mirror of
https://github.com/RPCSX/llvm.git
synced 2024-12-14 23:48:49 +00:00
6d024c616a
This reverts commit r253511. This likely broke the bots in http://lab.llvm.org:8011/builders/clang-ppc64-elf-linux2/builds/20202 http://bb.pgr.jp/builders/clang-3stage-i686-linux/builds/3787 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@253543 91177308-0d34-0410-b5e6-96231b3b80d8
1636 lines
65 KiB
LLVM
1636 lines
65 KiB
LLVM
; RUN: opt < %s -sroa -S | FileCheck %s
|
|
; RUN: opt < %s -passes=sroa -S | FileCheck %s
|
|
|
|
target datalayout = "e-p:64:64:64-p1:16:16:16-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:32:64-f32:32:32-f64:64:64-v64:64:64-v128:128:128-a0:0:64-n8:16:32:64"
|
|
|
|
declare void @llvm.lifetime.start(i64, i8* nocapture)
|
|
declare void @llvm.lifetime.end(i64, i8* nocapture)
|
|
|
|
define i32 @test0() {
|
|
; CHECK-LABEL: @test0(
|
|
; CHECK-NOT: alloca
|
|
; CHECK: ret i32
|
|
|
|
entry:
|
|
%a1 = alloca i32
|
|
%a2 = alloca float
|
|
|
|
%a1.i8 = bitcast i32* %a1 to i8*
|
|
call void @llvm.lifetime.start(i64 4, i8* %a1.i8)
|
|
|
|
store i32 0, i32* %a1
|
|
%v1 = load i32, i32* %a1
|
|
|
|
call void @llvm.lifetime.end(i64 4, i8* %a1.i8)
|
|
|
|
%a2.i8 = bitcast float* %a2 to i8*
|
|
call void @llvm.lifetime.start(i64 4, i8* %a2.i8)
|
|
|
|
store float 0.0, float* %a2
|
|
%v2 = load float , float * %a2
|
|
%v2.int = bitcast float %v2 to i32
|
|
%sum1 = add i32 %v1, %v2.int
|
|
|
|
call void @llvm.lifetime.end(i64 4, i8* %a2.i8)
|
|
|
|
ret i32 %sum1
|
|
}
|
|
|
|
define i32 @test1() {
|
|
; CHECK-LABEL: @test1(
|
|
; CHECK-NOT: alloca
|
|
; CHECK: ret i32 0
|
|
|
|
entry:
|
|
%X = alloca { i32, float }
|
|
%Y = getelementptr { i32, float }, { i32, float }* %X, i64 0, i32 0
|
|
store i32 0, i32* %Y
|
|
%Z = load i32, i32* %Y
|
|
ret i32 %Z
|
|
}
|
|
|
|
define i64 @test2(i64 %X) {
|
|
; CHECK-LABEL: @test2(
|
|
; CHECK-NOT: alloca
|
|
; CHECK: ret i64 %X
|
|
|
|
entry:
|
|
%A = alloca [8 x i8]
|
|
%B = bitcast [8 x i8]* %A to i64*
|
|
store i64 %X, i64* %B
|
|
br label %L2
|
|
|
|
L2:
|
|
%Z = load i64, i64* %B
|
|
ret i64 %Z
|
|
}
|
|
|
|
define void @test3(i8* %dst, i8* %src) {
|
|
; CHECK-LABEL: @test3(
|
|
|
|
entry:
|
|
%a = alloca [300 x i8]
|
|
; CHECK-NOT: alloca
|
|
; CHECK: %[[test3_a1:.*]] = alloca [42 x i8]
|
|
; CHECK-NEXT: %[[test3_a2:.*]] = alloca [99 x i8]
|
|
; CHECK-NEXT: %[[test3_a3:.*]] = alloca [16 x i8]
|
|
; CHECK-NEXT: %[[test3_a4:.*]] = alloca [42 x i8]
|
|
; CHECK-NEXT: %[[test3_a5:.*]] = alloca [7 x i8]
|
|
; CHECK-NEXT: %[[test3_a6:.*]] = alloca [7 x i8]
|
|
; CHECK-NEXT: %[[test3_a7:.*]] = alloca [85 x i8]
|
|
|
|
%b = getelementptr [300 x i8], [300 x i8]* %a, i64 0, i64 0
|
|
call void @llvm.memcpy.p0i8.p0i8.i32(i8* %b, i8* %src, i32 300, i32 1, i1 false)
|
|
; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [42 x i8], [42 x i8]* %[[test3_a1]], i64 0, i64 0
|
|
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %src, i32 42
|
|
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8, i8* %src, i64 42
|
|
; CHECK-NEXT: %[[test3_r1:.*]] = load i8, i8* %[[gep]]
|
|
; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8, i8* %src, i64 43
|
|
; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [99 x i8], [99 x i8]* %[[test3_a2]], i64 0, i64 0
|
|
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 99
|
|
; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8, i8* %src, i64 142
|
|
; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [16 x i8], [16 x i8]* %[[test3_a3]], i64 0, i64 0
|
|
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 16
|
|
; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8, i8* %src, i64 158
|
|
; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [42 x i8], [42 x i8]* %[[test3_a4]], i64 0, i64 0
|
|
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 42
|
|
; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8, i8* %src, i64 200
|
|
; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test3_a5]], i64 0, i64 0
|
|
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 7
|
|
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8, i8* %src, i64 207
|
|
; CHECK-NEXT: %[[test3_r2:.*]] = load i8, i8* %[[gep]]
|
|
; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8, i8* %src, i64 208
|
|
; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test3_a6]], i64 0, i64 0
|
|
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 7
|
|
; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8, i8* %src, i64 215
|
|
; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [85 x i8], [85 x i8]* %[[test3_a7]], i64 0, i64 0
|
|
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 85
|
|
|
|
; Clobber a single element of the array, this should be promotable.
|
|
%c = getelementptr [300 x i8], [300 x i8]* %a, i64 0, i64 42
|
|
store i8 0, i8* %c
|
|
|
|
; Make a sequence of overlapping stores to the array. These overlap both in
|
|
; forward strides and in shrinking accesses.
|
|
%overlap.1.i8 = getelementptr [300 x i8], [300 x i8]* %a, i64 0, i64 142
|
|
%overlap.2.i8 = getelementptr [300 x i8], [300 x i8]* %a, i64 0, i64 143
|
|
%overlap.3.i8 = getelementptr [300 x i8], [300 x i8]* %a, i64 0, i64 144
|
|
%overlap.4.i8 = getelementptr [300 x i8], [300 x i8]* %a, i64 0, i64 145
|
|
%overlap.5.i8 = getelementptr [300 x i8], [300 x i8]* %a, i64 0, i64 146
|
|
%overlap.6.i8 = getelementptr [300 x i8], [300 x i8]* %a, i64 0, i64 147
|
|
%overlap.7.i8 = getelementptr [300 x i8], [300 x i8]* %a, i64 0, i64 148
|
|
%overlap.8.i8 = getelementptr [300 x i8], [300 x i8]* %a, i64 0, i64 149
|
|
%overlap.9.i8 = getelementptr [300 x i8], [300 x i8]* %a, i64 0, i64 150
|
|
%overlap.1.i16 = bitcast i8* %overlap.1.i8 to i16*
|
|
%overlap.1.i32 = bitcast i8* %overlap.1.i8 to i32*
|
|
%overlap.1.i64 = bitcast i8* %overlap.1.i8 to i64*
|
|
%overlap.2.i64 = bitcast i8* %overlap.2.i8 to i64*
|
|
%overlap.3.i64 = bitcast i8* %overlap.3.i8 to i64*
|
|
%overlap.4.i64 = bitcast i8* %overlap.4.i8 to i64*
|
|
%overlap.5.i64 = bitcast i8* %overlap.5.i8 to i64*
|
|
%overlap.6.i64 = bitcast i8* %overlap.6.i8 to i64*
|
|
%overlap.7.i64 = bitcast i8* %overlap.7.i8 to i64*
|
|
%overlap.8.i64 = bitcast i8* %overlap.8.i8 to i64*
|
|
%overlap.9.i64 = bitcast i8* %overlap.9.i8 to i64*
|
|
store i8 1, i8* %overlap.1.i8
|
|
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [16 x i8], [16 x i8]* %[[test3_a3]], i64 0, i64 0
|
|
; CHECK-NEXT: store i8 1, i8* %[[gep]]
|
|
store i16 1, i16* %overlap.1.i16
|
|
; CHECK-NEXT: %[[bitcast:.*]] = bitcast [16 x i8]* %[[test3_a3]] to i16*
|
|
; CHECK-NEXT: store i16 1, i16* %[[bitcast]]
|
|
store i32 1, i32* %overlap.1.i32
|
|
; CHECK-NEXT: %[[bitcast:.*]] = bitcast [16 x i8]* %[[test3_a3]] to i32*
|
|
; CHECK-NEXT: store i32 1, i32* %[[bitcast]]
|
|
store i64 1, i64* %overlap.1.i64
|
|
; CHECK-NEXT: %[[bitcast:.*]] = bitcast [16 x i8]* %[[test3_a3]] to i64*
|
|
; CHECK-NEXT: store i64 1, i64* %[[bitcast]]
|
|
store i64 2, i64* %overlap.2.i64
|
|
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [16 x i8], [16 x i8]* %[[test3_a3]], i64 0, i64 1
|
|
; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i64*
|
|
; CHECK-NEXT: store i64 2, i64* %[[bitcast]]
|
|
store i64 3, i64* %overlap.3.i64
|
|
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [16 x i8], [16 x i8]* %[[test3_a3]], i64 0, i64 2
|
|
; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i64*
|
|
; CHECK-NEXT: store i64 3, i64* %[[bitcast]]
|
|
store i64 4, i64* %overlap.4.i64
|
|
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [16 x i8], [16 x i8]* %[[test3_a3]], i64 0, i64 3
|
|
; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i64*
|
|
; CHECK-NEXT: store i64 4, i64* %[[bitcast]]
|
|
store i64 5, i64* %overlap.5.i64
|
|
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [16 x i8], [16 x i8]* %[[test3_a3]], i64 0, i64 4
|
|
; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i64*
|
|
; CHECK-NEXT: store i64 5, i64* %[[bitcast]]
|
|
store i64 6, i64* %overlap.6.i64
|
|
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [16 x i8], [16 x i8]* %[[test3_a3]], i64 0, i64 5
|
|
; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i64*
|
|
; CHECK-NEXT: store i64 6, i64* %[[bitcast]]
|
|
store i64 7, i64* %overlap.7.i64
|
|
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [16 x i8], [16 x i8]* %[[test3_a3]], i64 0, i64 6
|
|
; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i64*
|
|
; CHECK-NEXT: store i64 7, i64* %[[bitcast]]
|
|
store i64 8, i64* %overlap.8.i64
|
|
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [16 x i8], [16 x i8]* %[[test3_a3]], i64 0, i64 7
|
|
; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i64*
|
|
; CHECK-NEXT: store i64 8, i64* %[[bitcast]]
|
|
store i64 9, i64* %overlap.9.i64
|
|
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [16 x i8], [16 x i8]* %[[test3_a3]], i64 0, i64 8
|
|
; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i64*
|
|
; CHECK-NEXT: store i64 9, i64* %[[bitcast]]
|
|
|
|
; Make two sequences of overlapping stores with more gaps and irregularities.
