mirror of
https://github.com/RPCSX/llvm.git
synced 2024-11-25 04:39:44 +00:00
67f453aae7
into a vector of zeros or undef, and when the top part is obviously zero, we can just use movd + shuffle. This allows us to compile vec_set-B.ll into: _test3: movl $1234567, %eax andl 4(%esp), %eax movd %eax, %xmm0 ret instead of: _test3: subl $28, %esp movl $1234567, %eax andl 32(%esp), %eax movl %eax, (%esp) movl $0, 4(%esp) movq (%esp), %xmm0 addl $28, %esp ret git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@48090 91177308-0d34-0410-b5e6-96231b3b80d8
784 lines
23 KiB
Plaintext
784 lines
23 KiB
Plaintext
//===---------------------------------------------------------------------===//
|
|
// Random ideas for the X86 backend: SSE-specific stuff.
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
- Consider eliminating the unaligned SSE load intrinsics, replacing them with
|
|
unaligned LLVM load instructions.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Expand libm rounding functions inline: Significant speedups possible.
|
|
http://gcc.gnu.org/ml/gcc-patches/2006-10/msg00909.html
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
When compiled with unsafemath enabled, "main" should enable SSE DAZ mode and
|
|
other fast SSE modes.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Think about doing i64 math in SSE regs.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
This testcase should have no SSE instructions in it, and only one load from
|
|
a constant pool:
|
|
|
|
double %test3(bool %B) {
|
|
%C = select bool %B, double 123.412, double 523.01123123
|
|
ret double %C
|
|
}
|
|
|
|
Currently, the select is being lowered, which prevents the dag combiner from
|
|
turning 'select (load CPI1), (load CPI2)' -> 'load (select CPI1, CPI2)'
|
|
|
|
The pattern isel got this one right.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
SSE doesn't have [mem] op= reg instructions. If we have an SSE instruction
|
|
like this:
|
|
|
|
X += y
|
|
|
|
and the register allocator decides to spill X, it is cheaper to emit this as:
|
|
|
|
Y += [xslot]
|
|
store Y -> [xslot]
|
|
|
|
than as:
|
|
|
|
tmp = [xslot]
|
|
tmp += y
|
|
store tmp -> [xslot]
|
|
|
|
..and this uses one fewer register (so this should be done at load folding
|
|
time, not at spiller time). *Note* however that this can only be done
|
|
if Y is dead. Here's a testcase:
|
|
|
|
@.str_3 = external global [15 x i8]
|
|
declare void @printf(i32, ...)
|
|
define void @main() {
|
|
build_tree.exit:
|
|
br label %no_exit.i7
|
|
|
|
no_exit.i7: ; preds = %no_exit.i7, %build_tree.exit
|
|
%tmp.0.1.0.i9 = phi double [ 0.000000e+00, %build_tree.exit ],
|
|
[ %tmp.34.i18, %no_exit.i7 ]
|
|
%tmp.0.0.0.i10 = phi double [ 0.000000e+00, %build_tree.exit ],
|
|
[ %tmp.28.i16, %no_exit.i7 ]
|
|
%tmp.28.i16 = add double %tmp.0.0.0.i10, 0.000000e+00
|
|
%tmp.34.i18 = add double %tmp.0.1.0.i9, 0.000000e+00
|
|
br i1 false, label %Compute_Tree.exit23, label %no_exit.i7
|
|
|
|
Compute_Tree.exit23: ; preds = %no_exit.i7
|
|
tail call void (i32, ...)* @printf( i32 0 )
|
|
store double %tmp.34.i18, double* null
|
|
ret void
|
|
}
|
|
|
|
We currently emit:
|
|
|
|
.BBmain_1:
|
|
xorpd %XMM1, %XMM1
|
|
