llvm/lib/Target/AMDGPU/R600EmitClauseMarkers.cpp
2016-08-13 01:12:49 +00:00

340 lines
12 KiB
C++

//===-- R600EmitClauseMarkers.cpp - Emit CF_ALU ---------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
/// \file
/// Add CF_ALU. R600 Alu instructions are grouped in clause which can hold
/// 128 Alu instructions ; these instructions can access up to 4 prefetched
/// 4 lines of 16 registers from constant buffers. Such ALU clauses are
/// initiated by CF_ALU instructions.
//===----------------------------------------------------------------------===//
#include "AMDGPU.h"
#include "R600Defines.h"
#include "R600InstrInfo.h"
#include "R600MachineFunctionInfo.h"
#include "R600RegisterInfo.h"
#include "AMDGPUSubtarget.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
using namespace llvm;
namespace llvm {
void initializeR600EmitClauseMarkersPass(PassRegistry&);
}
namespace {
class R600EmitClauseMarkers : public MachineFunctionPass {
private:
const R600InstrInfo *TII;
int Address;
unsigned OccupiedDwords(MachineInstr &MI) const {
switch (MI.getOpcode()) {
case AMDGPU::INTERP_PAIR_XY:
case AMDGPU::INTERP_PAIR_ZW:
case AMDGPU::INTERP_VEC_LOAD:
case AMDGPU::DOT_4:
return 4;
case AMDGPU::KILL:
return 0;
default:
break;
}
// These will be expanded to two ALU instructions in the
// ExpandSpecialInstructions pass.
if (TII->isLDSRetInstr(MI.getOpcode()))
return 2;
if (TII->isVector(MI) || TII->isCubeOp(MI.getOpcode()) ||
TII->isReductionOp(MI.getOpcode()))
return 4;
unsigned NumLiteral = 0;
for (MachineInstr::mop_iterator It = MI.operands_begin(),
E = MI.operands_end();
It != E; ++It) {
MachineOperand &MO = *It;
if (MO.isReg() && MO.getReg() == AMDGPU::ALU_LITERAL_X)
++NumLiteral;
}
return 1 + NumLiteral;
}
bool isALU(const MachineInstr &MI) const {
if (TII->isALUInstr(MI.getOpcode()))
return true;
if (TII->isVector(MI) || TII->isCubeOp(MI.getOpcode()))
return true;
switch (MI.getOpcode()) {
case AMDGPU::PRED_X:
case AMDGPU::INTERP_PAIR_XY:
case AMDGPU::INTERP_PAIR_ZW:
case AMDGPU::INTERP_VEC_LOAD:
case AMDGPU::COPY:
case AMDGPU::DOT_4:
return true;
default:
return false;
}
}
bool IsTrivialInst(MachineInstr &MI) const {
switch (MI.getOpcode()) {
case AMDGPU::KILL:
case AMDGPU::RETURN:
case AMDGPU::IMPLICIT_DEF:
return true;
default:
return false;
}
}
std::pair<unsigned, unsigned> getAccessedBankLine(unsigned Sel) const {
// Sel is (512 + (kc_bank << 12) + ConstIndex) << 2
// (See also R600ISelLowering.cpp)
// ConstIndex value is in [0, 4095];
return std::pair<unsigned, unsigned>(
((Sel >> 2) - 512) >> 12, // KC_BANK
// Line Number of ConstIndex
// A line contains 16 constant registers however KCX bank can lock
// two line at the same time ; thus we want to get an even line number.
// Line number can be retrieved with (>>4), using (>>5) <<1 generates
// an even number.