|
|
%overlap2.1.0.i8 = getelementptr [300 x i8], [300 x i8]* %a, i64 0, i64 200
|
|
%overlap2.1.1.i8 = getelementptr [300 x i8], [300 x i8]* %a, i64 0, i64 201
|
|
%overlap2.1.2.i8 = getelementptr [300 x i8], [300 x i8]* %a, i64 0, i64 202
|
|
%overlap2.1.3.i8 = getelementptr [300 x i8], [300 x i8]* %a, i64 0, i64 203
|
|
|
|
%overlap2.2.0.i8 = getelementptr [300 x i8], [300 x i8]* %a, i64 0, i64 208
|
|
%overlap2.2.1.i8 = getelementptr [300 x i8], [300 x i8]* %a, i64 0, i64 209
|
|
%overlap2.2.2.i8 = getelementptr [300 x i8], [300 x i8]* %a, i64 0, i64 210
|
|
%overlap2.2.3.i8 = getelementptr [300 x i8], [300 x i8]* %a, i64 0, i64 211
|
|
|
|
%overlap2.1.0.i16 = bitcast i8* %overlap2.1.0.i8 to i16*
|
|
%overlap2.1.0.i32 = bitcast i8* %overlap2.1.0.i8 to i32*
|
|
%overlap2.1.1.i32 = bitcast i8* %overlap2.1.1.i8 to i32*
|
|
%overlap2.1.2.i32 = bitcast i8* %overlap2.1.2.i8 to i32*
|
|
%overlap2.1.3.i32 = bitcast i8* %overlap2.1.3.i8 to i32*
|
|
store i8 1, i8* %overlap2.1.0.i8
|
|
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test3_a5]], i64 0, i64 0
|
|
; CHECK-NEXT: store i8 1, i8* %[[gep]]
|
|
store i16 1, i16* %overlap2.1.0.i16
|
|
; CHECK-NEXT: %[[bitcast:.*]] = bitcast [7 x i8]* %[[test3_a5]] to i16*
|
|
; CHECK-NEXT: store i16 1, i16* %[[bitcast]]
|
|
store i32 1, i32* %overlap2.1.0.i32
|
|
; CHECK-NEXT: %[[bitcast:.*]] = bitcast [7 x i8]* %[[test3_a5]] to i32*
|
|
; CHECK-NEXT: store i32 1, i32* %[[bitcast]]
|
|
store i32 2, i32* %overlap2.1.1.i32
|
|
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test3_a5]], i64 0, i64 1
|
|
; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i32*
|
|
; CHECK-NEXT: store i32 2, i32* %[[bitcast]]
|
|
store i32 3, i32* %overlap2.1.2.i32
|
|
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test3_a5]], i64 0, i64 2
|
|
; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i32*
|
|
; CHECK-NEXT: store i32 3, i32* %[[bitcast]]
|
|
store i32 4, i32* %overlap2.1.3.i32
|
|
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test3_a5]], i64 0, i64 3
|
|
; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i32*
|
|
; CHECK-NEXT: store i32 4, i32* %[[bitcast]]
|
|
|
|
%overlap2.2.0.i32 = bitcast i8* %overlap2.2.0.i8 to i32*
|
|
%overlap2.2.1.i16 = bitcast i8* %overlap2.2.1.i8 to i16*
|
|
%overlap2.2.1.i32 = bitcast i8* %overlap2.2.1.i8 to i32*
|
|
%overlap2.2.2.i32 = bitcast i8* %overlap2.2.2.i8 to i32*
|
|
%overlap2.2.3.i32 = bitcast i8* %overlap2.2.3.i8 to i32*
|
|
store i32 1, i32* %overlap2.2.0.i32
|
|
; CHECK-NEXT: %[[bitcast:.*]] = bitcast [7 x i8]* %[[test3_a6]] to i32*
|
|
; CHECK-NEXT: store i32 1, i32* %[[bitcast]]
|
|
store i8 1, i8* %overlap2.2.1.i8
|
|
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test3_a6]], i64 0, i64 1
|
|
; CHECK-NEXT: store i8 1, i8* %[[gep]]
|
|
store i16 1, i16* %overlap2.2.1.i16
|
|
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test3_a6]], i64 0, i64 1
|
|
; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i16*
|
|
; CHECK-NEXT: store i16 1, i16* %[[bitcast]]
|
|
store i32 1, i32* %overlap2.2.1.i32
|
|
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test3_a6]], i64 0, i64 1
|
|
; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i32*
|
|
; CHECK-NEXT: store i32 1, i32* %[[bitcast]]
|
|
store i32 3, i32* %overlap2.2.2.i32
|
|
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test3_a6]], i64 0, i64 2
|
|
; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i32*
|
|
; CHECK-NEXT: store i32 3, i32* %[[bitcast]]
|
|
store i32 4, i32* %overlap2.2.3.i32
|
|
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test3_a6]], i64 0, i64 3
|
|
; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i32*
|
|
; CHECK-NEXT: store i32 4, i32* %[[bitcast]]
|
|
|
|
%overlap2.prefix = getelementptr i8, i8* %overlap2.1.1.i8, i64 -4
|
|
call void @llvm.memcpy.p0i8.p0i8.i32(i8* %overlap2.prefix, i8* %src, i32 8, i32 1, i1 false)
|
|
; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [42 x i8], [42 x i8]* %[[test3_a4]], i64 0, i64 39
|
|
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %src, i32 3
|
|
; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8, i8* %src, i64 3
|
|
; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test3_a5]], i64 0, i64 0
|
|
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 5
|
|
|
|
; Bridge between the overlapping areas
|
|
call void @llvm.memset.p0i8.i32(i8* %overlap2.1.2.i8, i8 42, i32 8, i32 1, i1 false)
|
|
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test3_a5]], i64 0, i64 2
|
|
; CHECK-NEXT: call void @llvm.memset.p0i8.i32(i8* %[[gep]], i8 42, i32 5
|
|
; ...promoted i8 store...
|
|
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test3_a6]], i64 0, i64 0
|
|
; CHECK-NEXT: call void @llvm.memset.p0i8.i32(i8* %[[gep]], i8 42, i32 2
|
|
|
|
; Entirely within the second overlap.
|
|
call void @llvm.memcpy.p0i8.p0i8.i32(i8* %overlap2.2.1.i8, i8* %src, i32 5, i32 1, i1 false)
|
|
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test3_a6]], i64 0, i64 1
|
|
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep]], i8* %src, i32 5
|
|
|
|
; Trailing past the second overlap.
|
|
call void @llvm.memcpy.p0i8.p0i8.i32(i8* %overlap2.2.2.i8, i8* %src, i32 8, i32 1, i1 false)
|
|
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test3_a6]], i64 0, i64 2
|
|
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep]], i8* %src, i32 5
|
|
; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8, i8* %src, i64 5
|
|
; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [85 x i8], [85 x i8]* %[[test3_a7]], i64 0, i64 0
|
|
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 3
|
|
|
|
call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dst, i8* %b, i32 300, i32 1, i1 false)
|
|
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [42 x i8], [42 x i8]* %[[test3_a1]], i64 0, i64 0
|
|
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dst, i8* %[[gep]], i32 42
|
|
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8, i8* %dst, i64 42
|
|
; CHECK-NEXT: store i8 0, i8* %[[gep]]
|
|
; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds i8, i8* %dst, i64 43
|
|
; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [99 x i8], [99 x i8]* %[[test3_a2]], i64 0, i64 0
|
|
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 99
|
|
; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds i8, i8* %dst, i64 142
|
|
; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [16 x i8], [16 x i8]* %[[test3_a3]], i64 0, i64 0
|
|
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 16
|
|
; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds i8, i8* %dst, i64 158
|
|
; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [42 x i8], [42 x i8]* %[[test3_a4]], i64 0, i64 0
|
|
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 42
|
|
; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds i8, i8* %dst, i64 200
|
|
; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test3_a5]], i64 0, i64 0
|
|
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 7
|
|
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8, i8* %dst, i64 207
|
|
; CHECK-NEXT: store i8 42, i8* %[[gep]]
|
|
; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds i8, i8* %dst, i64 208
|
|
; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test3_a6]], i64 0, i64 0
|
|
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 7
|
|
; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds i8, i8* %dst, i64 215
|
|
; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [85 x i8], [85 x i8]* %[[test3_a7]], i64 0, i64 0
|
|
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 85
|
|
|
|
ret void
|
|
}
|
|
|
|
define void @test4(i8* %dst, i8* %src) {
|
|
; CHECK-LABEL: @test4(
|
|
|
|
entry:
|
|
%a = alloca [100 x i8]
|
|
; CHECK-NOT: alloca
|
|
; CHECK: %[[test4_a1:.*]] = alloca [20 x i8]
|
|
; CHECK-NEXT: %[[test4_a2:.*]] = alloca [7 x i8]
|
|
; CHECK-NEXT: %[[test4_a3:.*]] = alloca [10 x i8]
|
|
; CHECK-NEXT: %[[test4_a4:.*]] = alloca [7 x i8]
|
|
; CHECK-NEXT: %[[test4_a5:.*]] = alloca [7 x i8]
|
|
; CHECK-NEXT: %[[test4_a6:.*]] = alloca [40 x i8]
|
|
|
|
%b = getelementptr [100 x i8], [100 x i8]* %a, i64 0, i64 0
|
|
call void @llvm.memcpy.p0i8.p0i8.i32(i8* %b, i8* %src, i32 100, i32 1, i1 false)
|
|
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [20 x i8], [20 x i8]* %[[test4_a1]], i64 0, i64 0
|
|
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep]], i8* %src, i32 20
|
|
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8, i8* %src, i64 20
|
|
; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i16*
|
|
; CHECK-NEXT: %[[test4_r1:.*]] = load i16, i16* %[[bitcast]]
|
|
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8, i8* %src, i64 22
|
|
; CHECK-NEXT: %[[test4_r2:.*]] = load i8, i8* %[[gep]]
|
|
; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8, i8* %src, i64 23
|
|
; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test4_a2]], i64 0, i64 0
|
|
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 7
|
|
; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8, i8* %src, i64 30
|
|
; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [10 x i8], [10 x i8]* %[[test4_a3]], i64 0, i64 0
|
|
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 10
|
|
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8, i8* %src, i64 40
|
|
; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i16*
|
|
; CHECK-NEXT: %[[test4_r3:.*]] = load i16, i16* %[[bitcast]]
|
|
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8, i8* %src, i64 42
|
|
; CHECK-NEXT: %[[test4_r4:.*]] = load i8, i8* %[[gep]]
|
|
; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8, i8* %src, i64 43
|
|
; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test4_a4]], i64 0, i64 0
|
|
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 7
|
|
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8, i8* %src, i64 50
|
|
; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i16*
|
|
; CHECK-NEXT: %[[test4_r5:.*]] = load i16, i16* %[[bitcast]]
|
|
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8, i8* %src, i64 52
|
|
; CHECK-NEXT: %[[test4_r6:.*]] = load i8, i8* %[[gep]]
|
|
; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8, i8* %src, i64 53
|
|
; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test4_a5]], i64 0, i64 0
|
|
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 7
|
|
; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8, i8* %src, i64 60
|
|
; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [40 x i8], [40 x i8]* %[[test4_a6]], i64 0, i64 0
|
|
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 40
|
|
|
|
%a.src.1 = getelementptr [100 x i8], [100 x i8]* %a, i64 0, i64 20
|
|
%a.dst.1 = getelementptr [100 x i8], [100 x i8]* %a, i64 0, i64 40
|
|
call void @llvm.memcpy.p0i8.p0i8.i32(i8* %a.dst.1, i8* %a.src.1, i32 10, i32 1, i1 false)
|
|
; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test4_a4]], i64 0, i64 0
|
|
; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test4_a2]], i64 0, i64 0
|
|
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 7
|
|
|
|
; Clobber a single element of the array, this should be promotable, and be deleted.
