mirror of
https://github.com/RPCSX/llvm.git
synced 2025-01-16 09:30:09 +00:00
1f99c41083
- Implemented amdgpu-flat-work-group-size attribute - Implemented amdgpu-num-active-waves-per-eu attribute - Implemented amdgpu-num-sgpr attribute - Implemented amdgpu-num-vgpr attribute - Dynamic LDS constraints are in a separate patch Patch by Tom Stellard and Konstantin Zhuravlyov Differential Revision: https://reviews.llvm.org/D21562 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@280747 91177308-0d34-0410-b5e6-96231b3b80d8
313 lines
12 KiB
C++
313 lines
12 KiB
C++
//===-- GCNSchedStrategy.cpp - GCN Scheduler Strategy ---------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
/// \file
|
|
/// This contains a MachineSchedStrategy implementation for maximizing wave
|
|
/// occupancy on GCN hardware.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "GCNSchedStrategy.h"
|
|
#include "AMDGPUSubtarget.h"
|
|
#include "SIInstrInfo.h"
|
|
#include "SIMachineFunctionInfo.h"
|
|
#include "SIRegisterInfo.h"
|
|
#include "llvm/CodeGen/RegisterClassInfo.h"
|
|
|
|
#define DEBUG_TYPE "misched"
|
|
|
|
using namespace llvm;
|
|
|
|
GCNMaxOccupancySchedStrategy::GCNMaxOccupancySchedStrategy(
|
|
const MachineSchedContext *C) :
|
|
GenericScheduler(C) { }
|
|
|
|
static unsigned getMaxWaves(unsigned SGPRs, unsigned VGPRs,
|
|
const MachineFunction &MF) {
|
|
|
|
const SISubtarget &ST = MF.getSubtarget<SISubtarget>();
|
|
const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
|
|
unsigned MinRegOccupancy = std::min(ST.getOccupancyWithNumSGPRs(SGPRs),
|
|
ST.getOccupancyWithNumVGPRs(VGPRs));
|
|
return std::min(MinRegOccupancy,
|
|
ST.getOccupancyWithLocalMemSize(MFI->getLDSSize()));
|
|
}
|
|
|
|
void GCNMaxOccupancySchedStrategy::initCandidate(SchedCandidate &Cand, SUnit *SU,
|
|
bool AtTop, const RegPressureTracker &RPTracker,
|
|
const SIRegisterInfo *SRI,
|
|
int SGPRPressure,
|
|
int VGPRPressure,
|
|
int SGPRExcessLimit,
|
|
int VGPRExcessLimit,
|
|
int SGPRCriticalLimit,
|
|
int VGPRCriticalLimit) {
|
|
|
|
Cand.SU = SU;
|
|
Cand.AtTop = AtTop;
|
|
|
|
// getDownwardPressure() and getUpwardPressure() make temporary changes to
|
|
// the the tracker, so we need to pass those function a non-const copy.
|
|
RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker);
|
|
|
|
std::vector<unsigned> Pressure;
|
|
std::vector<unsigned> MaxPressure;
|
|
|
|
if (AtTop)
|
|
TempTracker.getDownwardPressure(SU->getInstr(), Pressure, MaxPressure);
|
|
else {
|
|
// FIXME: I think for bottom up scheduling, the register pressure is cached
|
|
// and can be retrieved by DAG->getPressureDif(SU).
|
|
TempTracker.getUpwardPressure(SU->getInstr(), Pressure, MaxPressure);
|
|
}
|
|
|
|
int NewSGPRPressure = Pressure[SRI->getSGPRPressureSet()];
|
|
int NewVGPRPressure = Pressure[SRI->getVGPRPressureSet()];
|
|
|
|
// If two instructions increase the pressure of different register sets
|
|
// by the same amount, the generic scheduler will prefer to schedule the
|
|
// instruction that increases the set with the least amount of registers,
|
|
// which in our case would be SGPRs. This is rarely what we want, so
|
|
// when we report excess/critical register pressure, we do it either
|
|
// only for VGPRs or only for SGPRs.
|
|
|
|
// FIXME: Better heuristics to determine whether to prefer SGPRs or VGPRs.
