llvm/unittests/Transforms/Utils/MemorySSA.cpp
George Burgess IV cd112f0139 [MSSA] Add special handling for invariant/constant loads.
This is a follow-up to r277637. It teaches MemorySSA that invariant
loads (and loads of provably constant memory) are always liveOnEntry.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@277640 91177308-0d34-0410-b5e6-96231b3b80d8
2016-08-03 19:57:02 +00:00

454 lines
18 KiB
C++

//===- MemorySSA.cpp - Unit tests for MemorySSA ---------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Utils/MemorySSA.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/BasicAliasAnalysis.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/LLVMContext.h"
#include "gtest/gtest.h"
using namespace llvm;
const static char DLString[] = "e-i64:64-f80:128-n8:16:32:64-S128";
/// There's a lot of common setup between these tests. This fixture helps reduce
/// that. Tests should mock up a function, store it in F, and then call
/// setupAnalyses().
class MemorySSATest : public testing::Test {
protected:
// N.B. Many of these members depend on each other (e.g. the Module depends on
// the Context, etc.). So, order matters here (and in TestAnalyses).
LLVMContext C;
Module M;
IRBuilder<> B;
DataLayout DL;
TargetLibraryInfoImpl TLII;
TargetLibraryInfo TLI;
Function *F;
// Things that we need to build after the function is created.
struct TestAnalyses {
DominatorTree DT;
AssumptionCache AC;
AAResults AA;
BasicAAResult BAA;
MemorySSA MSSA;
MemorySSAWalker *Walker;
TestAnalyses(MemorySSATest &Test)
: DT(*Test.F), AC(*Test.F), AA(Test.TLI),
BAA(Test.DL, Test.TLI, AC, &DT), MSSA(*Test.F, &AA, &DT) {
AA.addAAResult(BAA);
Walker = MSSA.getWalker();
}
};
std::unique_ptr<TestAnalyses> Analyses;
void setupAnalyses() {
assert(F);
Analyses.reset(new TestAnalyses(*this));
}
public:
MemorySSATest()
: M("MemorySSATest", C), B(C), DL(DLString), TLI(TLII), F(nullptr) {}
};
TEST_F(MemorySSATest, CreateALoadAndPhi) {
// We create a diamond where there is a store on one side, and then after
// building MemorySSA, create a load after the merge point, and use it to test
// updating by creating an access for the load and a memoryphi.
F = Function::Create(
FunctionType::get(B.getVoidTy(), {B.getInt8PtrTy()}, false),
GlobalValue::ExternalLinkage, "F", &M);
BasicBlock *Entry(BasicBlock::Create(C, "", F));
BasicBlock *Left(BasicBlock::Create(C, "", F));
BasicBlock *Right(BasicBlock::Create(C, "", F));
BasicBlock *Merge(BasicBlock::Create(C, "", F));
B.SetInsertPoint(Entry);
B.CreateCondBr(B.getTrue(), Left, Right);
B.SetInsertPoint(Left);
Argument *PointerArg = &*F->arg_begin();
StoreInst *StoreInst = B.CreateStore(B.getInt8(16), PointerArg);
BranchInst::Create(Merge, Left);
BranchInst::Create(Merge, Right);
setupAnalyses();
MemorySSA &MSSA = Analyses->MSSA;
// Add the load
B.SetInsertPoint(Merge);
LoadInst *LoadInst = B.CreateLoad(PointerArg);
// Should be no phi to start
EXPECT_EQ(MSSA.getMemoryAccess(Merge), nullptr);
// Create the phi
MemoryPhi *MP = MSSA.createMemoryPhi(Merge);
MemoryDef *StoreAccess = cast<MemoryDef>(MSSA.getMemoryAccess(StoreInst));
MP->addIncoming(StoreAccess, Left);
MP->addIncoming(MSSA.getLiveOnEntryDef(), Right);
// Create the load memory acccess
MemoryUse *LoadAccess = cast<MemoryUse>(
MSSA.createMemoryAccessInBB(LoadInst, MP, Merge, MemorySSA::Beginning));
MemoryAccess *DefiningAccess = LoadAccess->getDefiningAccess();
EXPECT_TRUE(isa<MemoryPhi>(DefiningAccess));
MSSA.verifyMemorySSA();
}
TEST_F(MemorySSATest, MoveAStore) {
// We create a diamond where there is a in the entry, a store on one side, and
// a load at the end. After building MemorySSA, we test updating by moving
// the store from the side block to the entry block.