|
|
%c = getelementptr [100 x i8], [100 x i8]* %a, i64 0, i64 42
|
|
store i8 0, i8* %c
|
|
|
|
%a.src.2 = getelementptr [100 x i8], [100 x i8]* %a, i64 0, i64 50
|
|
call void @llvm.memmove.p0i8.p0i8.i32(i8* %a.dst.1, i8* %a.src.2, i32 10, i32 1, i1 false)
|
|
; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test4_a4]], i64 0, i64 0
|
|
; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test4_a5]], i64 0, i64 0
|
|
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 7
|
|
|
|
call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dst, i8* %b, i32 100, i32 1, i1 false)
|
|
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [20 x i8], [20 x i8]* %[[test4_a1]], i64 0, i64 0
|
|
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dst, i8* %[[gep]], i32 20
|
|
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8, i8* %dst, i64 20
|
|
; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i16*
|
|
; CHECK-NEXT: store i16 %[[test4_r1]], i16* %[[bitcast]]
|
|
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8, i8* %dst, i64 22
|
|
; CHECK-NEXT: store i8 %[[test4_r2]], i8* %[[gep]]
|
|
; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds i8, i8* %dst, i64 23
|
|
; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test4_a2]], i64 0, i64 0
|
|
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 7
|
|
; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds i8, i8* %dst, i64 30
|
|
; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [10 x i8], [10 x i8]* %[[test4_a3]], i64 0, i64 0
|
|
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 10
|
|
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8, i8* %dst, i64 40
|
|
; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i16*
|
|
; CHECK-NEXT: store i16 %[[test4_r5]], i16* %[[bitcast]]
|
|
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8, i8* %dst, i64 42
|
|
; CHECK-NEXT: store i8 %[[test4_r6]], i8* %[[gep]]
|
|
; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds i8, i8* %dst, i64 43
|
|
; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test4_a4]], i64 0, i64 0
|
|
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 7
|
|
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8, i8* %dst, i64 50
|
|
; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i16*
|
|
; CHECK-NEXT: store i16 %[[test4_r5]], i16* %[[bitcast]]
|
|
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8, i8* %dst, i64 52
|
|
; CHECK-NEXT: store i8 %[[test4_r6]], i8* %[[gep]]
|
|
; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds i8, i8* %dst, i64 53
|
|
; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test4_a5]], i64 0, i64 0
|
|
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 7
|
|
; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds i8, i8* %dst, i64 60
|
|
; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [40 x i8], [40 x i8]* %[[test4_a6]], i64 0, i64 0
|
|
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 40
|
|
|
|
ret void
|
|
}
|
|
|
|
declare void @llvm.memcpy.p0i8.p0i8.i32(i8* nocapture, i8* nocapture, i32, i32, i1) nounwind
|
|
declare void @llvm.memcpy.p1i8.p0i8.i32(i8 addrspace(1)* nocapture, i8* nocapture, i32, i32, i1) nounwind
|
|
declare void @llvm.memmove.p0i8.p0i8.i32(i8* nocapture, i8* nocapture, i32, i32, i1) nounwind
|
|
declare void @llvm.memset.p0i8.i32(i8* nocapture, i8, i32, i32, i1) nounwind
|
|
|
|
define i16 @test5() {
|
|
; CHECK-LABEL: @test5(
|
|
; CHECK-NOT: alloca float
|
|
; CHECK: %[[cast:.*]] = bitcast float 0.0{{.*}} to i32
|
|
; CHECK-NEXT: %[[shr:.*]] = lshr i32 %[[cast]], 16
|
|
; CHECK-NEXT: %[[trunc:.*]] = trunc i32 %[[shr]] to i16
|
|
; CHECK-NEXT: ret i16 %[[trunc]]
|
|
|
|
entry:
|
|
%a = alloca [4 x i8]
|
|
%fptr = bitcast [4 x i8]* %a to float*
|
|
store float 0.0, float* %fptr
|
|
%ptr = getelementptr [4 x i8], [4 x i8]* %a, i32 0, i32 2
|
|
%iptr = bitcast i8* %ptr to i16*
|
|
%val = load i16, i16* %iptr
|
|
ret i16 %val
|
|
}
|
|
|
|
define i32 @test6() {
|
|
; CHECK-LABEL: @test6(
|
|
; CHECK: alloca i32
|
|
; CHECK-NEXT: store volatile i32
|
|
; CHECK-NEXT: load i32, i32*
|
|
; CHECK-NEXT: ret i32
|
|
|
|
entry:
|
|
%a = alloca [4 x i8]
|
|
%ptr = getelementptr [4 x i8], [4 x i8]* %a, i32 0, i32 0
|
|
call void @llvm.memset.p0i8.i32(i8* %ptr, i8 42, i32 4, i32 1, i1 true)
|
|
%iptr = bitcast i8* %ptr to i32*
|
|
%val = load i32, i32* %iptr
|
|
ret i32 %val
|
|
}
|
|
|
|
define void @test7(i8* %src, i8* %dst) {
|
|
; CHECK-LABEL: @test7(
|
|
; CHECK: alloca i32
|
|
; CHECK-NEXT: bitcast i8* %src to i32*
|
|
; CHECK-NEXT: load volatile i32, i32*
|
|
; CHECK-NEXT: store volatile i32
|
|
; CHECK-NEXT: bitcast i8* %dst to i32*
|
|
; CHECK-NEXT: load volatile i32, i32*
|
|
; CHECK-NEXT: store volatile i32
|
|
; CHECK-NEXT: ret
|
|
|
|
entry:
|
|
%a = alloca [4 x i8]
|
|
%ptr = getelementptr [4 x i8], [4 x i8]* %a, i32 0, i32 0
|
|
call void @llvm.memcpy.p0i8.p0i8.i32(i8* %ptr, i8* %src, i32 4, i32 1, i1 true)
|
|
call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dst, i8* %ptr, i32 4, i32 1, i1 true)
|
|
ret void
|
|
}
|
|
|
|
|
|
%S1 = type { i32, i32, [16 x i8] }
|
|
%S2 = type { %S1*, %S2* }
|
|
|
|
define %S2 @test8(%S2* %s2) {
|
|
; CHECK-LABEL: @test8(
|
|
entry:
|
|
%new = alloca %S2
|
|
; CHECK-NOT: alloca
|
|
|
|
%s2.next.ptr = getelementptr %S2, %S2* %s2, i64 0, i32 1
|
|
%s2.next = load %S2*, %S2** %s2.next.ptr
|
|
; CHECK: %[[gep:.*]] = getelementptr %S2, %S2* %s2, i64 0, i32 1
|
|
; CHECK-NEXT: %[[next:.*]] = load %S2*, %S2** %[[gep]]
|
|
|
|
%s2.next.s1.ptr = getelementptr %S2, %S2* %s2.next, i64 0, i32 0
|
|
%s2.next.s1 = load %S1*, %S1** %s2.next.s1.ptr
|
|
%new.s1.ptr = getelementptr %S2, %S2* %new, i64 0, i32 0
|
|
store %S1* %s2.next.s1, %S1** %new.s1.ptr
|
|
%s2.next.next.ptr = getelementptr %S2, %S2* %s2.next, i64 0, i32 1
|
|
%s2.next.next = load %S2*, %S2** %s2.next.next.ptr
|
|
%new.next.ptr = getelementptr %S2, %S2* %new, i64 0, i32 1
|
|
store %S2* %s2.next.next, %S2** %new.next.ptr
|
|
; CHECK-NEXT: %[[gep:.*]] = getelementptr %S2, %S2* %[[next]], i64 0, i32 0
|
|
; CHECK-NEXT: %[[next_s1:.*]] = load %S1*, %S1** %[[gep]]
|
|
; CHECK-NEXT: %[[gep:.*]] = getelementptr %S2, %S2* %[[next]], i64 0, i32 1
|
|
; CHECK-NEXT: %[[next_next:.*]] = load %S2*, %S2** %[[gep]]
|
|
|
|
%new.s1 = load %S1*, %S1** %new.s1.ptr
|
|
%result1 = insertvalue %S2 undef, %S1* %new.s1, 0
|
|
; CHECK-NEXT: %[[result1:.*]] = insertvalue %S2 undef, %S1* %[[next_s1]], 0
|
|
%new.next = load %S2*, %S2** %new.next.ptr
|
|
%result2 = insertvalue %S2 %result1, %S2* %new.next, 1
|
|
; CHECK-NEXT: %[[result2:.*]] = insertvalue %S2 %[[result1]], %S2* %[[next_next]], 1
|
|
ret %S2 %result2
|
|
; CHECK-NEXT: ret %S2 %[[result2]]
|
|
}
|
|
|
|
define i64 @test9() {
|
|
; Ensure we can handle loads off the end of an alloca even when wrapped in
|
|
; weird bit casts and types. This is valid IR due to the alignment and masking
|
|
; off the bits past the end of the alloca.
|
|
;
|
|
; CHECK-LABEL: @test9(
|
|
; CHECK-NOT: alloca
|
|
; CHECK: %[[b2:.*]] = zext i8 26 to i64
|
|
; CHECK-NEXT: %[[s2:.*]] = shl i64 %[[b2]], 16
|
|
; CHECK-NEXT: %[[m2:.*]] = and i64 undef, -16711681
|
|
; CHECK-NEXT: %[[i2:.*]] = or i64 %[[m2]], %[[s2]]
|
|
; CHECK-NEXT: %[[b1:.*]] = zext i8 0 to i64
|
|
; CHECK-NEXT: %[[s1:.*]] = shl i64 %[[b1]], 8
|
|
; CHECK-NEXT: %[[m1:.*]] = and i64 %[[i2]], -65281
|
|
; CHECK-NEXT: %[[i1:.*]] = or i64 %[[m1]], %[[s1]]
|
|
; CHECK-NEXT: %[[b0:.*]] = zext i8 0 to i64
|
|
; CHECK-NEXT: %[[m0:.*]] = and i64 %[[i1]], -256
|
|
; CHECK-NEXT: %[[i0:.*]] = or i64 %[[m0]], %[[b0]]
|
|
; CHECK-NEXT: %[[result:.*]] = and i64 %[[i0]], 16777215
|
|
; CHECK-NEXT: ret i64 %[[result]]
|
|
|
|
entry:
|
|
%a = alloca { [3 x i8] }, align 8
|
|
%gep1 = getelementptr inbounds { [3 x i8] }, { [3 x i8] }* %a, i32 0, i32 0, i32 0
|
|
store i8 0, i8* %gep1, align 1
|
|
%gep2 = getelementptr inbounds { [3 x i8] }, { [3 x i8] }* %a, i32 0, i32 0, i32 1
|
|
store i8 0, i8* %gep2, align 1
|
|
%gep3 = getelementptr inbounds { [3 x i8] }, { [3 x i8] }* %a, i32 0, i32 0, i32 2
|
|
store i8 26, i8* %gep3, align 1
|
|
%cast = bitcast { [3 x i8] }* %a to { i64 }*
|
|
%elt = getelementptr inbounds { i64 }, { i64 }* %cast, i32 0, i32 0
|
|
%load = load i64, i64* %elt
|
|
%result = and i64 %load, 16777215
|
|
ret i64 %result
|
|
}
|
|
|
|
define %S2* @test10() {
|
|
; CHECK-LABEL: @test10(
|
|
; CHECK-NOT: alloca %S2*
|
|
; CHECK: ret %S2* null
|
|
|
|
entry:
|
|
%a = alloca [8 x i8]
|
|
%ptr = getelementptr [8 x i8], [8 x i8]* %a, i32 0, i32 0
|
|
call void @llvm.memset.p0i8.i32(i8* %ptr, i8 0, i32 8, i32 1, i1 false)
|
|
%s2ptrptr = bitcast i8* %ptr to %S2**
|
|
%s2ptr = load %S2*, %S2** %s2ptrptr
|
|
ret %S2* %s2ptr
|
|
}
|
|
|
|
define i32 @test11() {
|
|
; CHECK-LABEL: @test11(
|
|
; CHECK-NOT: alloca
|
|
; CHECK: ret i32 0
|
|
|
|
entry:
|
|
%X = alloca i32
|
|
br i1 undef, label %good, label %bad
|
|
|
|
good:
|
|
%Y = getelementptr i32, i32* %X, i64 0
|
|
store i32 0, i32* %Y
|
|
%Z = load i32, i32* %Y
|
|
ret i32 %Z
|
|
|
|
bad:
|
|
%Y2 = getelementptr i32, i32* %X, i64 1
|
|
store i32 0, i32* %Y2
|
|
%Z2 = load i32, i32* %Y2
|
|
ret i32 %Z2
|
|
}
|
|
|
|
define i8 @test12() {
|
|
; We fully promote these to the i24 load or store size, resulting in just masks
|
|
; and other operations that instcombine will fold, but no alloca.