|
|
const int MaxVGPRPressureInc = 16;
|
|
bool ShouldTrackVGPRs = VGPRPressure + MaxVGPRPressureInc >= VGPRExcessLimit;
|
|
bool ShouldTrackSGPRs = !ShouldTrackVGPRs && SGPRPressure >= SGPRExcessLimit;
|
|
|
|
|
|
// FIXME: We have to enter REG-EXCESS before we reach the actual threshold
|
|
// to increase the likelihood we don't go over the limits. We should improve
|
|
// the analysis to look through dependencies to find the path with the least
|
|
// register pressure.
|
|
// FIXME: This is also necessary, because some passes that run after
|
|
// scheduling and before regalloc increase register pressure.
|
|
const int ErrorMargin = 3;
|
|
VGPRExcessLimit -= ErrorMargin;
|
|
SGPRExcessLimit -= ErrorMargin;
|
|
|
|
// We only need to update the RPDelata for instructions that increase
|
|
// register pressure. Instructions that decrease or keep reg pressure
|
|
// the same will be marked as RegExcess in tryCandidate() when they
|
|
// are compared with instructions that increase the register pressure.
|
|
if (ShouldTrackVGPRs && NewVGPRPressure >= VGPRExcessLimit) {
|
|
Cand.RPDelta.Excess = PressureChange(SRI->getVGPRPressureSet());
|
|
Cand.RPDelta.Excess.setUnitInc(NewVGPRPressure - VGPRExcessLimit);
|
|
}
|
|
|
|
if (ShouldTrackSGPRs && NewSGPRPressure >= SGPRExcessLimit) {
|
|
Cand.RPDelta.Excess = PressureChange(SRI->getSGPRPressureSet());
|
|
Cand.RPDelta.Excess.setUnitInc(NewSGPRPressure = SGPRExcessLimit);
|
|
}
|
|
|
|
// Register pressure is considered 'CRITICAL' if it is approaching a value
|
|
// that would reduce the wave occupancy for the execution unit. When
|
|
// register pressure is 'CRITICAL', increading SGPR and VGPR pressure both
|
|
// has the same cost, so we don't need to prefer one over the other.
|
|
|
|
VGPRCriticalLimit -= ErrorMargin;
|
|
SGPRCriticalLimit -= ErrorMargin;
|
|
|
|
int SGPRDelta = NewSGPRPressure - SGPRCriticalLimit;
|
|
int VGPRDelta = NewVGPRPressure - VGPRCriticalLimit;
|
|
|
|
if (SGPRDelta >= 0 || VGPRDelta >= 0) {
|
|
if (SGPRDelta > VGPRDelta) {
|
|
Cand.RPDelta.CriticalMax = PressureChange(SRI->getSGPRPressureSet());
|
|
Cand.RPDelta.CriticalMax.setUnitInc(SGPRDelta);
|
|
} else {
|
|
Cand.RPDelta.CriticalMax = PressureChange(SRI->getVGPRPressureSet());
|
|
Cand.RPDelta.CriticalMax.setUnitInc(VGPRDelta);
|
|
}
|
|
}
|
|
}
|
|
|
|
// This function is mostly cut and pasted from
|
|
// GenericScheduler::pickNodeFromQueue()
|
|
void GCNMaxOccupancySchedStrategy::pickNodeFromQueue(SchedBoundary &Zone,
|
|
const CandPolicy &ZonePolicy,
|
|
const RegPressureTracker &RPTracker,
|
|
SchedCandidate &Cand) {
|
|
const SISubtarget &ST = DAG->MF.getSubtarget<SISubtarget>();
|
|
const SIRegisterInfo *SRI = static_cast<const SIRegisterInfo*>(TRI);
|
|
ArrayRef<unsigned> Pressure = RPTracker.getRegSetPressureAtPos();
|
|
unsigned SGPRPressure = Pressure[SRI->getSGPRPressureSet()];
|
|
unsigned VGPRPressure = Pressure[SRI->getVGPRPressureSet()];
|
|
unsigned SGPRExcessLimit =
|
|
Context->RegClassInfo->getNumAllocatableRegs(&AMDGPU::SGPR_32RegClass);
|
|
unsigned VGPRExcessLimit =
|
|
Context->RegClassInfo->getNumAllocatableRegs(&AMDGPU::VGPR_32RegClass);
|
|
unsigned MaxWaves = getMaxWaves(SGPRPressure, VGPRPressure, DAG->MF);
|
|
unsigned SGPRCriticalLimit = SRI->getMaxNumSGPRs(ST, MaxWaves);
|
|
unsigned VGPRCriticalLimit = SRI->getMaxNumVGPRs(MaxWaves);
|
|
|
|
ReadyQueue &Q = Zone.Available;
|
|
for (SUnit *SU : Q) {
|
|
|
|
SchedCandidate TryCand(ZonePolicy);
|
|
initCandidate(TryCand, SU, Zone.isTop(), RPTracker, SRI,
|
|
SGPRPressure, VGPRPressure,
|
|
SGPRExcessLimit, VGPRExcessLimit,
|
|
SGPRCriticalLimit, VGPRCriticalLimit);
|
|
// Pass SchedBoundary only when comparing nodes from the same boundary.
