llvm/lib/Transforms/Scalar/GCSE.cpp
2002-04-29 17:42:12 +00:00

276 lines
11 KiB
C++

//===-- GCSE.cpp - SSA based Global Common Subexpr Elimination ------------===//
//
// This pass is designed to be a very quick global transformation that
// eliminates global common subexpressions from a function. It does this by
// examining the SSA value graph of the function, instead of doing slow, dense,
// bit-vector computations.
//
// This pass works best if it is proceeded with a simple constant propogation
// pass and an instruction combination pass because this pass does not do any
// value numbering (in order to be speedy).
//
// This pass does not attempt to CSE load instructions, because it does not use
// pointer analysis to determine when it is safe.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Scalar/GCSE.h"
#include "llvm/InstrTypes.h"
#include "llvm/iMemory.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Support/InstVisitor.h"
#include "llvm/Support/InstIterator.h"
#include <algorithm>
namespace {
class GCSE : public FunctionPass, public InstVisitor<GCSE, bool> {
set<Instruction*> WorkList;
DominatorSet *DomSetInfo;
ImmediateDominators *ImmDominator;
public:
const char *getPassName() const {
return "Global Common Subexpression Elimination";
}
virtual bool runOnFunction(Function *F);
// Visitation methods, these are invoked depending on the type of
// instruction being checked. They should return true if a common
// subexpression was folded.
//
bool visitUnaryOperator(Instruction *I);
bool visitBinaryOperator(Instruction *I);
bool visitGetElementPtrInst(GetElementPtrInst *I);
bool visitCastInst(CastInst *I){return visitUnaryOperator((Instruction*)I);}
bool visitShiftInst(ShiftInst *I) {
return visitBinaryOperator((Instruction*)I);
}
bool visitInstruction(Instruction *) { return false; }
private:
void ReplaceInstWithInst(Instruction *First, BasicBlock::iterator SI);
void CommonSubExpressionFound(Instruction *I, Instruction *Other);
// This transformation requires dominator and immediate dominator info
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.preservesCFG();
AU.addRequired(DominatorSet::ID);
AU.addRequired(ImmediateDominators::ID);
}
};
}
// createGCSEPass - The public interface to this file...
Pass *createGCSEPass() { return new GCSE(); }
// GCSE::runOnFunction - This is the main transformation entry point for a
// function.
//
bool GCSE::runOnFunction(Function *F) {
bool Changed = false;
DomSetInfo = &getAnalysis<DominatorSet>();
ImmDominator = &getAnalysis<ImmediateDominators>();
// Step #1: Add all instructions in the function to the worklist for
// processing. All of the instructions are considered to be our
// subexpressions to eliminate if possible.
//
WorkList.insert(inst_begin(F), inst_end(F));
// Step #2: WorkList processing. Iterate through all of the instructions,
// checking to see if there are any additionally defined subexpressions in the
// program. If so, eliminate them!
//
while (!WorkList.empty()) {
Instruction *I = *WorkList.begin(); // Get an instruction from the worklist
WorkList.erase(WorkList.begin());
// Visit the instruction, dispatching to the correct visit function based on
// the instruction type. This does the checking.
//
Changed |= visit(I);
}
// When the worklist is empty, return whether or not we changed anything...
return Changed;
}
// ReplaceInstWithInst - Destroy the instruction pointed to by SI, making all
// uses of the instruction use First now instead.
//
void GCSE::ReplaceInstWithInst(Instruction *First, BasicBlock::iterator SI) {
Instruction *Second = *SI;
//cerr << "DEL " << (void*)Second << Second;
// Add the first instruction back to the worklist
WorkList.insert(First);
// Add all uses of the second instruction to the worklist
for (Value::use_iterator UI = Second->use_begin(), UE = Second->use_end();
UI != UE; ++UI)
WorkList.insert(cast<Instruction>(*UI));
// Make all users of 'Second' now use 'First'
Second->replaceAllUsesWith(First);
// Erase the second instruction from the program
delete Second->getParent()->getInstList().remove(SI);
}
// CommonSubExpressionFound - The two instruction I & Other have been found to
// be common subexpressions. This function is responsible for eliminating one
// of them, and for fixing the worklist to be correct.
//
void GCSE::CommonSubExpressionFound(Instruction *I, Instruction *Other) {
// I has already been removed from the worklist, Other needs to be.
assert(I != Other && WorkList.count(I) == 0 && "I shouldn't be on worklist!");
WorkList.erase(Other); // Other may not actually be on the worklist anymore...
// Handle the easy case, where both instructions are in the same basic block
BasicBlock *BB1 = I->getParent(), *BB2 = Other->getParent();
if (BB1 == BB2) {
// Eliminate the second occuring instruction. Add all uses of the second
// instruction to the worklist.