|
|
;
|
|
; CHECK-LABEL: @test12(
|
|
|
|
entry:
|
|
%a = alloca [3 x i8]
|
|
%b = alloca [3 x i8]
|
|
; CHECK-NOT: alloca
|
|
|
|
%a0ptr = getelementptr [3 x i8], [3 x i8]* %a, i64 0, i32 0
|
|
store i8 0, i8* %a0ptr
|
|
%a1ptr = getelementptr [3 x i8], [3 x i8]* %a, i64 0, i32 1
|
|
store i8 0, i8* %a1ptr
|
|
%a2ptr = getelementptr [3 x i8], [3 x i8]* %a, i64 0, i32 2
|
|
store i8 0, i8* %a2ptr
|
|
%aiptr = bitcast [3 x i8]* %a to i24*
|
|
%ai = load i24, i24* %aiptr
|
|
; CHECK-NOT: store
|
|
; CHECK-NOT: load
|
|
; CHECK: %[[ext2:.*]] = zext i8 0 to i24
|
|
; CHECK-NEXT: %[[shift2:.*]] = shl i24 %[[ext2]], 16
|
|
; CHECK-NEXT: %[[mask2:.*]] = and i24 undef, 65535
|
|
; CHECK-NEXT: %[[insert2:.*]] = or i24 %[[mask2]], %[[shift2]]
|
|
; CHECK-NEXT: %[[ext1:.*]] = zext i8 0 to i24
|
|
; CHECK-NEXT: %[[shift1:.*]] = shl i24 %[[ext1]], 8
|
|
; CHECK-NEXT: %[[mask1:.*]] = and i24 %[[insert2]], -65281
|
|
; CHECK-NEXT: %[[insert1:.*]] = or i24 %[[mask1]], %[[shift1]]
|
|
; CHECK-NEXT: %[[ext0:.*]] = zext i8 0 to i24
|
|
; CHECK-NEXT: %[[mask0:.*]] = and i24 %[[insert1]], -256
|
|
; CHECK-NEXT: %[[insert0:.*]] = or i24 %[[mask0]], %[[ext0]]
|
|
|
|
%biptr = bitcast [3 x i8]* %b to i24*
|
|
store i24 %ai, i24* %biptr
|
|
%b0ptr = getelementptr [3 x i8], [3 x i8]* %b, i64 0, i32 0
|
|
%b0 = load i8, i8* %b0ptr
|
|
%b1ptr = getelementptr [3 x i8], [3 x i8]* %b, i64 0, i32 1
|
|
%b1 = load i8, i8* %b1ptr
|
|
%b2ptr = getelementptr [3 x i8], [3 x i8]* %b, i64 0, i32 2
|
|
%b2 = load i8, i8* %b2ptr
|
|
; CHECK-NOT: store
|
|
; CHECK-NOT: load
|
|
; CHECK: %[[trunc0:.*]] = trunc i24 %[[insert0]] to i8
|
|
; CHECK-NEXT: %[[shift1:.*]] = lshr i24 %[[insert0]], 8
|
|
; CHECK-NEXT: %[[trunc1:.*]] = trunc i24 %[[shift1]] to i8
|
|
; CHECK-NEXT: %[[shift2:.*]] = lshr i24 %[[insert0]], 16
|
|
; CHECK-NEXT: %[[trunc2:.*]] = trunc i24 %[[shift2]] to i8
|
|
|
|
%bsum0 = add i8 %b0, %b1
|
|
%bsum1 = add i8 %bsum0, %b2
|
|
ret i8 %bsum1
|
|
; CHECK: %[[sum0:.*]] = add i8 %[[trunc0]], %[[trunc1]]
|
|
; CHECK-NEXT: %[[sum1:.*]] = add i8 %[[sum0]], %[[trunc2]]
|
|
; CHECK-NEXT: ret i8 %[[sum1]]
|
|
}
|
|
|
|
define i32 @test13() {
|
|
; Ensure we don't crash and handle undefined loads that straddle the end of the
|
|
; allocation.
|
|
; CHECK-LABEL: @test13(
|
|
; CHECK: %[[value:.*]] = zext i8 0 to i16
|
|
; CHECK-NEXT: %[[ret:.*]] = zext i16 %[[value]] to i32
|
|
; CHECK-NEXT: ret i32 %[[ret]]
|
|
|
|
entry:
|
|
%a = alloca [3 x i8], align 2
|
|
%b0ptr = getelementptr [3 x i8], [3 x i8]* %a, i64 0, i32 0
|
|
store i8 0, i8* %b0ptr
|
|
%b1ptr = getelementptr [3 x i8], [3 x i8]* %a, i64 0, i32 1
|
|
store i8 0, i8* %b1ptr
|
|
%b2ptr = getelementptr [3 x i8], [3 x i8]* %a, i64 0, i32 2
|
|
store i8 0, i8* %b2ptr
|
|
%iptrcast = bitcast [3 x i8]* %a to i16*
|
|
%iptrgep = getelementptr i16, i16* %iptrcast, i64 1
|
|
%i = load i16, i16* %iptrgep
|
|
%ret = zext i16 %i to i32
|
|
ret i32 %ret
|
|
}
|
|
|
|
%test14.struct = type { [3 x i32] }
|
|
|
|
define void @test14(...) nounwind uwtable {
|
|
; This is a strange case where we split allocas into promotable partitions, but
|
|
; also gain enough data to prove they must be dead allocas due to GEPs that walk
|
|
; across two adjacent allocas. Test that we don't try to promote or otherwise
|
|
; do bad things to these dead allocas, they should just be removed.
|
|
; CHECK-LABEL: @test14(
|
|
; CHECK-NEXT: entry:
|
|
; CHECK-NEXT: ret void
|
|
|
|
entry:
|
|
%a = alloca %test14.struct
|
|
%p = alloca %test14.struct*
|
|
%0 = bitcast %test14.struct* %a to i8*
|
|
%1 = getelementptr i8, i8* %0, i64 12
|
|
%2 = bitcast i8* %1 to %test14.struct*
|
|
%3 = getelementptr inbounds %test14.struct, %test14.struct* %2, i32 0, i32 0
|
|
%4 = getelementptr inbounds %test14.struct, %test14.struct* %a, i32 0, i32 0
|
|
%5 = bitcast [3 x i32]* %3 to i32*
|
|
%6 = bitcast [3 x i32]* %4 to i32*
|
|
%7 = load i32, i32* %6, align 4
|
|
store i32 %7, i32* %5, align 4
|
|
%8 = getelementptr inbounds i32, i32* %5, i32 1
|
|
%9 = getelementptr inbounds i32, i32* %6, i32 1
|
|
%10 = load i32, i32* %9, align 4
|
|
store i32 %10, i32* %8, align 4
|
|
%11 = getelementptr inbounds i32, i32* %5, i32 2
|
|
%12 = getelementptr inbounds i32, i32* %6, i32 2
|
|
%13 = load i32, i32* %12, align 4
|
|
store i32 %13, i32* %11, align 4
|
|
ret void
|
|
}
|
|
|
|
define i32 @test15(i1 %flag) nounwind uwtable {
|
|
; Ensure that when there are dead instructions using an alloca that are not
|
|
; loads or stores we still delete them during partitioning and rewriting.
|
|
; Otherwise we'll go to promote them while thy still have unpromotable uses.
|
|
; CHECK-LABEL: @test15(
|
|
; CHECK-NEXT: entry:
|
|
; CHECK-NEXT: br label %loop
|
|
; CHECK: loop:
|
|
; CHECK-NEXT: br label %loop
|
|
|
|
entry:
|
|
%l0 = alloca i64
|
|
%l1 = alloca i64
|
|
%l2 = alloca i64
|
|
%l3 = alloca i64
|
|
br label %loop
|
|
|
|
loop:
|
|
%dead3 = phi i8* [ %gep3, %loop ], [ null, %entry ]
|
|
|
|
store i64 1879048192, i64* %l0, align 8
|
|
%bc0 = bitcast i64* %l0 to i8*
|
|
%gep0 = getelementptr i8, i8* %bc0, i64 3
|
|
%dead0 = bitcast i8* %gep0 to i64*
|
|
|
|
store i64 1879048192, i64* %l1, align 8
|
|
%bc1 = bitcast i64* %l1 to i8*
|
|
%gep1 = getelementptr i8, i8* %bc1, i64 3
|
|
%dead1 = getelementptr i8, i8* %gep1, i64 1
|
|
|
|
store i64 1879048192, i64* %l2, align 8
|
|
%bc2 = bitcast i64* %l2 to i8*
|
|
%gep2.1 = getelementptr i8, i8* %bc2, i64 1
|
|
%gep2.2 = getelementptr i8, i8* %bc2, i64 3
|
|
; Note that this select should get visited multiple times due to using two
|
|
; different GEPs off the same alloca. We should only delete it once.
|
|
%dead2 = select i1 %flag, i8* %gep2.1, i8* %gep2.2
|
|
|
|
store i64 1879048192, i64* %l3, align 8
|
|
%bc3 = bitcast i64* %l3 to i8*
|
|
%gep3 = getelementptr i8, i8* %bc3, i64 3
|
|
|
|
br label %loop
|
|
}
|
|
|
|
define void @test16(i8* %src, i8* %dst) {
|
|
; Ensure that we can promote an alloca of [3 x i8] to an i24 SSA value.
|
|
; CHECK-LABEL: @test16(
|
|
; CHECK-NOT: alloca
|
|
; CHECK: %[[srccast:.*]] = bitcast i8* %src to i24*
|
|
; CHECK-NEXT: load i24, i24* %[[srccast]]
|
|
; CHECK-NEXT: %[[dstcast:.*]] = bitcast i8* %dst to i24*
|
|
; CHECK-NEXT: store i24 0, i24* %[[dstcast]]
|
|
; CHECK-NEXT: ret void
|
|
|
|
entry:
|
|
%a = alloca [3 x i8]
|
|
%ptr = getelementptr [3 x i8], [3 x i8]* %a, i32 0, i32 0
|
|
call void @llvm.memcpy.p0i8.p0i8.i32(i8* %ptr, i8* %src, i32 4, i32 1, i1 false)
|
|
%cast = bitcast i8* %ptr to i24*
|
|
store i24 0, i24* %cast
|
|
call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dst, i8* %ptr, i32 4, i32 1, i1 false)
|
|
ret void
|
|
}
|
|
|
|
define void @test17(i8* %src, i8* %dst) {
|
|
; Ensure that we can rewrite unpromotable memcpys which extend past the end of
|
|
; the alloca.
|
|
; CHECK-LABEL: @test17(
|
|
; CHECK: %[[a:.*]] = alloca [3 x i8]
|
|
; CHECK-NEXT: %[[ptr:.*]] = getelementptr [3 x i8], [3 x i8]* %[[a]], i32 0, i32 0
|
|
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[ptr]], i8* %src,
|
|
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dst, i8* %[[ptr]],
|
|
; CHECK-NEXT: ret void
|
|
|
|
entry:
|
|
%a = alloca [3 x i8]
|
|
%ptr = getelementptr [3 x i8], [3 x i8]* %a, i32 0, i32 0
|
|
call void @llvm.memcpy.p0i8.p0i8.i32(i8* %ptr, i8* %src, i32 4, i32 1, i1 true)
|
|
call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dst, i8* %ptr, i32 4, i32 1, i1 true)
|
|
ret void
|
|
}
|
|
|
|
define void @test18(i8* %src, i8* %dst, i32 %size) {
|
|
; Preserve transfer instrinsics with a variable size, even if they overlap with
|
|
; fixed size operations. Further, continue to split and promote allocas preceding
|
|
; the variable sized intrinsic.