((((Sel >> 2) - 512) & 4095) >> 5) << 1);
}
bool
SubstituteKCacheBank(MachineInstr &MI,
std::vector<std::pair<unsigned, unsigned>> &CachedConsts,
bool UpdateInstr = true) const {
std::vector<std::pair<unsigned, unsigned> > UsedKCache;
if (!TII->isALUInstr(MI.getOpcode()) && MI.getOpcode() != AMDGPU::DOT_4)
return true;
const SmallVectorImpl<std::pair<MachineOperand *, int64_t>> &Consts =
TII->getSrcs(MI);
assert(
(TII->isALUInstr(MI.getOpcode()) || MI.getOpcode() == AMDGPU::DOT_4) &&
"Can't assign Const");
for (unsigned i = 0, n = Consts.size(); i < n; ++i) {
if (Consts[i].first->getReg() != AMDGPU::ALU_CONST)
continue;
unsigned Sel = Consts[i].second;
unsigned Chan = Sel & 3, Index = ((Sel >> 2) - 512) & 31;
unsigned KCacheIndex = Index * 4 + Chan;
const std::pair<unsigned, unsigned> &BankLine = getAccessedBankLine(Sel);
if (CachedConsts.empty()) {
CachedConsts.push_back(BankLine);
UsedKCache.push_back(std::pair<unsigned, unsigned>(0, KCacheIndex));
continue;
}
if (CachedConsts[0] == BankLine) {
UsedKCache.push_back(std::pair<unsigned, unsigned>(0, KCacheIndex));
continue;
}
if (CachedConsts.size() == 1) {
CachedConsts.push_back(BankLine);
UsedKCache.push_back(std::pair<unsigned, unsigned>(1, KCacheIndex));
continue;
}
if (CachedConsts[1] == BankLine) {
UsedKCache.push_back(std::pair<unsigned, unsigned>(1, KCacheIndex));
continue;
}
return false;
}
if (!UpdateInstr)
return true;
for (unsigned i = 0, j = 0, n = Consts.size(); i < n; ++i) {
if (Consts[i].first->getReg() != AMDGPU::ALU_CONST)
continue;
switch(UsedKCache[j].first) {
case 0:
Consts[i].first->setReg(
AMDGPU::R600_KC0RegClass.getRegister(UsedKCache[j].second));
break;
case 1:
Consts[i].first->setReg(
AMDGPU::R600_KC1RegClass.getRegister(UsedKCache[j].second));
break;
default:
llvm_unreachable("Wrong Cache Line");
}
j++;
}
return true;
}
bool canClauseLocalKillFitInClause(
unsigned AluInstCount,
std::vector<std::pair<unsigned, unsigned> > KCacheBanks,
MachineBasicBlock::iterator Def,
MachineBasicBlock::iterator BBEnd) {
const R600RegisterInfo &TRI = TII->getRegisterInfo();
for (MachineInstr::const_mop_iterator
MOI = Def->operands_begin(),
MOE = Def->operands_end(); MOI != MOE; ++MOI) {
if (!MOI->isReg() || !MOI->isDef() ||
TRI.isPhysRegLiveAcrossClauses(MOI->getReg()))
continue;
// Def defines a clause local register, so check that its use will fit
// in the clause.
unsigned LastUseCount = 0;
for (MachineBasicBlock::iterator UseI = Def; UseI != BBEnd; ++UseI) {
AluInstCount += OccupiedDwords(*UseI);
// Make sure we won't need to end the clause due to KCache limitations.
if (!SubstituteKCacheBank(*UseI, KCacheBanks, false))
return false;
// We have reached the maximum instruction limit before finding the
// use that kills this register, so we cannot use this def in the
// current clause.
if (AluInstCount >= TII->getMaxAlusPerClause())
return false;
// Register kill flags have been cleared by the time we get to this
// pass, but it is safe to assume that all uses of this register
// occur in the same basic block as its definition, because
// it is illegal for the scheduler to schedule them in
// different blocks.
if (UseI->findRegisterUseOperandIdx(MOI->getReg()))
LastUseCount = AluInstCount;
if (UseI != Def && UseI->findRegisterDefOperandIdx(MOI->getReg()) != -1)
break;
}
if (LastUseCount)
return LastUseCount <= TII->getMaxAlusPerClause();
llvm_unreachable("Clause local register live at end of clause.");
}
return true;
}
MachineBasicBlock::iterator
MakeALUClause(MachineBasicBlock &MBB, MachineBasicBlock::iterator I) {
MachineBasicBlock::iterator ClauseHead = I;
std::vector<std::pair<unsigned, unsigned> > KCacheBanks;
bool PushBeforeModifier = false;
unsigned AluInstCount = 0;
for (MachineBasicBlock::iterator E = MBB.end(); I != E; ++I) {
if (IsTrivialInst(*I))
continue;
if (!isALU(*I))
break;
if (AluInstCount > TII->getMaxAlusPerClause())
break;
if (I->getOpcode() == AMDGPU::PRED_X) {
// We put PRED_X in its own clause to ensure that ifcvt won't create
// clauses with more than 128 insts.