addsd %XMM0, %XMM1
|
|
*** movsd %XMM2, QWORD PTR [%ESP + 8]
|
|
*** addsd %XMM2, %XMM1
|
|
*** movsd QWORD PTR [%ESP + 8], %XMM2
|
|
jmp .BBmain_1 # no_exit.i7
|
|
|
|
This is a bugpoint reduced testcase, which is why the testcase doesn't make
|
|
much sense (e.g. its an infinite loop). :)
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
SSE should implement 'select_cc' using 'emulated conditional moves' that use
|
|
pcmp/pand/pandn/por to do a selection instead of a conditional branch:
|
|
|
|
double %X(double %Y, double %Z, double %A, double %B) {
|
|
%C = setlt double %A, %B
|
|
%z = add double %Z, 0.0 ;; select operand is not a load
|
|
%D = select bool %C, double %Y, double %z
|
|
ret double %D
|
|
}
|
|
|
|
We currently emit:
|
|
|
|
_X:
|
|
subl $12, %esp
|
|
xorpd %xmm0, %xmm0
|
|
addsd 24(%esp), %xmm0
|
|
movsd 32(%esp), %xmm1
|
|
movsd 16(%esp), %xmm2
|
|
ucomisd 40(%esp), %xmm1
|
|
jb LBB_X_2
|
|
LBB_X_1:
|
|
movsd %xmm0, %xmm2
|
|
LBB_X_2:
|
|
movsd %xmm2, (%esp)
|
|
fldl (%esp)
|
|
addl $12, %esp
|
|
ret
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
It's not clear whether we should use pxor or xorps / xorpd to clear XMM
|
|
registers. The choice may depend on subtarget information. We should do some
|
|
more experiments on different x86 machines.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Lower memcpy / memset to a series of SSE 128 bit move instructions when it's
|
|
feasible.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Codegen:
|
|
if (copysign(1.0, x) == copysign(1.0, y))
|
|
into:
|
|
if (x^y & mask)
|
|
when using SSE.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Use movhps to update upper 64-bits of a v4sf value. Also movlps on lower half
|
|
of a v4sf value.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Better codegen for vector_shuffles like this { x, 0, 0, 0 } or { x, 0, x, 0}.
|
|
Perhaps use pxor / xorp* to clear a XMM register first?
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
How to decide when to use the "floating point version" of logical ops? Here are
|
|
some code fragments:
|
|
|
|
movaps LCPI5_5, %xmm2
|
|
divps %xmm1, %xmm2
|
|
mulps %xmm2, %xmm3
|
|
mulps 8656(%ecx), %xmm3
|
|
addps 8672(%ecx), %xmm3
|
|
andps LCPI5_6, %xmm2
|
|
andps LCPI5_1, %xmm3
|
|
por %xmm2, %xmm3
|
|
movdqa %xmm3, (%edi)
|
|
|
|
movaps LCPI5_5, %xmm1
|
|
divps %xmm0, %xmm1
|
|
mulps %xmm1, %xmm3
|
|
mulps 8656(%ecx), %xmm3
|
|
addps 8672(%ecx), %xmm3
|
|
andps LCPI5_6, %xmm1
|
|
andps LCPI5_1, %xmm3
|
|
orps %xmm1, %xmm3
|
|
movaps %xmm3, 112(%esp)
|
|
movaps %xmm3, (%ebx)
|
|
|
|
Due to some minor source change, the later case ended up using orps and movaps
|
|
instead of por and movdqa. Does it matter?
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
X86RegisterInfo::copyRegToReg() returns X86::MOVAPSrr for VR128. Is it possible
|
|
to choose between movaps, movapd, and movdqa based on types of source and
|
|
destination?
|
|
|
|
How about andps, andpd, and pand? Do we really care about the type of the packed
|
|
elements? If not, why not always use the "ps" variants which are likely to be
|
|
shorter.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
External test Nurbs exposed some problems. Look for