|
|
; CHECK-LABEL: @test18(
|
|
; CHECK: %[[a:.*]] = alloca [34 x i8]
|
|
; CHECK: %[[srcgep1:.*]] = getelementptr inbounds i8, i8* %src, i64 4
|
|
; CHECK-NEXT: %[[srccast1:.*]] = bitcast i8* %[[srcgep1]] to i32*
|
|
; CHECK-NEXT: %[[srcload:.*]] = load i32, i32* %[[srccast1]]
|
|
; CHECK-NEXT: %[[agep1:.*]] = getelementptr inbounds [34 x i8], [34 x i8]* %[[a]], i64 0, i64 0
|
|
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[agep1]], i8* %src, i32 %size,
|
|
; CHECK-NEXT: %[[agep2:.*]] = getelementptr inbounds [34 x i8], [34 x i8]* %[[a]], i64 0, i64 0
|
|
; CHECK-NEXT: call void @llvm.memset.p0i8.i32(i8* %[[agep2]], i8 42, i32 %size,
|
|
; CHECK-NEXT: %[[dstcast1:.*]] = bitcast i8* %dst to i32*
|
|
; CHECK-NEXT: store i32 42, i32* %[[dstcast1]]
|
|
; CHECK-NEXT: %[[dstgep1:.*]] = getelementptr inbounds i8, i8* %dst, i64 4
|
|
; CHECK-NEXT: %[[dstcast2:.*]] = bitcast i8* %[[dstgep1]] to i32*
|
|
; CHECK-NEXT: store i32 %[[srcload]], i32* %[[dstcast2]]
|
|
; CHECK-NEXT: %[[agep3:.*]] = getelementptr inbounds [34 x i8], [34 x i8]* %[[a]], i64 0, i64 0
|
|
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dst, i8* %[[agep3]], i32 %size,
|
|
; CHECK-NEXT: ret void
|
|
|
|
entry:
|
|
%a = alloca [42 x i8]
|
|
%ptr = getelementptr [42 x i8], [42 x i8]* %a, i32 0, i32 0
|
|
call void @llvm.memcpy.p0i8.p0i8.i32(i8* %ptr, i8* %src, i32 8, i32 1, i1 false)
|
|
%ptr2 = getelementptr [42 x i8], [42 x i8]* %a, i32 0, i32 8
|
|
call void @llvm.memcpy.p0i8.p0i8.i32(i8* %ptr2, i8* %src, i32 %size, i32 1, i1 false)
|
|
call void @llvm.memset.p0i8.i32(i8* %ptr2, i8 42, i32 %size, i32 1, i1 false)
|
|
%cast = bitcast i8* %ptr to i32*
|
|
store i32 42, i32* %cast
|
|
call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dst, i8* %ptr, i32 8, i32 1, i1 false)
|
|
call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dst, i8* %ptr2, i32 %size, i32 1, i1 false)
|
|
ret void
|
|
}
|
|
|
|
%opaque = type opaque
|
|
|
|
define i32 @test19(%opaque* %x) {
|
|
; This input will cause us to try to compute a natural GEP when rewriting
|
|
; pointers in such a way that we try to GEP through the opaque type. Previously,
|
|
; a check for an unsized type was missing and this crashed. Ensure it behaves
|
|
; reasonably now.
|
|
; CHECK-LABEL: @test19(
|
|
; CHECK-NOT: alloca
|
|
; CHECK: ret i32 undef
|
|
|
|
entry:
|
|
%a = alloca { i64, i8* }
|
|
%cast1 = bitcast %opaque* %x to i8*
|
|
%cast2 = bitcast { i64, i8* }* %a to i8*
|
|
call void @llvm.memcpy.p0i8.p0i8.i32(i8* %cast2, i8* %cast1, i32 16, i32 1, i1 false)
|
|
%gep = getelementptr inbounds { i64, i8* }, { i64, i8* }* %a, i32 0, i32 0
|
|
%val = load i64, i64* %gep
|
|
ret i32 undef
|
|
}
|
|
|
|
define i32 @test20() {
|
|
; Ensure we can track negative offsets (before the beginning of the alloca) and
|
|
; negative relative offsets from offsets starting past the end of the alloca.
|
|
; CHECK-LABEL: @test20(
|
|
; CHECK-NOT: alloca
|
|
; CHECK: %[[sum1:.*]] = add i32 1, 2
|
|
; CHECK: %[[sum2:.*]] = add i32 %[[sum1]], 3
|
|
; CHECK: ret i32 %[[sum2]]
|
|
|
|
entry:
|
|
%a = alloca [3 x i32]
|
|
%gep1 = getelementptr [3 x i32], [3 x i32]* %a, i32 0, i32 0
|
|
store i32 1, i32* %gep1
|
|
%gep2.1 = getelementptr [3 x i32], [3 x i32]* %a, i32 0, i32 -2
|
|
%gep2.2 = getelementptr i32, i32* %gep2.1, i32 3
|
|
store i32 2, i32* %gep2.2
|
|
%gep3.1 = getelementptr [3 x i32], [3 x i32]* %a, i32 0, i32 14
|
|
%gep3.2 = getelementptr i32, i32* %gep3.1, i32 -12
|
|
store i32 3, i32* %gep3.2
|
|
|
|
%load1 = load i32, i32* %gep1
|
|
%load2 = load i32, i32* %gep2.2
|
|
%load3 = load i32, i32* %gep3.2
|
|
%sum1 = add i32 %load1, %load2
|
|
%sum2 = add i32 %sum1, %load3
|
|
ret i32 %sum2
|
|
}
|
|
|
|
declare void @llvm.memset.p0i8.i64(i8* nocapture, i8, i64, i32, i1) nounwind
|
|
|
|
define i8 @test21() {
|
|
; Test allocations and offsets which border on overflow of the int64_t used
|
|
; internally. This is really awkward to really test as LLVM doesn't really
|
|
; support such extreme constructs cleanly.
|
|
; CHECK-LABEL: @test21(
|
|
; CHECK-NOT: alloca
|
|
; CHECK: or i8 -1, -1
|
|
|
|
entry:
|
|
%a = alloca [2305843009213693951 x i8]
|
|
%gep0 = getelementptr [2305843009213693951 x i8], [2305843009213693951 x i8]* %a, i64 0, i64 2305843009213693949
|
|
store i8 255, i8* %gep0
|
|
%gep1 = getelementptr [2305843009213693951 x i8], [2305843009213693951 x i8]* %a, i64 0, i64 -9223372036854775807
|
|
%gep2 = getelementptr i8, i8* %gep1, i64 -1
|
|
call void @llvm.memset.p0i8.i64(i8* %gep2, i8 0, i64 18446744073709551615, i32 1, i1 false)
|
|
%gep3 = getelementptr i8, i8* %gep1, i64 9223372036854775807
|
|
%gep4 = getelementptr i8, i8* %gep3, i64 9223372036854775807
|
|
%gep5 = getelementptr i8, i8* %gep4, i64 -6917529027641081857
|
|
store i8 255, i8* %gep5
|
|
%cast1 = bitcast i8* %gep4 to i32*
|
|
store i32 0, i32* %cast1
|
|
%load = load i8, i8* %gep0
|
|
%gep6 = getelementptr i8, i8* %gep0, i32 1
|
|
%load2 = load i8, i8* %gep6
|
|
%result = or i8 %load, %load2
|
|
ret i8 %result
|
|
}
|
|
|
|
%PR13916.struct = type { i8 }
|
|
|
|
define void @PR13916.1() {
|
|
; Ensure that we handle overlapping memcpy intrinsics correctly, especially in
|
|
; the case where there is a directly identical value for both source and dest.
|
|
; CHECK: @PR13916.1
|
|
; CHECK-NOT: alloca
|
|
; CHECK: ret void
|
|
|
|
entry:
|
|
%a = alloca i8
|
|
call void @llvm.memcpy.p0i8.p0i8.i32(i8* %a, i8* %a, i32 1, i32 1, i1 false)
|
|
%tmp2 = load i8, i8* %a
|
|
ret void
|
|
}
|
|
|
|
define void @PR13916.2() {
|
|
; Check whether we continue to handle them correctly when they start off with
|
|
; different pointer value chains, but during rewriting we coalesce them into the
|
|
; same value.
|
|
; CHECK: @PR13916.2
|
|
; CHECK-NOT: alloca
|
|
; CHECK: ret void
|
|
|
|
entry:
|
|
%a = alloca %PR13916.struct, align 1
|
|
br i1 undef, label %if.then, label %if.end
|
|
|
|
if.then:
|
|
%tmp0 = bitcast %PR13916.struct* %a to i8*
|
|
%tmp1 = bitcast %PR13916.struct* %a to i8*
|
|
call void @llvm.memcpy.p0i8.p0i8.i32(i8* %tmp0, i8* %tmp1, i32 1, i32 1, i1 false)
|
|
br label %if.end
|
|
|
|
if.end:
|
|
%gep = getelementptr %PR13916.struct, %PR13916.struct* %a, i32 0, i32 0
|
|
%tmp2 = load i8, i8* %gep
|
|
ret void
|
|
}
|
|
|
|
define void @PR13990() {
|
|
; Ensure we can handle cases where processing one alloca causes the other
|
|
; alloca to become dead and get deleted. This might crash or fail under
|
|
; Valgrind if we regress.
|
|
; CHECK-LABEL: @PR13990(
|
|
; CHECK-NOT: alloca
|
|
; CHECK: unreachable
|
|
; CHECK: unreachable
|
|
|
|
entry:
|
|
%tmp1 = alloca i8*
|
|
%tmp2 = alloca i8*
|
|
br i1 undef, label %bb1, label %bb2
|
|
|
|
bb1:
|
|
store i8* undef, i8** %tmp2
|
|
br i1 undef, label %bb2, label %bb3
|
|
|
|
bb2:
|
|
%tmp50 = select i1 undef, i8** %tmp2, i8** %tmp1
|
|
br i1 undef, label %bb3, label %bb4
|
|
|
|
bb3:
|
|
unreachable
|
|
|
|
bb4:
|
|
unreachable
|
|
}
|
|
|
|
define double @PR13969(double %x) {
|
|
; Check that we detect when promotion will un-escape an alloca and iterate to
|
|
; re-try running SROA over that alloca. Without that, the two allocas that are
|
|
; stored into a dead alloca don't get rewritten and promoted.
|
|
; CHECK-LABEL: @PR13969(
|
|
|
|
entry:
|
|
%a = alloca double
|
|
%b = alloca double*
|
|
%c = alloca double
|
|
; CHECK-NOT: alloca
|
|
|
|
store double %x, double* %a
|
|
store double* %c, double** %b
|
|
store double* %a, double** %b
|
|
store double %x, double* %c
|
|
%ret = load double, double* %a
|
|
; CHECK-NOT: store
|
|
; CHECK-NOT: load
|
|
|
|
ret double %ret
|
|
; CHECK: ret double %x
|
|
}
|
|
|
|
%PR14034.struct = type { { {} }, i32, %PR14034.list }
|
|
%PR14034.list = type { %PR14034.list*, %PR14034.list* }
|
|
|
|
define void @PR14034() {
|
|
; This test case tries to form GEPs into the empty leading struct members, and
|
|
; subsequently crashed (under valgrind) before we fixed the PR. The important
|
|
; thing is to handle empty structs gracefully.