//
// Scan the basic block looking for the "first" instruction
BasicBlock::iterator BI = BB1->begin();
while (*BI != I && *BI != Other) {
++BI;
assert(BI != BB1->end() && "Instructions not found in parent BB!");
}
// Keep track of which instructions occurred first & second
Instruction *First = *BI;
Instruction *Second = I != First ? I : Other; // Get iterator to second inst
BI = find(BI, BB1->end(), Second);
assert(BI != BB1->end() && "Second instruction not found in parent block!");
// Destroy Second, using First instead.
ReplaceInstWithInst(First, BI);
// Otherwise, the two instructions are in different basic blocks. If one
// dominates the other instruction, we can simply use it
//
} else if (DomSetInfo->dominates(BB1, BB2)) { // I dom Other?
BasicBlock::iterator BI = find(BB2->begin(), BB2->end(), Other);
assert(BI != BB2->end() && "Other not in parent basic block!");
ReplaceInstWithInst(I, BI);
} else if (DomSetInfo->dominates(BB2, BB1)) { // Other dom I?
BasicBlock::iterator BI = find(BB1->begin(), BB1->end(), I);
assert(BI != BB1->end() && "I not in parent basic block!");
ReplaceInstWithInst(Other, BI);
} else {
// Handle the most general case now. In this case, neither I dom Other nor
// Other dom I. Because we are in SSA form, we are guaranteed that the
// operands of the two instructions both dominate the uses, so we _know_
// that there must exist a block that dominates both instructions (if the
// operands of the instructions are globals or constants, worst case we
// would get the entry node of the function). Search for this block now.
//
// Search up the immediate dominator chain of BB1 for the shared dominator
BasicBlock *SharedDom = (*ImmDominator)[BB1];
while (!DomSetInfo->dominates(SharedDom, BB2))
SharedDom = (*ImmDominator)[SharedDom];
// At this point, shared dom must dominate BOTH BB1 and BB2...
assert(SharedDom && DomSetInfo->dominates(SharedDom, BB1) &&
DomSetInfo->dominates(SharedDom, BB2) && "Dominators broken!");
// Rip 'I' out of BB1, and move it to the end of SharedDom.
BB1->getInstList().remove(I);
SharedDom->getInstList().insert(SharedDom->end()-1, I);
// Eliminate 'Other' now.
BasicBlock::iterator BI = find(BB2->begin(), BB2->end(), Other);
assert(BI != BB2->end() && "I not in parent basic block!");
ReplaceInstWithInst(I, BI);
}
}
//===----------------------------------------------------------------------===//
//
// Visitation methods, these are invoked depending on the type of instruction
// being checked. They should return true if a common subexpression was folded.
//
//===----------------------------------------------------------------------===//
bool GCSE::visitUnaryOperator(Instruction *I) {
Value *Op = I->getOperand(0);
Function *F = I->getParent()->getParent();
for (Value::use_iterator UI = Op->use_begin(), UE = Op->use_end();
UI != UE; ++UI)
if (Instruction *Other = dyn_cast<Instruction>(*UI))
// Check to see if this new binary operator is not I, but same operand...
if (Other != I && Other->getOpcode() == I->getOpcode() &&
Other->getOperand(0) == Op && // Is the operand the same?
// Is it embeded in the same function? (This could be false if LHS
// is a constant or global!)
Other->getParent()->getParent() == F &&
// Check that the types are the same, since this code handles casts...
Other->getType() == I->getType()) {
// These instructions are identical. Handle the situation.
CommonSubExpressionFound(I, Other);
return true; // One instruction eliminated!
}
return false;
}
bool GCSE::visitBinaryOperator(Instruction *I) {
Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
Function *F = I->getParent()->getParent();
for (Value::use_iterator UI = LHS->use_begin(), UE = LHS->use_end();
UI != UE; ++UI)
if (Instruction *Other = dyn_cast<Instruction>(*UI))
// Check to see if this new binary operator is not I, but same operand...
if (Other != I && Other->getOpcode() == I->getOpcode() &&
// Are the LHS and RHS the same?
Other->getOperand(0) == LHS && Other->getOperand(1) == RHS &&
// Is it embeded in the same function? (This could be false if LHS
// is a constant or global!)
Other->getParent()->getParent() == F) {
// These instructions are identical. Handle the situation.
CommonSubExpressionFound(I, Other);
return true; // One instruction eliminated!
}
return false;
}
bool GCSE::visitGetElementPtrInst(GetElementPtrInst *I) {
Value *Op = I->getOperand(0);
Function *F = I->getParent()->getParent();
for (Value::use_iterator UI = Op->use_begin(), UE = Op->use_end();
UI != UE; ++UI)
if (GetElementPtrInst *Other = dyn_cast<GetElementPtrInst>(*UI))
// Check to see if this new binary operator is not I, but same operand...
if (Other != I && Other->getParent()->getParent() == F &&
Other->getType() == I->getType()) {
// Check to see that all operators past the 0th are the same...
unsigned i = 1, e = I->getNumOperands();
for (; i != e; ++i)
if (I->getOperand(i) != Other->getOperand(i)) break;
if (i == e) {
// These instructions are identical. Handle the situation.
CommonSubExpressionFound(I, Other);
return true; // One instruction eliminated!
}
}
return false;
}