|
|
__ZN15Nurbs_SSE_Cubic17TessellateSurfaceE, bb cond_next140. This is what icc
|
|
emits:
|
|
|
|
movaps (%edx), %xmm2 #59.21
|
|
movaps (%edx), %xmm5 #60.21
|
|
movaps (%edx), %xmm4 #61.21
|
|
movaps (%edx), %xmm3 #62.21
|
|
movl 40(%ecx), %ebp #69.49
|
|
shufps $0, %xmm2, %xmm5 #60.21
|
|
movl 100(%esp), %ebx #69.20
|
|
movl (%ebx), %edi #69.20
|
|
imull %ebp, %edi #69.49
|
|
addl (%eax), %edi #70.33
|
|
shufps $85, %xmm2, %xmm4 #61.21
|
|
shufps $170, %xmm2, %xmm3 #62.21
|
|
shufps $255, %xmm2, %xmm2 #63.21
|
|
lea (%ebp,%ebp,2), %ebx #69.49
|
|
negl %ebx #69.49
|
|
lea -3(%edi,%ebx), %ebx #70.33
|
|
shll $4, %ebx #68.37
|
|
addl 32(%ecx), %ebx #68.37
|
|
testb $15, %bl #91.13
|
|
jne L_B1.24 # Prob 5% #91.13
|
|
|
|
This is the llvm code after instruction scheduling:
|
|
|
|
cond_next140 (0xa910740, LLVM BB @0xa90beb0):
|
|
%reg1078 = MOV32ri -3
|
|
%reg1079 = ADD32rm %reg1078, %reg1068, 1, %NOREG, 0
|
|
%reg1037 = MOV32rm %reg1024, 1, %NOREG, 40
|
|
%reg1080 = IMUL32rr %reg1079, %reg1037
|
|
%reg1081 = MOV32rm %reg1058, 1, %NOREG, 0
|
|
%reg1038 = LEA32r %reg1081, 1, %reg1080, -3
|
|
%reg1036 = MOV32rm %reg1024, 1, %NOREG, 32
|
|
%reg1082 = SHL32ri %reg1038, 4
|
|
%reg1039 = ADD32rr %reg1036, %reg1082
|
|
%reg1083 = MOVAPSrm %reg1059, 1, %NOREG, 0
|
|
%reg1034 = SHUFPSrr %reg1083, %reg1083, 170
|
|
%reg1032 = SHUFPSrr %reg1083, %reg1083, 0
|
|
%reg1035 = SHUFPSrr %reg1083, %reg1083, 255
|
|
%reg1033 = SHUFPSrr %reg1083, %reg1083, 85
|
|
%reg1040 = MOV32rr %reg1039
|
|
%reg1084 = AND32ri8 %reg1039, 15
|
|
CMP32ri8 %reg1084, 0
|
|
JE mbb<cond_next204,0xa914d30>
|
|
|
|
Still ok. After register allocation:
|
|
|
|
cond_next140 (0xa910740, LLVM BB @0xa90beb0):
|
|
%EAX = MOV32ri -3
|
|
%EDX = MOV32rm <fi#3>, 1, %NOREG, 0
|
|
ADD32rm %EAX<def&use>, %EDX, 1, %NOREG, 0
|
|
%EDX = MOV32rm <fi#7>, 1, %NOREG, 0
|
|
%EDX = MOV32rm %EDX, 1, %NOREG, 40
|
|
IMUL32rr %EAX<def&use>, %EDX
|
|
%ESI = MOV32rm <fi#5>, 1, %NOREG, 0
|
|
%ESI = MOV32rm %ESI, 1, %NOREG, 0
|
|
MOV32mr <fi#4>, 1, %NOREG, 0, %ESI
|
|
%EAX = LEA32r %ESI, 1, %EAX, -3
|
|
%ESI = MOV32rm <fi#7>, 1, %NOREG, 0
|
|
%ESI = MOV32rm %ESI, 1, %NOREG, 32
|
|
%EDI = MOV32rr %EAX
|
|
SHL32ri %EDI<def&use>, 4
|
|
ADD32rr %EDI<def&use>, %ESI
|
|
%XMM0 = MOVAPSrm %ECX, 1, %NOREG, 0
|
|
%XMM1 = MOVAPSrr %XMM0
|
|
SHUFPSrr %XMM1<def&use>, %XMM1, 170
|
|
%XMM2 = MOVAPSrr %XMM0
|
|
SHUFPSrr %XMM2<def&use>, %XMM2, 0
|
|
%XMM3 = MOVAPSrr %XMM0
|
|
SHUFPSrr %XMM3<def&use>, %XMM3, 255
|
|
SHUFPSrr %XMM0<def&use>, %XMM0, 85
|
|
%EBX = MOV32rr %EDI
|
|
AND32ri8 %EBX<def&use>, 15
|
|
CMP32ri8 %EBX, 0
|
|
JE mbb<cond_next204,0xa914d30>
|
|
|
|
This looks really bad. The problem is shufps is a destructive opcode. Since it
|
|
appears as operand two in more than one shufps ops. It resulted in a number of
|
|
copies. Note icc also suffers from the same problem. Either the instruction
|
|
selector should select pshufd or The register allocator can made the two-address
|
|
to three-address transformation.
|
|
|
|
It also exposes some other problems. See MOV32ri -3 and the spills.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
http://gcc.gnu.org/bugzilla/show_bug.cgi?id=25500
|
|
|
|
LLVM is producing bad code.
