::string &constraints, bool hasSideEffects,
bool isAlignStack, AsmDialect asmDialect)
: Value(PointerType::getUnqual(FTy), Value::InlineAsmVal),
AsmString(asmString), Constraints(constraints), FTy(FTy),
HasSideEffects(hasSideEffects), IsAlignStack(isAlignStack),
Dialect(asmDialect) {
// Do various checks on the constraint string and type.
assert(Verify(getFunctionType(), constraints) &&
"Function type not legal for constraints!");
}
InlineAsm *InlineAsm::get(FunctionType *FTy, StringRef AsmString,
StringRef Constraints, bool hasSideEffects,
bool isAlignStack, AsmDialect asmDialect) {
InlineAsmKeyType Key(AsmString, Constraints, FTy, hasSideEffects,
isAlignStack, asmDialect);
LLVMContextImpl *pImpl = FTy->getContext().pImpl;
return pImpl->InlineAsms.getOrCreate(PointerType::getUnqual(FTy), Key);
}
void InlineAsm::destroyConstant() {
getType()->getContext().pImpl->InlineAsms.remove(this);
delete this;
}
FunctionType *InlineAsm::getFunctionType() const {
return FTy;
}
/// Parse - Analyze the specified string (e.g. "==&{eax}") and fill in the
/// fields in this structure. If the constraint string is not understood,
/// return true, otherwise return false.
bool InlineAsm::ConstraintInfo::Parse(StringRef Str,
InlineAsm::ConstraintInfoVector &ConstraintsSoFar) {
StringRef::iterator I = Str.begin(), E = Str.end();
unsigned multipleAlternativeCount = Str.count('|') + 1;
unsigned multipleAlternativeIndex = 0;
ConstraintCodeVector *pCodes = &Codes;
// Initialize
isMultipleAlternative = multipleAlternativeCount > 1;
if (isMultipleAlternative) {
multipleAlternatives.resize(multipleAlternativeCount);
pCodes = &multipleAlternatives[0].Codes;
}
Type = isInput;
isEarlyClobber = false;
MatchingInput = -1;
isCommutative = false;
isIndirect = false;
currentAlternativeIndex = 0;
// Parse prefixes.
if (*I == '~') {
Type = isClobber;
++I;
// '{' must immediately follow '~'.
if (I != E && *I != '{')
return true;
} else if (*I == '=') {
++I;
Type = isOutput;
}
if (*I == '*') {
isIndirect = true;
++I;
}
if (I == E) return true; // Just a prefix, like "==" or "~".
// Parse the modifiers.
bool DoneWithModifiers = false;
while (!DoneWithModifiers) {
switch (*I) {
default:
DoneWithModifiers = true;
break;
case '&': // Early clobber.
if (Type != isOutput || // Cannot early clobber anything but output.
isEarlyClobber) // Reject &&&&&&
return true;
isEarlyClobber = true;
break;
case '%': // Commutative.
if (Type == isClobber || // Cannot commute clobbers.
isCommutative) // Reject %%%%%
return true;
isCommutative = true;
break;
case '#': // Comment.
case '*': // Register preferencing.
return true; // Not supported.
}
if (!DoneWithModifiers) {
++I;
if (I == E) return true; // Just prefixes and modifiers!
}
}
// Parse the various constraints.
while (I != E) {
if (*I == '{') { // Physical register reference.
// Find the end of the register name.
StringRef::iterator ConstraintEnd = std::find(I+1, E, '}');
if (ConstraintEnd == E) return true; // "{foo"
pCodes->push_back(StringRef(I, ConstraintEnd+1 - I));
I = ConstraintEnd+1;
} else if (isdigit(static_cast<unsigned char>(*I))) { // Matching Constraint
// Maximal munch numbers.
StringRef::iterator NumStart = I;
while (I != E && isdigit(static_cast<unsigned char>(*I)))
++I;
pCodes->push_back(StringRef(NumStart, I - NumStart));
unsigned N = atoi(pCodes->back().c_str());
// Check that this is a valid matching constraint!
if (N >= ConstraintsSoFar.size() || ConstraintsSoFar[N].Type != isOutput||
Type != isInput)
return true; // Invalid constraint number.