|
|
; CHECK-LABEL: @PR14034(
|
|
|
|
entry:
|
|
%a = alloca %PR14034.struct
|
|
%list = getelementptr %PR14034.struct, %PR14034.struct* %a, i32 0, i32 2
|
|
%prev = getelementptr %PR14034.list, %PR14034.list* %list, i32 0, i32 1
|
|
store %PR14034.list* undef, %PR14034.list** %prev
|
|
%cast0 = bitcast %PR14034.struct* undef to i8*
|
|
%cast1 = bitcast %PR14034.struct* %a to i8*
|
|
call void @llvm.memcpy.p0i8.p0i8.i32(i8* %cast0, i8* %cast1, i32 12, i32 0, i1 false)
|
|
ret void
|
|
}
|
|
|
|
define i32 @test22(i32 %x) {
|
|
; Test that SROA and promotion is not confused by a grab bax mixture of pointer
|
|
; types involving wrapper aggregates and zero-length aggregate members.
|
|
; CHECK-LABEL: @test22(
|
|
|
|
entry:
|
|
%a1 = alloca { { [1 x { i32 }] } }
|
|
%a2 = alloca { {}, { float }, [0 x i8] }
|
|
%a3 = alloca { [0 x i8], { [0 x double], [1 x [1 x <4 x i8>]], {} }, { { {} } } }
|
|
; CHECK-NOT: alloca
|
|
|
|
%wrap1 = insertvalue [1 x { i32 }] undef, i32 %x, 0, 0
|
|
%gep1 = getelementptr { { [1 x { i32 }] } }, { { [1 x { i32 }] } }* %a1, i32 0, i32 0, i32 0
|
|
store [1 x { i32 }] %wrap1, [1 x { i32 }]* %gep1
|
|
|
|
%gep2 = getelementptr { { [1 x { i32 }] } }, { { [1 x { i32 }] } }* %a1, i32 0, i32 0
|
|
%ptrcast1 = bitcast { [1 x { i32 }] }* %gep2 to { [1 x { float }] }*
|
|
%load1 = load { [1 x { float }] }, { [1 x { float }] }* %ptrcast1
|
|
%unwrap1 = extractvalue { [1 x { float }] } %load1, 0, 0
|
|
|
|
%wrap2 = insertvalue { {}, { float }, [0 x i8] } undef, { float } %unwrap1, 1
|
|
store { {}, { float }, [0 x i8] } %wrap2, { {}, { float }, [0 x i8] }* %a2
|
|
|
|
%gep3 = getelementptr { {}, { float }, [0 x i8] }, { {}, { float }, [0 x i8] }* %a2, i32 0, i32 1, i32 0
|
|
%ptrcast2 = bitcast float* %gep3 to <4 x i8>*
|
|
%load3 = load <4 x i8>, <4 x i8>* %ptrcast2
|
|
%valcast1 = bitcast <4 x i8> %load3 to i32
|
|
|
|
%wrap3 = insertvalue [1 x [1 x i32]] undef, i32 %valcast1, 0, 0
|
|
%wrap4 = insertvalue { [1 x [1 x i32]], {} } undef, [1 x [1 x i32]] %wrap3, 0
|
|
%gep4 = getelementptr { [0 x i8], { [0 x double], [1 x [1 x <4 x i8>]], {} }, { { {} } } }, { [0 x i8], { [0 x double], [1 x [1 x <4 x i8>]], {} }, { { {} } } }* %a3, i32 0, i32 1
|
|
%ptrcast3 = bitcast { [0 x double], [1 x [1 x <4 x i8>]], {} }* %gep4 to { [1 x [1 x i32]], {} }*
|
|
store { [1 x [1 x i32]], {} } %wrap4, { [1 x [1 x i32]], {} }* %ptrcast3
|
|
|
|
%gep5 = getelementptr { [0 x i8], { [0 x double], [1 x [1 x <4 x i8>]], {} }, { { {} } } }, { [0 x i8], { [0 x double], [1 x [1 x <4 x i8>]], {} }, { { {} } } }* %a3, i32 0, i32 1, i32 1, i32 0
|
|
%ptrcast4 = bitcast [1 x <4 x i8>]* %gep5 to { {}, float, {} }*
|
|
%load4 = load { {}, float, {} }, { {}, float, {} }* %ptrcast4
|
|
%unwrap2 = extractvalue { {}, float, {} } %load4, 1
|
|
%valcast2 = bitcast float %unwrap2 to i32
|
|
|
|
ret i32 %valcast2
|
|
; CHECK: ret i32
|
|
}
|
|
|
|
define void @PR14059.1(double* %d) {
|
|
; In PR14059 a peculiar construct was identified as something that is used
|
|
; pervasively in ARM's ABI-calling-convention lowering: the passing of a struct
|
|
; of doubles via an array of i32 in order to place the data into integer
|
|
; registers. This in turn was missed as an optimization by SROA due to the
|
|
; partial loads and stores of integers to the double alloca we were trying to
|
|
; form and promote. The solution is to widen the integer operations to be
|
|
; whole-alloca operations, and perform the appropriate bitcasting on the
|
|
; *values* rather than the pointers. When this works, partial reads and writes
|
|
; via integers can be promoted away.
|
|
; CHECK: @PR14059.1
|
|
; CHECK-NOT: alloca
|
|
; CHECK: ret void
|
|
|
|
entry:
|
|
%X.sroa.0.i = alloca double, align 8
|
|
%0 = bitcast double* %X.sroa.0.i to i8*
|
|
call void @llvm.lifetime.start(i64 -1, i8* %0)
|
|
|
|
; Store to the low 32-bits...
|
|
%X.sroa.0.0.cast2.i = bitcast double* %X.sroa.0.i to i32*
|
|
store i32 0, i32* %X.sroa.0.0.cast2.i, align 8
|
|
|
|
; Also use a memset to the middle 32-bits for fun.
|
|
%X.sroa.0.2.raw_idx2.i = getelementptr inbounds i8, i8* %0, i32 2
|
|
call void @llvm.memset.p0i8.i64(i8* %X.sroa.0.2.raw_idx2.i, i8 0, i64 4, i32 1, i1 false)
|
|
|
|
; Or a memset of the whole thing.
|
|
call void @llvm.memset.p0i8.i64(i8* %0, i8 0, i64 8, i32 1, i1 false)
|
|
|
|
; Write to the high 32-bits with a memcpy.
|
|
%X.sroa.0.4.raw_idx4.i = getelementptr inbounds i8, i8* %0, i32 4
|
|
%d.raw = bitcast double* %d to i8*
|
|
call void @llvm.memcpy.p0i8.p0i8.i32(i8* %X.sroa.0.4.raw_idx4.i, i8* %d.raw, i32 4, i32 1, i1 false)
|
|
|
|
; Store to the high 32-bits...
|
|
%X.sroa.0.4.cast5.i = bitcast i8* %X.sroa.0.4.raw_idx4.i to i32*
|
|
store i32 1072693248, i32* %X.sroa.0.4.cast5.i, align 4
|
|
|
|
; Do the actual math...
|
|
%X.sroa.0.0.load1.i = load double, double* %X.sroa.0.i, align 8
|
|
%accum.real.i = load double, double* %d, align 8
|
|
%add.r.i = fadd double %accum.real.i, %X.sroa.0.0.load1.i
|
|
store double %add.r.i, double* %d, align 8
|
|
call void @llvm.lifetime.end(i64 -1, i8* %0)
|
|
ret void
|
|
}
|
|
|
|
define i64 @PR14059.2({ float, float }* %phi) {
|
|
; Check that SROA can split up alloca-wide integer loads and stores where the
|
|
; underlying alloca has smaller components that are accessed independently. This
|
|
; shows up particularly with ABI lowering patterns coming out of Clang that rely
|
|
; on the particular register placement of a single large integer return value.
|
|
; CHECK: @PR14059.2
|
|
|
|
entry:
|
|
%retval = alloca { float, float }, align 4
|
|
; CHECK-NOT: alloca
|
|
|
|
%0 = bitcast { float, float }* %retval to i64*
|
|
store i64 0, i64* %0
|
|
; CHECK-NOT: store
|
|
|
|
%phi.realp = getelementptr inbounds { float, float }, { float, float }* %phi, i32 0, i32 0
|
|
%phi.real = load float, float* %phi.realp
|
|
%phi.imagp = getelementptr inbounds { float, float }, { float, float }* %phi, i32 0, i32 1
|
|
%phi.imag = load float, float* %phi.imagp
|
|
; CHECK: %[[realp:.*]] = getelementptr inbounds { float, float }, { float, float }* %phi, i32 0, i32 0
|
|
; CHECK-NEXT: %[[real:.*]] = load float, float* %[[realp]]
|
|
; CHECK-NEXT: %[[imagp:.*]] = getelementptr inbounds { float, float }, { float, float }* %phi, i32 0, i32 1
|
|
; CHECK-NEXT: %[[imag:.*]] = load float, float* %[[imagp]]
|
|
|
|
%real = getelementptr inbounds { float, float }, { float, float }* %retval, i32 0, i32 0
|
|
%imag = getelementptr inbounds { float, float }, { float, float }* %retval, i32 0, i32 1
|
|
store float %phi.real, float* %real
|
|
store float %phi.imag, float* %imag
|
|
; CHECK-NEXT: %[[real_convert:.*]] = bitcast float %[[real]] to i32
|
|
; CHECK-NEXT: %[[imag_convert:.*]] = bitcast float %[[imag]] to i32
|
|
; CHECK-NEXT: %[[imag_ext:.*]] = zext i32 %[[imag_convert]] to i64
|
|
; CHECK-NEXT: %[[imag_shift:.*]] = shl i64 %[[imag_ext]], 32
|
|
; CHECK-NEXT: %[[imag_mask:.*]] = and i64 undef, 4294967295
|
|
; CHECK-NEXT: %[[imag_insert:.*]] = or i64 %[[imag_mask]], %[[imag_shift]]
|
|
; CHECK-NEXT: %[[real_ext:.*]] = zext i32 %[[real_convert]] to i64
|
|
; CHECK-NEXT: %[[real_mask:.*]] = and i64 %[[imag_insert]], -4294967296
|
|
; CHECK-NEXT: %[[real_insert:.*]] = or i64 %[[real_mask]], %[[real_ext]]
|
|
|
|
%1 = load i64, i64* %0, align 1
|
|
ret i64 %1
|
|
; CHECK-NEXT: ret i64 %[[real_insert]]
|
|
}
|
|
|
|
define void @PR14105({ [16 x i8] }* %ptr) {
|
|
; Ensure that when rewriting the GEP index '-1' for this alloca we preserve is
|
|
; sign as negative. We use a volatile memcpy to ensure promotion never actually
|
|
; occurs.
|
|
; CHECK-LABEL: @PR14105(
|
|
|
|
entry:
|
|
%a = alloca { [16 x i8] }, align 8
|
|
; CHECK: alloca [16 x i8], align 8
|
|
|
|
%gep = getelementptr inbounds { [16 x i8] }, { [16 x i8] }* %ptr, i64 -1
|
|
; CHECK-NEXT: getelementptr inbounds { [16 x i8] }, { [16 x i8] }* %ptr, i64 -1, i32 0, i64 0
|
|
|
|
%cast1 = bitcast { [16 x i8 ] }* %gep to i8*
|
|
%cast2 = bitcast { [16 x i8 ] }* %a to i8*
|
|
call void @llvm.memcpy.p0i8.p0i8.i32(i8* %cast1, i8* %cast2, i32 16, i32 8, i1 true)
|
|
ret void
|
|
; CHECK: ret
|
|
}
|
|
|
|
define void @PR14105_as1({ [16 x i8] } addrspace(1)* %ptr) {
|
|
; Make sure this the right address space pointer is used for type check.