|
|
|
|
LBB_main_4: # cond_true44
|
|
addps %xmm1, %xmm2
|
|
subps %xmm3, %xmm2
|
|
movaps (%ecx), %xmm4
|
|
movaps %xmm2, %xmm1
|
|
addps %xmm4, %xmm1
|
|
addl $16, %ecx
|
|
incl %edx
|
|
cmpl $262144, %edx
|
|
movaps %xmm3, %xmm2
|
|
movaps %xmm4, %xmm3
|
|
jne LBB_main_4 # cond_true44
|
|
|
|
There are two problems. 1) No need to two loop induction variables. We can
|
|
compare against 262144 * 16. 2) Known register coalescer issue. We should
|
|
be able eliminate one of the movaps:
|
|
|
|
addps %xmm2, %xmm1 <=== Commute!
|
|
subps %xmm3, %xmm1
|
|
movaps (%ecx), %xmm4
|
|
movaps %xmm1, %xmm1 <=== Eliminate!
|
|
addps %xmm4, %xmm1
|
|
addl $16, %ecx
|
|
incl %edx
|
|
cmpl $262144, %edx
|
|
movaps %xmm3, %xmm2
|
|
movaps %xmm4, %xmm3
|
|
jne LBB_main_4 # cond_true44
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Consider:
|
|
|
|
__m128 test(float a) {
|
|
return _mm_set_ps(0.0, 0.0, 0.0, a*a);
|
|
}
|
|
|
|
This compiles into:
|
|
|
|
movss 4(%esp), %xmm1
|
|
mulss %xmm1, %xmm1
|
|
xorps %xmm0, %xmm0
|
|
movss %xmm1, %xmm0
|
|
ret
|
|
|
|
Because mulss doesn't modify the top 3 elements, the top elements of
|
|
xmm1 are already zero'd. We could compile this to:
|
|
|
|
movss 4(%esp), %xmm0
|
|
mulss %xmm0, %xmm0
|
|
ret
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Here's a sick and twisted idea. Consider code like this:
|
|
|
|
__m128 test(__m128 a) {
|
|
float b = *(float*)&A;
|
|
...
|
|
return _mm_set_ps(0.0, 0.0, 0.0, b);
|
|
}
|
|
|
|
This might compile to this code:
|
|
|
|
movaps c(%esp), %xmm1
|
|
xorps %xmm0, %xmm0
|
|
movss %xmm1, %xmm0
|
|
ret
|
|
|
|
Now consider if the ... code caused xmm1 to get spilled. This might produce
|
|
this code:
|
|
|
|
movaps c(%esp), %xmm1
|
|
movaps %xmm1, c2(%esp)
|
|
...
|
|
|
|
xorps %xmm0, %xmm0
|
|
movaps c2(%esp), %xmm1
|
|
movss %xmm1, %xmm0
|
|
ret
|
|
|
|
However, since the reload is only used by these instructions, we could
|
|
"fold" it into the uses, producing something like this:
|
|
|
|
movaps c(%esp), %xmm1
|
|
movaps %xmm1, c2(%esp)
|
|
...
|
|
|
|
movss c2(%esp), %xmm0
|
|
ret
|
|
|
|
... saving two instructions.
|
|
|
|
The basic idea is that a reload from a spill slot, can, if only one 4-byte
|
|
chunk is used, bring in 3 zeros the the one element instead of 4 elements.
|
|
This can be used to simplify a variety of shuffle operations, where the
|
|
elements are fixed zeros.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
For this:
|
|
|
|
#include <emmintrin.h>
|
|
void test(__m128d *r, __m128d *A, double B) {
|
|
*r = _mm_loadl_pd(*A, &B);
|
|
}
|
|
|
|
We generates:
|
|
|
|
subl $12, %esp
|
|
movsd 24(%esp), %xmm0
|
|
movsd %xmm0, (%esp)
|
|
movl 20(%esp), %eax
|
|
movapd (%eax), %xmm0
|
|
movlpd (%esp), %xmm0
|
|
movl 16(%esp), %eax
|
|
movapd %xmm0, (%eax)
|
|
addl $12, %esp
|
|
ret
|
|
|
|
icc generates:
|
|
|
|
movl 4(%esp), %edx #3.6
|
|
movl 8(%esp), %eax #3.6
|
|
movapd (%eax), %xmm0 #4.22
|
|
movlpd 12(%esp), %xmm0 #4.8
|
|
movapd %xmm0, (%edx) #4.3
|
|
ret #5.1
|
|
|
|
So icc is smart enough to know that B is in memory so it doesn't load it and
|
|
store it back to stack.