// If Operand N already has a matching input, reject this. An output
// can't be constrained to the same value as multiple inputs.
if (isMultipleAlternative) {
if (multipleAlternativeIndex >=
ConstraintsSoFar[N].multipleAlternatives.size())
return true;
InlineAsm::SubConstraintInfo &scInfo =
ConstraintsSoFar[N].multipleAlternatives[multipleAlternativeIndex];
if (scInfo.MatchingInput != -1)
return true;
// Note that operand #n has a matching input.
scInfo.MatchingInput = ConstraintsSoFar.size();
} else {
if (ConstraintsSoFar[N].hasMatchingInput() &&
(size_t)ConstraintsSoFar[N].MatchingInput !=
ConstraintsSoFar.size())
return true;
// Note that operand #n has a matching input.
ConstraintsSoFar[N].MatchingInput = ConstraintsSoFar.size();
}
} else if (*I == '|') {
multipleAlternativeIndex++;
pCodes = &multipleAlternatives[multipleAlternativeIndex].Codes;
++I;
} else if (*I == '^') {
// Multi-letter constraint
// FIXME: For now assuming these are 2-character constraints.
pCodes->push_back(StringRef(I+1, 2));
I += 3;
} else {
// Single letter constraint.
pCodes->push_back(StringRef(I, 1));
++I;
}
}
return false;
}
/// selectAlternative - Point this constraint to the alternative constraint
/// indicated by the index.
void InlineAsm::ConstraintInfo::selectAlternative(unsigned index) {
if (index < multipleAlternatives.size()) {
currentAlternativeIndex = index;
InlineAsm::SubConstraintInfo &scInfo =
multipleAlternatives[currentAlternativeIndex];
MatchingInput = scInfo.MatchingInput;
Codes = scInfo.Codes;
}
}
InlineAsm::ConstraintInfoVector
InlineAsm::ParseConstraints(StringRef Constraints) {
ConstraintInfoVector Result;
// Scan the constraints string.
for (StringRef::iterator I = Constraints.begin(),
E = Constraints.end(); I != E; ) {
ConstraintInfo Info;
// Find the end of this constraint.
StringRef::iterator ConstraintEnd = std::find(I, E, ',');
if (ConstraintEnd == I || // Empty constraint like ",,"
Info.Parse(StringRef(I, ConstraintEnd-I), Result)) {
Result.clear(); // Erroneous constraint?
break;
}
Result.push_back(Info);
// ConstraintEnd may be either the next comma or the end of the string. In
// the former case, we skip the comma.
I = ConstraintEnd;
if (I != E) {
++I;
if (I == E) {
Result.clear();
break;
} // don't allow "xyz,"
}
}
return Result;
}
/// Verify - Verify that the specified constraint string is reasonable for the
/// specified function type, and otherwise validate the constraint string.
bool InlineAsm::Verify(FunctionType *Ty, StringRef ConstStr) {
if (Ty->isVarArg()) return false;
ConstraintInfoVector Constraints = ParseConstraints(ConstStr);
// Error parsing constraints.
if (Constraints.empty() && !ConstStr.empty()) return false;
unsigned NumOutputs = 0, NumInputs = 0, NumClobbers = 0;
unsigned NumIndirect = 0;
for (unsigned i = 0, e = Constraints.size(); i != e; ++i) {
switch (Constraints[i].Type) {
case InlineAsm::isOutput:
if ((NumInputs-NumIndirect) != 0 || NumClobbers != 0)
return false; // outputs before inputs and clobbers.
if (!Constraints[i].isIndirect) {
++NumOutputs;
break;
}
++NumIndirect;
LLVM_FALLTHROUGH; // We fall through for Indirect Outputs.
case InlineAsm::isInput:
if (NumClobbers) return false; // inputs before clobbers.
++NumInputs;
break;
case InlineAsm::isClobber:
++NumClobbers;
break;
}
}
switch (NumOutputs) {
case 0:
if (!Ty->getReturnType()->isVoidTy()) return false;
break;
case 1:
if (Ty->getReturnType()->isStructTy()) return false;
break;
default:
StructType *STy = dyn_cast<StructType>(Ty->getReturnType());
if (!STy || STy->getNumElements() != NumOutputs)
return false;
break;
}
if (Ty->getNumParams() != NumInputs) return false;
return true;
}