F = Function::Create(
FunctionType::get(B.getVoidTy(), {B.getInt8PtrTy()}, false),
GlobalValue::ExternalLinkage, "F", &M);
BasicBlock *Entry(BasicBlock::Create(C, "", F));
BasicBlock *Left(BasicBlock::Create(C, "", F));
BasicBlock *Right(BasicBlock::Create(C, "", F));
BasicBlock *Merge(BasicBlock::Create(C, "", F));
B.SetInsertPoint(Entry);
Argument *PointerArg = &*F->arg_begin();
StoreInst *EntryStore = B.CreateStore(B.getInt8(16), PointerArg);
B.CreateCondBr(B.getTrue(), Left, Right);
B.SetInsertPoint(Left);
StoreInst *SideStore = B.CreateStore(B.getInt8(16), PointerArg);
BranchInst::Create(Merge, Left);
BranchInst::Create(Merge, Right);
B.SetInsertPoint(Merge);
B.CreateLoad(PointerArg);
setupAnalyses();
MemorySSA &MSSA = Analyses->MSSA;
// Move the store
SideStore->moveBefore(Entry->getTerminator());
MemoryAccess *EntryStoreAccess = MSSA.getMemoryAccess(EntryStore);
MemoryAccess *SideStoreAccess = MSSA.getMemoryAccess(SideStore);
MemoryAccess *NewStoreAccess = MSSA.createMemoryAccessAfter(SideStore,
EntryStoreAccess,
EntryStoreAccess);
EntryStoreAccess->replaceAllUsesWith(NewStoreAccess);
MSSA.removeMemoryAccess(SideStoreAccess);
MSSA.verifyMemorySSA();
}
TEST_F(MemorySSATest, RemoveAPhi) {
// We create a diamond where there is a store on one side, and then a load
// after the merge point. This enables us to test a bunch of different
// removal cases.
F = Function::Create(
FunctionType::get(B.getVoidTy(), {B.getInt8PtrTy()}, false),
GlobalValue::ExternalLinkage, "F", &M);
BasicBlock *Entry(BasicBlock::Create(C, "", F));
BasicBlock *Left(BasicBlock::Create(C, "", F));
BasicBlock *Right(BasicBlock::Create(C, "", F));
BasicBlock *Merge(BasicBlock::Create(C, "", F));
B.SetInsertPoint(Entry);
B.CreateCondBr(B.getTrue(), Left, Right);
B.SetInsertPoint(Left);
Argument *PointerArg = &*F->arg_begin();
StoreInst *StoreInst = B.CreateStore(B.getInt8(16), PointerArg);
BranchInst::Create(Merge, Left);
BranchInst::Create(Merge, Right);
B.SetInsertPoint(Merge);
LoadInst *LoadInst = B.CreateLoad(PointerArg);
setupAnalyses();
MemorySSA &MSSA = Analyses->MSSA;
// Before, the load will be a use of a phi<store, liveonentry>.
MemoryUse *LoadAccess = cast<MemoryUse>(MSSA.getMemoryAccess(LoadInst));
MemoryDef *StoreAccess = cast<MemoryDef>(MSSA.getMemoryAccess(StoreInst));
MemoryAccess *DefiningAccess = LoadAccess->getDefiningAccess();
EXPECT_TRUE(isa<MemoryPhi>(DefiningAccess));
// Kill the store
MSSA.removeMemoryAccess(StoreAccess);
MemoryPhi *MP = cast<MemoryPhi>(DefiningAccess);
// Verify the phi ended up as liveonentry, liveonentry
for (auto &Op : MP->incoming_values())
EXPECT_TRUE(MSSA.isLiveOnEntryDef(cast<MemoryAccess>(Op.get())));
// Replace the phi uses with the live on entry def
MP->replaceAllUsesWith(MSSA.getLiveOnEntryDef());
// Verify the load is now defined by liveOnEntryDef
EXPECT_TRUE(MSSA.isLiveOnEntryDef(LoadAccess->getDefiningAccess()));
// Remove the PHI
MSSA.removeMemoryAccess(MP);
MSSA.verifyMemorySSA();
}
TEST_F(MemorySSATest, RemoveMemoryAccess) {
// We create a diamond where there is a store on one side, and then a load
// after the merge point. This enables us to test a bunch of different
// removal cases.