|
|
|
|
This should be fixed by eliminating the llvm.x86.sse2.loadl.pd intrinsic,
|
|
lowering it to a load+insertelement instead. Already match the load+shuffle
|
|
as movlpd, so this should be easy. We already get optimal code for:
|
|
|
|
define void @test2(<2 x double>* %r, <2 x double>* %A, double %B) {
|
|
entry:
|
|
%tmp2 = load <2 x double>* %A, align 16
|
|
%tmp8 = insertelement <2 x double> %tmp2, double %B, i32 0
|
|
store <2 x double> %tmp8, <2 x double>* %r, align 16
|
|
ret void
|
|
}
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
__m128d test1( __m128d A, __m128d B) {
|
|
return _mm_shuffle_pd(A, B, 0x3);
|
|
}
|
|
|
|
compiles to
|
|
|
|
shufpd $3, %xmm1, %xmm0
|
|
|
|
Perhaps it's better to use unpckhpd instead?
|
|
|
|
unpckhpd %xmm1, %xmm0
|
|
|
|
Don't know if unpckhpd is faster. But it is shorter.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
This code generates ugly code, probably due to costs being off or something:
|
|
|
|
define void @test(float* %P, <4 x float>* %P2 ) {
|
|
%xFloat0.688 = load float* %P
|
|
%tmp = load <4 x float>* %P2
|
|
%inFloat3.713 = insertelement <4 x float> %tmp, float 0.0, i32 3
|
|
store <4 x float> %inFloat3.713, <4 x float>* %P2
|
|
ret void
|
|
}
|
|
|
|
Generates:
|
|
|
|
_test:
|
|
movl 8(%esp), %eax
|
|
movaps (%eax), %xmm0
|
|
pxor %xmm1, %xmm1
|
|
movaps %xmm0, %xmm2
|
|
shufps $50, %xmm1, %xmm2
|
|
shufps $132, %xmm2, %xmm0
|
|
movaps %xmm0, (%eax)
|
|
ret
|
|
|
|
Would it be better to generate:
|
|
|
|
_test:
|
|
movl 8(%esp), %ecx
|
|
movaps (%ecx), %xmm0
|
|
xor %eax, %eax
|
|
pinsrw $6, %eax, %xmm0
|
|
pinsrw $7, %eax, %xmm0
|
|
movaps %xmm0, (%ecx)
|
|
ret
|
|
|
|
?
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Some useful information in the Apple Altivec / SSE Migration Guide:
|
|
|
|
http://developer.apple.com/documentation/Performance/Conceptual/
|
|
Accelerate_sse_migration/index.html
|
|
|
|
e.g. SSE select using and, andnot, or. Various SSE compare translations.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Add hooks to commute some CMPP operations.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Apply the same transformation that merged four float into a single 128-bit load
|
|
to loads from constant pool.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Floating point max / min are commutable when -enable-unsafe-fp-path is
|
|
specified. We should turn int_x86_sse_max_ss and X86ISD::FMIN etc. into other
|
|
nodes which are selected to max / min instructions that are marked commutable.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
We should compile this:
|
|
#include <xmmintrin.h>
|
|
typedef union {
|
|
int i[4];
|
|
float f[4];
|
|
__m128 v;
|
|
} vector4_t;
|
|
void swizzle (const void *a, vector4_t * b, vector4_t * c) {
|
|
b->v = _mm_loadl_pi (b->v, (__m64 *) a);
|
|
c->v = _mm_loadl_pi (c->v, ((__m64 *) a) + 1);
|
|
}
|
|
|
|
to:
|
|
|
|
_swizzle:
|
|
movl 4(%esp), %eax
|
|
movl 8(%esp), %edx
|
|
movl 12(%esp), %ecx
|
|
movlps (%eax), %xmm0
|
|
movlps %xmm0, (%edx)
|
|
movlps 8(%eax), %xmm0
|
|
movlps %xmm0, (%ecx)
|
|
ret
|
|
|
|
not:
|
|
|
|
swizzle:
|
|
movl 8(%esp), %eax