|
|
; CHECK-LABEL: @PR14105_as1(
|
|
|
|
entry:
|
|
%a = alloca { [16 x i8] }, align 8
|
|
; CHECK: alloca [16 x i8], align 8
|
|
|
|
%gep = getelementptr inbounds { [16 x i8] }, { [16 x i8] } addrspace(1)* %ptr, i64 -1
|
|
; CHECK-NEXT: getelementptr inbounds { [16 x i8] }, { [16 x i8] } addrspace(1)* %ptr, i16 -1, i32 0, i16 0
|
|
|
|
%cast1 = bitcast { [16 x i8 ] } addrspace(1)* %gep to i8 addrspace(1)*
|
|
%cast2 = bitcast { [16 x i8 ] }* %a to i8*
|
|
call void @llvm.memcpy.p1i8.p0i8.i32(i8 addrspace(1)* %cast1, i8* %cast2, i32 16, i32 8, i1 true)
|
|
ret void
|
|
; CHECK: ret
|
|
}
|
|
|
|
define void @PR14465() {
|
|
; Ensure that we don't crash when analyzing a alloca larger than the maximum
|
|
; integer type width (MAX_INT_BITS) supported by llvm (1048576*32 > (1<<23)-1).
|
|
; CHECK-LABEL: @PR14465(
|
|
|
|
%stack = alloca [1048576 x i32], align 16
|
|
; CHECK: alloca [1048576 x i32]
|
|
%cast = bitcast [1048576 x i32]* %stack to i8*
|
|
call void @llvm.memset.p0i8.i64(i8* %cast, i8 -2, i64 4194304, i32 16, i1 false)
|
|
ret void
|
|
; CHECK: ret
|
|
}
|
|
|
|
define void @PR14548(i1 %x) {
|
|
; Handle a mixture of i1 and i8 loads and stores to allocas. This particular
|
|
; pattern caused crashes and invalid output in the PR, and its nature will
|
|
; trigger a mixture in several permutations as we resolve each alloca
|
|
; iteratively.
|
|
; Note that we don't do a particularly good *job* of handling these mixtures,
|
|
; but the hope is that this is very rare.
|
|
; CHECK-LABEL: @PR14548(
|
|
|
|
entry:
|
|
%a = alloca <{ i1 }>, align 8
|
|
%b = alloca <{ i1 }>, align 8
|
|
; CHECK: %[[a:.*]] = alloca i8, align 8
|
|
; CHECK-NEXT: %[[b:.*]] = alloca i8, align 8
|
|
|
|
%b.i1 = bitcast <{ i1 }>* %b to i1*
|
|
store i1 %x, i1* %b.i1, align 8
|
|
%b.i8 = bitcast <{ i1 }>* %b to i8*
|
|
%foo = load i8, i8* %b.i8, align 1
|
|
; CHECK-NEXT: %[[b_cast:.*]] = bitcast i8* %[[b]] to i1*
|
|
; CHECK-NEXT: store i1 %x, i1* %[[b_cast]], align 8
|
|
; CHECK-NEXT: {{.*}} = load i8, i8* %[[b]], align 8
|
|
|
|
%a.i8 = bitcast <{ i1 }>* %a to i8*
|
|
call void @llvm.memcpy.p0i8.p0i8.i32(i8* %a.i8, i8* %b.i8, i32 1, i32 1, i1 false) nounwind
|
|
%bar = load i8, i8* %a.i8, align 1
|
|
%a.i1 = getelementptr inbounds <{ i1 }>, <{ i1 }>* %a, i32 0, i32 0
|
|
%baz = load i1, i1* %a.i1, align 1
|
|
; CHECK-NEXT: %[[copy:.*]] = load i8, i8* %[[b]], align 8
|
|
; CHECK-NEXT: store i8 %[[copy]], i8* %[[a]], align 8
|
|
; CHECK-NEXT: {{.*}} = load i8, i8* %[[a]], align 8
|
|
; CHECK-NEXT: %[[a_cast:.*]] = bitcast i8* %[[a]] to i1*
|
|
; CHECK-NEXT: {{.*}} = load i1, i1* %[[a_cast]], align 8
|
|
|
|
ret void
|
|
}
|
|
|
|
define <3 x i8> @PR14572.1(i32 %x) {
|
|
; Ensure that a split integer store which is wider than the type size of the
|
|
; alloca (relying on the alloc size padding) doesn't trigger an assert.
|
|
; CHECK: @PR14572.1
|
|
|
|
entry:
|
|
%a = alloca <3 x i8>, align 4
|
|
; CHECK-NOT: alloca
|
|
|
|
%cast = bitcast <3 x i8>* %a to i32*
|
|
store i32 %x, i32* %cast, align 1
|
|
%y = load <3 x i8>, <3 x i8>* %a, align 4
|
|
ret <3 x i8> %y
|
|
; CHECK: ret <3 x i8>
|
|
}
|
|
|
|
define i32 @PR14572.2(<3 x i8> %x) {
|
|
; Ensure that a split integer load which is wider than the type size of the
|
|
; alloca (relying on the alloc size padding) doesn't trigger an assert.
|
|
; CHECK: @PR14572.2
|
|
|
|
entry:
|
|
%a = alloca <3 x i8>, align 4
|
|
; CHECK-NOT: alloca
|
|
|
|
store <3 x i8> %x, <3 x i8>* %a, align 1
|
|
%cast = bitcast <3 x i8>* %a to i32*
|
|
%y = load i32, i32* %cast, align 4
|
|
ret i32 %y
|
|
; CHECK: ret i32
|
|
}
|
|
|
|
define i32 @PR14601(i32 %x) {
|
|
; Don't try to form a promotable integer alloca when there is a variable length
|
|
; memory intrinsic.
|
|
; CHECK-LABEL: @PR14601(
|
|
|
|
entry:
|
|
%a = alloca i32
|
|
; CHECK: alloca
|
|
|
|
%a.i8 = bitcast i32* %a to i8*
|
|
call void @llvm.memset.p0i8.i32(i8* %a.i8, i8 0, i32 %x, i32 1, i1 false)
|
|
%v = load i32, i32* %a
|
|
ret i32 %v
|
|
}
|
|
|
|
define void @PR15674(i8* %data, i8* %src, i32 %size) {
|
|
; Arrange (via control flow) to have unmerged stores of a particular width to
|
|
; an alloca where we incrementally store from the end of the array toward the
|
|
; beginning of the array. Ensure that the final integer store, despite being
|
|
; convertable to the integer type that we end up promoting this alloca toward,
|
|
; doesn't get widened to a full alloca store.
|
|
; CHECK-LABEL: @PR15674(
|
|
|
|
entry:
|
|
%tmp = alloca [4 x i8], align 1
|
|
; CHECK: alloca i32
|
|
|
|
switch i32 %size, label %end [
|
|
i32 4, label %bb4
|
|
i32 3, label %bb3
|
|
i32 2, label %bb2
|
|
i32 1, label %bb1
|
|
]
|
|
|
|
bb4:
|
|
%src.gep3 = getelementptr inbounds i8, i8* %src, i32 3
|
|
%src.3 = load i8, i8* %src.gep3
|
|
%tmp.gep3 = getelementptr inbounds [4 x i8], [4 x i8]* %tmp, i32 0, i32 3
|
|
store i8 %src.3, i8* %tmp.gep3
|
|
; CHECK: store i8
|
|
|
|
br label %bb3
|
|
|
|
bb3:
|
|
%src.gep2 = getelementptr inbounds i8, i8* %src, i32 2
|
|
%src.2 = load i8, i8* %src.gep2
|
|
%tmp.gep2 = getelementptr inbounds [4 x i8], [4 x i8]* %tmp, i32 0, i32 2
|
|
store i8 %src.2, i8* %tmp.gep2
|
|
; CHECK: store i8
|
|
|
|
br label %bb2
|
|
|
|
bb2:
|
|
%src.gep1 = getelementptr inbounds i8, i8* %src, i32 1
|
|
%src.1 = load i8, i8* %src.gep1
|
|
%tmp.gep1 = getelementptr inbounds [4 x i8], [4 x i8]* %tmp, i32 0, i32 1
|
|
store i8 %src.1, i8* %tmp.gep1
|
|
; CHECK: store i8
|
|
|
|
br label %bb1
|
|
|
|
bb1:
|
|
%src.gep0 = getelementptr inbounds i8, i8* %src, i32 0
|
|
%src.0 = load i8, i8* %src.gep0
|
|
%tmp.gep0 = getelementptr inbounds [4 x i8], [4 x i8]* %tmp, i32 0, i32 0
|
|
store i8 %src.0, i8* %tmp.gep0
|
|
; CHECK: store i8
|
|
|
|
br label %end
|
|
|
|
end:
|
|
%tmp.raw = bitcast [4 x i8]* %tmp to i8*
|
|
call void @llvm.memcpy.p0i8.p0i8.i32(i8* %data, i8* %tmp.raw, i32 %size, i32 1, i1 false)
|
|
ret void
|
|
; CHECK: ret void
|
|
}
|
|
|
|
define void @PR15805(i1 %a, i1 %b) {
|
|
; CHECK-LABEL: @PR15805(
|
|
; CHECK-NOT: alloca
|
|
; CHECK: ret void
|
|
|
|
%c = alloca i64, align 8
|
|
%p.0.c = select i1 undef, i64* %c, i64* %c
|
|
%cond.in = select i1 undef, i64* %p.0.c, i64* %c
|
|
%cond = load i64, i64* %cond.in, align 8
|
|
ret void
|
|
}
|
|
|
|
define void @PR15805.1(i1 %a, i1 %b) {
|
|
; Same as the normal PR15805, but rigged to place the use before the def inside
|
|
; of looping unreachable code. This helps ensure that we aren't sensitive to the
|
|
; order in which the uses of the alloca are visited.
|
|
;
|
|
; CHECK-LABEL: @PR15805.1(
|
|
; CHECK-NOT: alloca
|
|
; CHECK: ret void
|
|
|
|
%c = alloca i64, align 8
|
|
br label %exit
|
|
|
|
loop:
|
|
%cond.in = select i1 undef, i64* %c, i64* %p.0.c
|
|
%p.0.c = select i1 undef, i64* %c, i64* %c
|
|
%cond = load i64, i64* %cond.in, align 8
|
|
br i1 undef, label %loop, label %exit
|
|
|
|
exit:
|
|
ret void
|
|
}
|
|
|
|
define void @PR16651.1(i8* %a) {
|
|
; This test case caused a crash due to the volatile memcpy in combination with
|
|
; lowering to integer loads and stores of a width other than that of the original
|
|
; memcpy.
|
|
;
|
|
; CHECK-LABEL: @PR16651.1(
|
|
; CHECK: alloca i16
|
|
; CHECK: alloca i8
|
|
; CHECK: alloca i8
|
|
; CHECK: unreachable
|
|
|
|
entry:
|
|
%b = alloca i32, align 4
|
|
%b.cast = bitcast i32* %b to i8*
|
|
call void @llvm.memcpy.p0i8.p0i8.i32(i8* %b.cast, i8* %a, i32 4, i32 4, i1 true)
|
|
%b.gep = getelementptr inbounds i8, i8* %b.cast, i32 2
|
|
load i8, i8* %b.gep, align 2
|
|
unreachable
|
|
}
|
|
|
|
define void @PR16651.2() {
|
|
; This test case caused a crash due to failing to promote given a select that
|
|
; can't be speculated. It shouldn't be promoted, but we missed that fact when
|
|
; analyzing whether we could form a vector promotion because that code didn't
|
|
; bail on select instructions.