// IfCvt is indeed checking that "then" and "else" branches of an if
// statement have less than ~60 insts thus converted clauses can't be
// bigger than ~121 insts (predicate setter needs to be in the same
// clause as predicated alus).
if (AluInstCount > 0)
break;
if (TII->getFlagOp(*I).getImm() & MO_FLAG_PUSH)
PushBeforeModifier = true;
AluInstCount ++;
continue;
}
// XXX: GROUP_BARRIER instructions cannot be in the same ALU clause as:
//
// * KILL or INTERP instructions
// * Any instruction that sets UPDATE_EXEC_MASK or UPDATE_PRED bits
// * Uses waterfalling (i.e. INDEX_MODE = AR.X)
//
// XXX: These checks have not been implemented yet.
if (TII->mustBeLastInClause(I->getOpcode())) {
I++;
break;
}
// If this instruction defines a clause local register, make sure
// its use can fit in this clause.
if (!canClauseLocalKillFitInClause(AluInstCount, KCacheBanks, I, E))
break;
if (!SubstituteKCacheBank(*I, KCacheBanks))
break;
AluInstCount += OccupiedDwords(*I);
}
unsigned Opcode = PushBeforeModifier ?
AMDGPU::CF_ALU_PUSH_BEFORE : AMDGPU::CF_ALU;
BuildMI(MBB, ClauseHead, MBB.findDebugLoc(ClauseHead), TII->get(Opcode))
// We don't use the ADDR field until R600ControlFlowFinalizer pass, where
// it is safe to assume it is 0. However if we always put 0 here, the ifcvt
// pass may assume that identical ALU clause starter at the beginning of a
// true and false branch can be factorized which is not the case.
.addImm(Address++) // ADDR
.addImm(KCacheBanks.empty()?0:KCacheBanks[0].first) // KB0
.addImm((KCacheBanks.size() < 2)?0:KCacheBanks[1].first) // KB1
.addImm(KCacheBanks.empty()?0:2) // KM0
.addImm((KCacheBanks.size() < 2)?0:2) // KM1
.addImm(KCacheBanks.empty()?0:KCacheBanks[0].second) // KLINE0
.addImm((KCacheBanks.size() < 2)?0:KCacheBanks[1].second) // KLINE1
.addImm(AluInstCount) // COUNT
.addImm(1); // Enabled
return I;
}
public:
static char ID;
R600EmitClauseMarkers() : MachineFunctionPass(ID), TII(nullptr), Address(0) {
initializeR600EmitClauseMarkersPass(*PassRegistry::getPassRegistry());
}
bool runOnMachineFunction(MachineFunction &MF) override {
const R600Subtarget &ST = MF.getSubtarget<R600Subtarget>();
TII = ST.getInstrInfo();
for (MachineFunction::iterator BB = MF.begin(), BB_E = MF.end();
BB != BB_E; ++BB) {
MachineBasicBlock &MBB = *BB;
MachineBasicBlock::iterator I = MBB.begin();
if (I != MBB.end() && I->getOpcode() == AMDGPU::CF_ALU)
continue; // BB was already parsed
for (MachineBasicBlock::iterator E = MBB.end(); I != E;) {
if (isALU(*I))
I = MakeALUClause(MBB, I);
else
++I;
}
}
return false;
}
const char *getPassName() const override {
return "R600 Emit Clause Markers Pass";
}
};
char R600EmitClauseMarkers::ID = 0;
} // end anonymous namespace
INITIALIZE_PASS_BEGIN(R600EmitClauseMarkers, "emitclausemarkers",
"R600 Emit Clause Markters", false, false)
INITIALIZE_PASS_END(R600EmitClauseMarkers, "emitclausemarkers",
"R600 Emit Clause Markters", false, false)
llvm::FunctionPass *llvm::createR600EmitClauseMarkers() {
return new R600EmitClauseMarkers();
}