|
|
movaps (%eax), %xmm0
|
|
movl 4(%esp), %ecx
|
|
movlps (%ecx), %xmm0
|
|
movaps %xmm0, (%eax)
|
|
movl 12(%esp), %eax
|
|
movaps (%eax), %xmm0
|
|
movlps 8(%ecx), %xmm0
|
|
movaps %xmm0, (%eax)
|
|
ret
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
These functions should produce the same code:
|
|
|
|
#include <emmintrin.h>
|
|
|
|
typedef long long __m128i __attribute__ ((__vector_size__ (16)));
|
|
|
|
int foo(__m128i* val) {
|
|
return __builtin_ia32_vec_ext_v4si(*val, 1);
|
|
}
|
|
int bar(__m128i* val) {
|
|
union vs {
|
|
__m128i *_v;
|
|
int* _s;
|
|
} v = {val};
|
|
return v._s[1];
|
|
}
|
|
|
|
We currently produce (with -m64):
|
|
|
|
_foo:
|
|
pshufd $1, (%rdi), %xmm0
|
|
movd %xmm0, %eax
|
|
ret
|
|
_bar:
|
|
movl 4(%rdi), %eax
|
|
ret
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
We should materialize vector constants like "all ones" and "signbit" with
|
|
code like:
|
|
|
|
cmpeqps xmm1, xmm1 ; xmm1 = all-ones
|
|
|
|
and:
|
|
cmpeqps xmm1, xmm1 ; xmm1 = all-ones
|
|
psrlq xmm1, 31 ; xmm1 = all 100000000000...
|
|
|
|
instead of using a load from the constant pool. The later is important for
|
|
ABS/NEG/copysign etc.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
These functions:
|
|
|
|
#include <xmmintrin.h>
|
|
__m128i a;
|
|
void x(unsigned short n) {
|
|
a = _mm_slli_epi32 (a, n);
|
|
}
|
|
void y(unsigned n) {
|
|
a = _mm_slli_epi32 (a, n);
|
|
}
|
|
|
|
compile to ( -O3 -static -fomit-frame-pointer):
|
|
_x:
|
|
movzwl 4(%esp), %eax
|
|
movd %eax, %xmm0
|
|
movaps _a, %xmm1
|
|
pslld %xmm0, %xmm1
|
|
movaps %xmm1, _a
|
|
ret
|
|
_y:
|
|
movd 4(%esp), %xmm0
|
|
movaps _a, %xmm1
|
|
pslld %xmm0, %xmm1
|
|
movaps %xmm1, _a
|
|
ret
|
|
|
|
"y" looks good, but "x" does silly movzwl stuff around into a GPR. It seems
|
|
like movd would be sufficient in both cases as the value is already zero
|
|
extended in the 32-bit stack slot IIRC. For signed short, it should also be
|
|
save, as a really-signed value would be undefined for pslld.
|
|
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
#include <math.h>
|
|
int t1(double d) { return signbit(d); }
|
|
|
|
This currently compiles to:
|
|
subl $12, %esp
|
|
movsd 16(%esp), %xmm0
|
|
movsd %xmm0, (%esp)
|
|
movl 4(%esp), %eax
|
|
shrl $31, %eax
|
|
addl $12, %esp
|
|
ret
|
|
|
|
We should use movmskp{s|d} instead.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
CodeGen/X86/vec_align.ll tests whether we can turn 4 scalar loads into a single
|
|
(aligned) vector load. This functionality has a couple of problems.
|
|
|
|
1. The code to infer alignment from loads of globals is in the X86 backend,
|
|
not the dag combiner. This is because dagcombine2 needs to be able to see
|
|
through the X86ISD::Wrapper node, which DAGCombine can't really do.
|
|
2. The code for turning 4 x load into a single vector load is target
|
|
independent and should be moved to the dag combiner.
|
|
3. The code for turning 4 x load into a vector load can only handle a direct
|
|
load from a global or a direct load from the stack. It should be generalized
|
|
to handle any load from P, P+4, P+8, P+12, where P can be anything.