F = Function::Create(
FunctionType::get(B.getVoidTy(), {B.getInt8PtrTy()}, false),
GlobalValue::ExternalLinkage, "F", &M);
BasicBlock *Entry(BasicBlock::Create(C, "", F));
BasicBlock *Left(BasicBlock::Create(C, "", F));
BasicBlock *Right(BasicBlock::Create(C, "", F));
BasicBlock *Merge(BasicBlock::Create(C, "", F));
B.SetInsertPoint(Entry);
B.CreateCondBr(B.getTrue(), Left, Right);
B.SetInsertPoint(Left);
Argument *PointerArg = &*F->arg_begin();
StoreInst *StoreInst = B.CreateStore(B.getInt8(16), PointerArg);
BranchInst::Create(Merge, Left);
BranchInst::Create(Merge, Right);
B.SetInsertPoint(Merge);
LoadInst *LoadInst = B.CreateLoad(PointerArg);
setupAnalyses();
MemorySSA &MSSA = Analyses->MSSA;
MemorySSAWalker *Walker = Analyses->Walker;
// Before, the load will be a use of a phi<store, liveonentry>. It should be
// the same after.
MemoryUse *LoadAccess = cast<MemoryUse>(MSSA.getMemoryAccess(LoadInst));
MemoryDef *StoreAccess = cast<MemoryDef>(MSSA.getMemoryAccess(StoreInst));
MemoryAccess *DefiningAccess = LoadAccess->getDefiningAccess();
EXPECT_TRUE(isa<MemoryPhi>(DefiningAccess));
// The load is currently clobbered by one of the phi arguments, so the walker
// should determine the clobbering access as the phi.
EXPECT_EQ(DefiningAccess, Walker->getClobberingMemoryAccess(LoadInst));
MSSA.removeMemoryAccess(StoreAccess);
MSSA.verifyMemorySSA();
// After the removeaccess, let's see if we got the right accesses
// The load should still point to the phi ...
EXPECT_EQ(DefiningAccess, LoadAccess->getDefiningAccess());
// but we should now get live on entry for the clobbering definition of the
// load, since it will walk past the phi node since every argument is the
// same.
EXPECT_TRUE(
MSSA.isLiveOnEntryDef(Walker->getClobberingMemoryAccess(LoadInst)));
// The phi should now be a two entry phi with two live on entry defs.
for (const auto &Op : DefiningAccess->operands()) {
MemoryAccess *Operand = cast<MemoryAccess>(&*Op);
EXPECT_TRUE(MSSA.isLiveOnEntryDef(Operand));
}
// Now we try to remove the single valued phi
MSSA.removeMemoryAccess(DefiningAccess);
MSSA.verifyMemorySSA();
// Now the load should be a load of live on entry.
EXPECT_TRUE(MSSA.isLiveOnEntryDef(LoadAccess->getDefiningAccess()));
}
// We had a bug with caching where the walker would report MemoryDef#3's clobber
// (below) was MemoryDef#1.
//
// define void @F(i8*) {
// %A = alloca i8, i8 1
// ; 1 = MemoryDef(liveOnEntry)
// store i8 0, i8* %A
// ; 2 = MemoryDef(1)
// store i8 1, i8* %A
// ; 3 = MemoryDef(2)
// store i8 2, i8* %A
// }
TEST_F(MemorySSATest, TestTripleStore) {
F = Function::Create(FunctionType::get(B.getVoidTy(), {}, false),
GlobalValue::ExternalLinkage, "F", &M);
B.SetInsertPoint(BasicBlock::Create(C, "", F));
Type *Int8 = Type::getInt8Ty(C);
Value *Alloca = B.CreateAlloca(Int8, ConstantInt::get(Int8, 1), "A");
StoreInst *S1 = B.CreateStore(ConstantInt::get(Int8, 0), Alloca);
StoreInst *S2 = B.CreateStore(ConstantInt::get(Int8, 1), Alloca);
StoreInst *S3 = B.CreateStore(ConstantInt::get(Int8, 2), Alloca);
setupAnalyses();
MemorySSA &MSSA = Analyses->MSSA;
MemorySSAWalker *Walker = Analyses->Walker;
unsigned I = 0;
for (StoreInst *V : {S1, S2, S3}) {
// Everything should be clobbered by its defining access
MemoryAccess *DefiningAccess =
cast<MemoryUseOrDef>(MSSA.getMemoryAccess(V))->getDefiningAccess();
MemoryAccess *WalkerClobber = Walker->getClobberingMemoryAccess(V);
EXPECT_EQ(DefiningAccess, WalkerClobber)
<< "Store " << I << " doesn't have the correct clobbering access";
// EXPECT_EQ expands such that if we increment I above, it won't get
// incremented except when we try to print the error message.