|
|
SchedBoundary *ZoneArg = Cand.AtTop == TryCand.AtTop ? &Zone : nullptr;
|
|
GenericScheduler::tryCandidate(Cand, TryCand, ZoneArg);
|
|
if (TryCand.Reason != NoCand) {
|
|
// Initialize resource delta if needed in case future heuristics query it.
|
|
if (TryCand.ResDelta == SchedResourceDelta())
|
|
TryCand.initResourceDelta(Zone.DAG, SchedModel);
|
|
Cand.setBest(TryCand);
|
|
}
|
|
}
|
|
}
|
|
|
|
static int getBidirectionalReasonRank(GenericSchedulerBase::CandReason Reason) {
|
|
switch (Reason) {
|
|
default:
|
|
return Reason;
|
|
case GenericSchedulerBase::RegCritical:
|
|
case GenericSchedulerBase::RegExcess:
|
|
return -Reason;
|
|
}
|
|
}
|
|
|
|
// This function is mostly cut and pasted from
|
|
// GenericScheduler::pickNodeBidirectional()
|
|
SUnit *GCNMaxOccupancySchedStrategy::pickNodeBidirectional(bool &IsTopNode) {
|
|
// Schedule as far as possible in the direction of no choice. This is most
|
|
// efficient, but also provides the best heuristics for CriticalPSets.
|
|
if (SUnit *SU = Bot.pickOnlyChoice()) {
|
|
IsTopNode = false;
|
|
return SU;
|
|
}
|
|
if (SUnit *SU = Top.pickOnlyChoice()) {
|
|
IsTopNode = true;
|
|
return SU;
|
|
}
|
|
// Set the bottom-up policy based on the state of the current bottom zone and
|
|
// the instructions outside the zone, including the top zone.
|
|
CandPolicy BotPolicy;
|
|
setPolicy(BotPolicy, /*IsPostRA=*/false, Bot, &Top);
|
|
// Set the top-down policy based on the state of the current top zone and
|
|
// the instructions outside the zone, including the bottom zone.
|
|
CandPolicy TopPolicy;
|
|
setPolicy(TopPolicy, /*IsPostRA=*/false, Top, &Bot);
|
|
|
|
// See if BotCand is still valid (because we previously scheduled from Top).
|
|
DEBUG(dbgs() << "Picking from Bot:\n");
|
|
if (!BotCand.isValid() || BotCand.SU->isScheduled ||
|
|
BotCand.Policy != BotPolicy) {
|
|
BotCand.reset(CandPolicy());
|
|
pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), BotCand);
|
|
assert(BotCand.Reason != NoCand && "failed to find the first candidate");
|
|
} else {
|
|
DEBUG(traceCandidate(BotCand));
|
|
}
|
|
|
|
// Check if the top Q has a better candidate.
|
|
DEBUG(dbgs() << "Picking from Top:\n");
|
|
if (!TopCand.isValid() || TopCand.SU->isScheduled ||
|
|
TopCand.Policy != TopPolicy) {
|
|
TopCand.reset(CandPolicy());
|
|
pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TopCand);
|
|
assert(TopCand.Reason != NoCand && "failed to find the first candidate");
|
|
} else {
|
|
DEBUG(traceCandidate(TopCand));
|
|
}
|
|
|
|
// Pick best from BotCand and TopCand.