|
|
4. The alignment inference code cannot handle loads from globals in non-static
|
|
mode because it doesn't look through the extra dyld stub load. If you try
|
|
vec_align.ll without -relocation-model=static, you'll see what I mean.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
We should lower store(fneg(load p), q) into an integer load+xor+store, which
|
|
eliminates a constant pool load. For example, consider:
|
|
|
|
define i64 @ccosf(float %z.0, float %z.1) nounwind readonly {
|
|
entry:
|
|
%tmp6 = sub float -0.000000e+00, %z.1 ; <float> [#uses=1]
|
|
%tmp20 = tail call i64 @ccoshf( float %tmp6, float %z.0 ) nounwind readonly
|
|
ret i64 %tmp20
|
|
}
|
|
|
|
This currently compiles to:
|
|
|
|
LCPI1_0: # <4 x float>
|
|
.long 2147483648 # float -0
|
|
.long 2147483648 # float -0
|
|
.long 2147483648 # float -0
|
|
.long 2147483648 # float -0
|
|
_ccosf:
|
|
subl $12, %esp
|
|
movss 16(%esp), %xmm0
|
|
movss %xmm0, 4(%esp)
|
|
movss 20(%esp), %xmm0
|
|
xorps LCPI1_0, %xmm0
|
|
movss %xmm0, (%esp)
|
|
call L_ccoshf$stub
|
|
addl $12, %esp
|
|
ret
|
|
|
|
Note the load into xmm0, then xor (to negate), then store. In PIC mode,
|
|
this code computes the pic base and does two loads to do the constant pool
|
|
load, so the improvement is much bigger.
|
|
|
|
The tricky part about this xform is that the argument load/store isn't exposed
|
|
until post-legalize, and at that point, the fneg has been custom expanded into
|
|
an X86 fxor. This means that we need to handle this case in the x86 backend
|
|
instead of in target independent code.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Non-SSE4 insert into 16 x i8 is atrociously bad.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
<2 x i64> extract is substantially worse than <2 x f64>, even if the destination
|
|
is memory.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
SSE4 extract-to-mem ops aren't being pattern matched because of the AssertZext
|
|
sitting between the truncate and the extract.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
INSERTPS can match any insert (extract, imm1), imm2 for 4 x float, and insert
|
|
any number of 0.0 simultaneously. Currently we only use it for simple
|
|
insertions.
|
|
|
|
See comments in LowerINSERT_VECTOR_ELT_SSE4.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
On a random note, SSE2 should declare insert/extract of 2 x f64 as legal, not
|
|
Custom. All combinations of insert/extract reg-reg, reg-mem, and mem-reg are
|
|
legal, it'll just take a few extra patterns written in the .td file.
|
|
|
|
Note: this is not a code quality issue; the custom lowered code happens to be
|
|
right, but we shouldn't have to custom lower anything. This is probably related
|
|
to <2 x i64> ops being so bad.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
'select' on vectors and scalars could be a whole lot better. We currently
|
|
lower them to conditional branches. On x86-64 for example, we compile this:
|
|
|
|
double test(double a, double b, double c, double d) { return a<b ? c : d; }
|
|
|
|
to:
|
|
|
|
_test:
|
|
ucomisd %xmm0, %xmm1
|
|
ja LBB1_2 # entry
|
|
LBB1_1: # entry
|
|
movapd %xmm3, %xmm2
|
|
LBB1_2: # entry
|
|
movapd %xmm2, %xmm0
|
|
ret
|
|
|
|
instead of:
|
|
|
|
_test:
|
|
cmpltsd %xmm1, %xmm0
|
|
andpd %xmm0, %xmm2
|
|
andnpd %xmm3, %xmm0
|
|
orpd %xmm2, %xmm0
|
|
ret
|
|
|
|
For unpredictable branches, the later is much more efficient. This should
|
|
just be a matter of having scalar sse map to SELECT_CC and custom expanding
|
|
or iseling it.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Take the following code:
|
|
|
|
#include <xmmintrin.h>
|
|
__m128i doload64(short x) {return _mm_set_epi16(x,x,x,x,x,x,x,x);}
|
|
|
|
LLVM currently generates the following on x86:
|
|
doload64:
|
|
movzwl 4(%esp), %eax
|
|
movd %eax, %xmm0
|
|
punpcklwd %xmm0, %xmm0
|
|
pshufd $0, %xmm0, %xmm0
|
|
ret
|
|
|
|
gcc's generated code:
|
|
doload64:
|
|
movd 4(%esp), %xmm0
|
|
punpcklwd %xmm0, %xmm0
|
|
pshufd $0, %xmm0, %xmm0
|
|
ret
|
|
|
|
LLVM should be able to generate the same thing as gcc. This looks like it is
|
|
just a matter of matching (scalar_to_vector (load x)) to movd.
|
|
|
|
//===---------------------------------------------------------------------===//
|