++I;
}
}
// ...And fixing the above bug made it obvious that, when walking, MemorySSA's
// walker was caching the initial node it walked. This was fine (albeit
// mostly redundant) unless the initial node being walked is a clobber for the
// query. In that case, we'd cache that the node clobbered itself.
TEST_F(MemorySSATest, TestStoreAndLoad) {
F = Function::Create(FunctionType::get(B.getVoidTy(), {}, false),
GlobalValue::ExternalLinkage, "F", &M);
B.SetInsertPoint(BasicBlock::Create(C, "", F));
Type *Int8 = Type::getInt8Ty(C);
Value *Alloca = B.CreateAlloca(Int8, ConstantInt::get(Int8, 1), "A");
Instruction *SI = B.CreateStore(ConstantInt::get(Int8, 0), Alloca);
Instruction *LI = B.CreateLoad(Alloca);
setupAnalyses();
MemorySSA &MSSA = Analyses->MSSA;
MemorySSAWalker *Walker = Analyses->Walker;
MemoryAccess *LoadClobber = Walker->getClobberingMemoryAccess(LI);
EXPECT_EQ(LoadClobber, MSSA.getMemoryAccess(SI));
EXPECT_TRUE(MSSA.isLiveOnEntryDef(Walker->getClobberingMemoryAccess(SI)));
}
// Another bug (related to the above two fixes): It was noted that, given the
// following code:
// ; 1 = MemoryDef(liveOnEntry)
// store i8 0, i8* %1
//
// ...A query to getClobberingMemoryAccess(MemoryAccess*, MemoryLocation) would
// hand back the store (correctly). A later call to
// getClobberingMemoryAccess(const Instruction*) would also hand back the store
// (incorrectly; it should return liveOnEntry).
//
// This test checks that repeated calls to either function returns what they're
// meant to.
TEST_F(MemorySSATest, TestStoreDoubleQuery) {
F = Function::Create(FunctionType::get(B.getVoidTy(), {}, false),
GlobalValue::ExternalLinkage, "F", &M);
B.SetInsertPoint(BasicBlock::Create(C, "", F));
Type *Int8 = Type::getInt8Ty(C);
Value *Alloca = B.CreateAlloca(Int8, ConstantInt::get(Int8, 1), "A");
StoreInst *SI = B.CreateStore(ConstantInt::get(Int8, 0), Alloca);
setupAnalyses();
MemorySSA &MSSA = Analyses->MSSA;
MemorySSAWalker *Walker = Analyses->Walker;
MemoryAccess *StoreAccess = MSSA.getMemoryAccess(SI);
MemoryLocation StoreLoc = MemoryLocation::get(SI);
MemoryAccess *Clobber =
Walker->getClobberingMemoryAccess(StoreAccess, StoreLoc);
MemoryAccess *LiveOnEntry = Walker->getClobberingMemoryAccess(SI);
EXPECT_EQ(Clobber, StoreAccess);
EXPECT_TRUE(MSSA.isLiveOnEntryDef(LiveOnEntry));
// Try again (with entries in the cache already) for good measure...
Clobber = Walker->getClobberingMemoryAccess(StoreAccess, StoreLoc);
LiveOnEntry = Walker->getClobberingMemoryAccess(SI);
EXPECT_EQ(Clobber, StoreAccess);
EXPECT_TRUE(MSSA.isLiveOnEntryDef(LiveOnEntry));
}
// Bug: During phi optimization, the walker wouldn't cache to the proper result
// in the farthest-walked BB.
//
// Specifically, it would assume that whatever we walked to was a clobber.
// "Whatever we walked to" isn't a clobber if we hit a cache entry.
//
// ...So, we need a test case that looks like:
// A
// / \
// B |
// \ /
// C
//
// Where, when we try to optimize a thing in 'C', a blocker is found in 'B'.
// The walk must determine that the blocker exists by using cache entries *while
// walking* 'B'.