|
|
DEBUG(
|
|
dbgs() << "Top Cand: ";
|
|
traceCandidate(BotCand);
|
|
dbgs() << "Bot Cand: ";
|
|
traceCandidate(TopCand);
|
|
);
|
|
SchedCandidate Cand;
|
|
if (TopCand.Reason == BotCand.Reason) {
|
|
Cand = BotCand;
|
|
GenericSchedulerBase::CandReason TopReason = TopCand.Reason;
|
|
TopCand.Reason = NoCand;
|
|
GenericScheduler::tryCandidate(Cand, TopCand, nullptr);
|
|
if (TopCand.Reason != NoCand) {
|
|
Cand.setBest(TopCand);
|
|
} else {
|
|
TopCand.Reason = TopReason;
|
|
}
|
|
} else {
|
|
if (TopCand.Reason == RegExcess && TopCand.RPDelta.Excess.getUnitInc() <= 0) {
|
|
Cand = TopCand;
|
|
} else if (BotCand.Reason == RegExcess && BotCand.RPDelta.Excess.getUnitInc() <= 0) {
|
|
Cand = BotCand;
|
|
} else if (TopCand.Reason == RegCritical && TopCand.RPDelta.CriticalMax.getUnitInc() <= 0) {
|
|
Cand = TopCand;
|
|
} else if (BotCand.Reason == RegCritical && BotCand.RPDelta.CriticalMax.getUnitInc() <= 0) {
|
|
Cand = BotCand;
|
|
} else {
|
|
int TopRank = getBidirectionalReasonRank(TopCand.Reason);
|
|
int BotRank = getBidirectionalReasonRank(BotCand.Reason);
|
|
if (TopRank > BotRank) {
|
|
Cand = TopCand;
|
|
} else {
|
|
Cand = BotCand;
|
|
}
|
|
}
|
|
}
|
|
DEBUG(
|
|
dbgs() << "Picking: ";
|
|
traceCandidate(Cand);
|
|
);
|
|
|
|
IsTopNode = Cand.AtTop;
|
|
return Cand.SU;
|
|
}
|
|
|
|
// This function is mostly cut and pasted from
|
|
// GenericScheduler::pickNode()
|
|
SUnit *GCNMaxOccupancySchedStrategy::pickNode(bool &IsTopNode) {
|
|
if (DAG->top() == DAG->bottom()) {
|
|
assert(Top.Available.empty() && Top.Pending.empty() &&
|
|
Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage");
|
|
return nullptr;
|
|
}
|
|
SUnit *SU;
|
|
do {
|
|
if (RegionPolicy.OnlyTopDown) {
|
|
SU = Top.pickOnlyChoice();
|
|
if (!SU) {
|
|
CandPolicy NoPolicy;
|
|
TopCand.reset(NoPolicy);
|
|
pickNodeFromQueue(Top, NoPolicy, DAG->getTopRPTracker(), TopCand);
|
|
assert(TopCand.Reason != NoCand && "failed to find a candidate");
|
|
SU = TopCand.SU;
|
|
}
|
|
IsTopNode = true;
|
|
} else if (RegionPolicy.OnlyBottomUp) {
|
|
SU = Bot.pickOnlyChoice();
|
|
if (!SU) {
|
|
CandPolicy NoPolicy;
|
|
BotCand.reset(NoPolicy);
|
|
pickNodeFromQueue(Bot, NoPolicy, DAG->getBotRPTracker(), BotCand);
|
|
assert(BotCand.Reason != NoCand && "failed to find a candidate");
|
|
SU = BotCand.SU;
|
|
}
|
|
IsTopNode = false;
|
|
} else {
|
|
SU = pickNodeBidirectional(IsTopNode);
|
|
}
|
|
} while (SU->isScheduled);
|
|
|
|
if (SU->isTopReady())
|
|
Top.removeReady(SU);
|
|
if (SU->isBottomReady())
|
|
Bot.removeReady(SU);
|
|
|
|
DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " << *SU->getInstr());
|
|
return SU;
|
|
}
|