TEST_F(MemorySSATest, PartialWalkerCacheWithPhis) {
F = Function::Create(FunctionType::get(B.getVoidTy(), {}, false),
GlobalValue::ExternalLinkage, "F", &M);
B.SetInsertPoint(BasicBlock::Create(C, "A", F));
Type *Int8 = Type::getInt8Ty(C);
Constant *One = ConstantInt::get(Int8, 1);
Constant *Zero = ConstantInt::get(Int8, 0);
Value *AllocA = B.CreateAlloca(Int8, One, "a");
Value *AllocB = B.CreateAlloca(Int8, One, "b");
BasicBlock *IfThen = BasicBlock::Create(C, "B", F);
BasicBlock *IfEnd = BasicBlock::Create(C, "C", F);
B.CreateCondBr(UndefValue::get(Type::getInt1Ty(C)), IfThen, IfEnd);
B.SetInsertPoint(IfThen);
Instruction *FirstStore = B.CreateStore(Zero, AllocA);
B.CreateStore(Zero, AllocB);
Instruction *ALoad0 = B.CreateLoad(AllocA, "");
Instruction *BStore = B.CreateStore(Zero, AllocB);
// Due to use optimization/etc. we make a store to A, which is removed after
// we build MSSA. This helps keep the test case simple-ish.
Instruction *KillStore = B.CreateStore(Zero, AllocA);
Instruction *ALoad = B.CreateLoad(AllocA, "");
B.CreateBr(IfEnd);
B.SetInsertPoint(IfEnd);
Instruction *BelowPhi = B.CreateStore(Zero, AllocA);
setupAnalyses();
MemorySSA &MSSA = Analyses->MSSA;
MemorySSAWalker *Walker = Analyses->Walker;
// Kill `KillStore`; it exists solely so that the load after it won't be
// optimized to FirstStore.
MSSA.removeMemoryAccess(MSSA.getMemoryAccess(KillStore));
KillStore->eraseFromParent();
auto *ALoadMA = cast<MemoryUse>(MSSA.getMemoryAccess(ALoad));
EXPECT_EQ(ALoadMA->getDefiningAccess(), MSSA.getMemoryAccess(BStore));
// Populate the cache for the store to AllocB directly after FirstStore. It
// should point to something in block B (so something in D can't be optimized
// to it).
MemoryAccess *Load0Clobber = Walker->getClobberingMemoryAccess(ALoad0);
EXPECT_EQ(MSSA.getMemoryAccess(FirstStore), Load0Clobber);
// If the bug exists, this will introduce a bad cache entry for %a on BStore.
// It will point to the store to %b after FirstStore. This only happens during
// phi optimization.
MemoryAccess *BottomClobber = Walker->getClobberingMemoryAccess(BelowPhi);
MemoryAccess *Phi = MSSA.getMemoryAccess(IfEnd);
EXPECT_EQ(BottomClobber, Phi);
// This query will first check the cache for {%a, BStore}. It should point to
// FirstStore, not to the store after FirstStore.
MemoryAccess *UseClobber = Walker->getClobberingMemoryAccess(ALoad);
EXPECT_EQ(UseClobber, MSSA.getMemoryAccess(FirstStore));
}
// Test that our walker properly handles loads with the invariant group
// attribute. It's a bit hacky, since we add the invariant attribute *after*
// building MSSA. Otherwise, the use optimizer will optimize it for us, which
// isn't what we want.
// FIXME: It may be easier/cleaner to just add an 'optimize uses?' flag to MSSA.
TEST_F(MemorySSATest, WalkerInvariantLoadOpt) {
F = Function::Create(FunctionType::get(B.getVoidTy(), {}, false),
GlobalValue::ExternalLinkage, "F", &M);
B.SetInsertPoint(BasicBlock::Create(C, "", F));
Type *Int8 = Type::getInt8Ty(C);
Constant *One = ConstantInt::get(Int8, 1);
Value *AllocA = B.CreateAlloca(Int8, One, "");
Instruction *Store = B.CreateStore(One, AllocA);
Instruction *Load = B.CreateLoad(AllocA);
setupAnalyses();
MemorySSA &MSSA = Analyses->MSSA;
MemorySSAWalker *Walker = Analyses->Walker;
auto *LoadMA = cast<MemoryUse>(MSSA.getMemoryAccess(Load));
auto *StoreMA = cast<MemoryDef>(MSSA.getMemoryAccess(Store));
EXPECT_EQ(LoadMA->getDefiningAccess(), StoreMA);
// ...At the time of writing, no cache should exist for LoadMA. Be a bit
// flexible to future changes.
Walker->invalidateInfo(LoadMA);
Load->setMetadata(LLVMContext::MD_invariant_load, MDNode::get(C, {}));
MemoryAccess *LoadClobber = Walker->getClobberingMemoryAccess(LoadMA);
EXPECT_EQ(LoadClobber, MSSA.getLiveOnEntryDef());
}