|
|
;
|
|
; CHECK-LABEL: @PR16651.2(
|
|
; CHECK: alloca <2 x float>
|
|
; CHECK: ret void
|
|
|
|
entry:
|
|
%tv1 = alloca { <2 x float>, <2 x float> }, align 8
|
|
%0 = getelementptr { <2 x float>, <2 x float> }, { <2 x float>, <2 x float> }* %tv1, i64 0, i32 1
|
|
store <2 x float> undef, <2 x float>* %0, align 8
|
|
%1 = getelementptr inbounds { <2 x float>, <2 x float> }, { <2 x float>, <2 x float> }* %tv1, i64 0, i32 1, i64 0
|
|
%cond105.in.i.i = select i1 undef, float* null, float* %1
|
|
%cond105.i.i = load float, float* %cond105.in.i.i, align 8
|
|
ret void
|
|
}
|
|
|
|
define void @test23(i32 %x) {
|
|
; CHECK-LABEL: @test23(
|
|
; CHECK-NOT: alloca
|
|
; CHECK: ret void
|
|
entry:
|
|
%a = alloca i32, align 4
|
|
store i32 %x, i32* %a, align 4
|
|
%gep1 = getelementptr inbounds i32, i32* %a, i32 1
|
|
%gep0 = getelementptr inbounds i32, i32* %a, i32 0
|
|
%cast1 = bitcast i32* %gep1 to i8*
|
|
%cast0 = bitcast i32* %gep0 to i8*
|
|
call void @llvm.memcpy.p0i8.p0i8.i32(i8* %cast1, i8* %cast0, i32 4, i32 1, i1 false)
|
|
ret void
|
|
}
|
|
|
|
define void @PR18615() {
|
|
; CHECK-LABEL: @PR18615(
|
|
; CHECK-NOT: alloca
|
|
; CHECK: ret void
|
|
entry:
|
|
%f = alloca i8
|
|
%gep = getelementptr i8, i8* %f, i64 -1
|
|
call void @llvm.memcpy.p0i8.p0i8.i32(i8* undef, i8* %gep, i32 1, i32 1, i1 false)
|
|
ret void
|
|
}
|
|
|
|
define void @test24(i8* %src, i8* %dst) {
|
|
; CHECK-LABEL: @test24(
|
|
; CHECK: alloca i64, align 16
|
|
; CHECK: load volatile i64, i64* %{{[^,]*}}, align 1
|
|
; CHECK: store volatile i64 %{{[^,]*}}, i64* %{{[^,]*}}, align 16
|
|
; CHECK: load volatile i64, i64* %{{[^,]*}}, align 16
|
|
; CHECK: store volatile i64 %{{[^,]*}}, i64* %{{[^,]*}}, align 1
|
|
|
|
entry:
|
|
%a = alloca i64, align 16
|
|
%ptr = bitcast i64* %a to i8*
|
|
call void @llvm.memcpy.p0i8.p0i8.i32(i8* %ptr, i8* %src, i32 8, i32 1, i1 true)
|
|
call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dst, i8* %ptr, i32 8, i32 1, i1 true)
|
|
ret void
|
|
}
|
|
|
|
define float @test25() {
|
|
; Check that we split up stores in order to promote the smaller SSA values.. These types
|
|
; of patterns can arise because LLVM maps small memcpy's to integer load and
|
|
; stores. If we get a memcpy of an aggregate (such as C and C++ frontends would
|
|
; produce, but so might any language frontend), this will in many cases turn into
|
|
; an integer load and store. SROA needs to be extremely powerful to correctly
|
|
; handle these cases and form splitable and promotable SSA values.
|
|
;
|
|
; CHECK-LABEL: @test25(
|
|
; CHECK-NOT: alloca
|
|
; CHECK: %[[F1:.*]] = bitcast i32 0 to float
|
|
; CHECK: %[[F2:.*]] = bitcast i32 1065353216 to float
|
|
; CHECK: %[[SUM:.*]] = fadd float %[[F1]], %[[F2]]
|
|
; CHECK: ret float %[[SUM]]
|
|
|
|
entry:
|
|
%a = alloca i64
|
|
%b = alloca i64
|
|
%a.cast = bitcast i64* %a to [2 x float]*
|
|
%a.gep1 = getelementptr [2 x float], [2 x float]* %a.cast, i32 0, i32 0
|
|
%a.gep2 = getelementptr [2 x float], [2 x float]* %a.cast, i32 0, i32 1
|
|
%b.cast = bitcast i64* %b to [2 x float]*
|
|
%b.gep1 = getelementptr [2 x float], [2 x float]* %b.cast, i32 0, i32 0
|
|
%b.gep2 = getelementptr [2 x float], [2 x float]* %b.cast, i32 0, i32 1
|
|
store float 0.0, float* %a.gep1
|
|
store float 1.0, float* %a.gep2
|
|
%v = load i64, i64* %a
|
|
store i64 %v, i64* %b
|
|
%f1 = load float, float* %b.gep1
|
|
%f2 = load float, float* %b.gep2
|
|
%ret = fadd float %f1, %f2
|
|
ret float %ret
|
|
}
|
|
|
|
@complex1 = external global [2 x float]
|
|
@complex2 = external global [2 x float]
|
|
|
|
define void @test26() {
|
|
; Test a case of splitting up loads and stores against a globals.
|
|
;
|
|
; CHECK-LABEL: @test26(
|
|
; CHECK-NOT: alloca
|
|
; CHECK: %[[L1:.*]] = load i32, i32* bitcast
|
|
; CHECK: %[[L2:.*]] = load i32, i32* bitcast
|
|
; CHECK: %[[F1:.*]] = bitcast i32 %[[L1]] to float
|
|
; CHECK: %[[F2:.*]] = bitcast i32 %[[L2]] to float
|
|
; CHECK: %[[SUM:.*]] = fadd float %[[F1]], %[[F2]]
|
|
; CHECK: %[[C1:.*]] = bitcast float %[[SUM]] to i32
|
|
; CHECK: %[[C2:.*]] = bitcast float %[[SUM]] to i32
|
|
; CHECK: store i32 %[[C1]], i32* bitcast
|
|
; CHECK: store i32 %[[C2]], i32* bitcast
|
|
; CHECK: ret void
|
|
|
|
entry:
|
|
%a = alloca i64
|
|
%a.cast = bitcast i64* %a to [2 x float]*
|
|
%a.gep1 = getelementptr [2 x float], [2 x float]* %a.cast, i32 0, i32 0
|
|
%a.gep2 = getelementptr [2 x float], [2 x float]* %a.cast, i32 0, i32 1
|
|
%v1 = load i64, i64* bitcast ([2 x float]* @complex1 to i64*)
|
|
store i64 %v1, i64* %a
|
|
%f1 = load float, float* %a.gep1
|
|
%f2 = load float, float* %a.gep2
|
|
%sum = fadd float %f1, %f2
|
|
store float %sum, float* %a.gep1
|
|
store float %sum, float* %a.gep2
|
|
%v2 = load i64, i64* %a
|
|
store i64 %v2, i64* bitcast ([2 x float]* @complex2 to i64*)
|
|
ret void
|
|
}
|
|
|
|
define float @test27() {
|
|
; Another, more complex case of splittable i64 loads and stores. This example
|
|
; is a particularly challenging one because the load and store both point into
|
|
; the alloca SROA is processing, and they overlap but at an offset.
|
|
;
|
|
; CHECK-LABEL: @test27(
|
|
; CHECK-NOT: alloca
|
|
; CHECK: %[[F1:.*]] = bitcast i32 0 to float
|
|
; CHECK: %[[F2:.*]] = bitcast i32 1065353216 to float
|
|
; CHECK: %[[SUM:.*]] = fadd float %[[F1]], %[[F2]]
|
|
; CHECK: ret float %[[SUM]]
|
|
|
|
entry:
|
|
%a = alloca [12 x i8]
|
|
%gep1 = getelementptr [12 x i8], [12 x i8]* %a, i32 0, i32 0
|
|
%gep2 = getelementptr [12 x i8], [12 x i8]* %a, i32 0, i32 4
|
|
%gep3 = getelementptr [12 x i8], [12 x i8]* %a, i32 0, i32 8
|
|
%iptr1 = bitcast i8* %gep1 to i64*
|
|
%iptr2 = bitcast i8* %gep2 to i64*
|
|
%fptr1 = bitcast i8* %gep1 to float*
|
|
%fptr2 = bitcast i8* %gep2 to float*
|
|
%fptr3 = bitcast i8* %gep3 to float*
|
|
store float 0.0, float* %fptr1
|
|
store float 1.0, float* %fptr2
|
|
%v = load i64, i64* %iptr1
|
|
store i64 %v, i64* %iptr2
|
|
%f1 = load float, float* %fptr2
|
|
%f2 = load float, float* %fptr3
|
|
%ret = fadd float %f1, %f2
|
|
ret float %ret
|
|
}
|
|
|
|
define i32 @PR22093() {
|
|
; Test that we don't try to pre-split a splittable store of a splittable but
|
|
; not pre-splittable load over the same alloca. We "handle" this case when the
|
|
; load is unsplittable but unrelated to this alloca by just generating extra
|
|
; loads without touching the original, but when the original load was out of
|
|
; this alloca we need to handle it specially to ensure the splits line up
|
|
; properly for rewriting.
|
|
;
|
|
; CHECK-LABEL: @PR22093(
|
|
; CHECK-NOT: alloca
|
|
; CHECK: alloca i16
|
|
; CHECK-NOT: alloca
|
|
; CHECK: store volatile i16
|
|
|
|
entry:
|
|
%a = alloca i32
|
|
%a.cast = bitcast i32* %a to i16*
|
|
store volatile i16 42, i16* %a.cast
|
|
%load = load i32, i32* %a
|
|
store i32 %load, i32* %a
|
|
ret i32 %load
|
|
}
|
|
|
|
define void @PR22093.2() {
|
|
; Another way that we end up being unable to split a particular set of loads
|
|
; and stores can even have ordering importance. Here we have a load which is
|
|
; pre-splittable by itself, and the first store is also compatible. But the
|
|
; second store of the load makes the load unsplittable because of a mismatch of
|
|
; splits. Because this makes the load unsplittable, we also have to go back and
|
|
; remove the first store from the presplit candidates as its load won't be
|
|
; presplit.
|
|
;
|
|
; CHECK-LABEL: @PR22093.2(
|
|
; CHECK-NOT: alloca
|
|
; CHECK: alloca i16
|
|
; CHECK-NEXT: alloca i8
|
|
; CHECK-NOT: alloca
|
|
; CHECK: store volatile i16
|
|
; CHECK: store volatile i8
|
|
|
|
entry:
|
|
%a = alloca i64
|
|
%a.cast1 = bitcast i64* %a to i32*
|
|
%a.cast2 = bitcast i64* %a to i16*
|
|
store volatile i16 42, i16* %a.cast2
|
|
%load = load i32, i32* %a.cast1
|
|
store i32 %load, i32* %a.cast1
|
|
%a.gep1 = getelementptr i32, i32* %a.cast1, i32 1
|
|
%a.cast3 = bitcast i32* %a.gep1 to i8*
|
|
store volatile i8 13, i8* %a.cast3
|
|
store i32 %load, i32* %a.gep1
|
|
ret void
|
|
}
|
|
|
|
define void @PR23737() {
|
|
; CHECK-LABEL: @PR23737(
|
|
; CHECK: store atomic volatile {{.*}} seq_cst
|
|
; CHECK: load atomic volatile {{.*}} seq_cst
|
|
entry:
|
|
%ptr = alloca i64, align 8
|
|
store atomic volatile i64 0, i64* %ptr seq_cst, align 8
|
|
%load = load atomic volatile i64, i64* %ptr seq_cst, align 8
|
|
ret void
|
|
}
|
|
|
|
define i16 @PR24463() {
|
|
; Ensure we can handle a very interesting case where there is an integer-based
|
|
; rewrite of the uses of the alloca, but where one of the integers in that is
|
|
; a sub-integer that requires extraction *and* extends past the end of the
|
|
; alloca. In this case, we should extract the i8 and then zext it to i16.
|
|
;
|
|
; CHECK-LABEL: @PR24463(
|
|
; CHECK-NOT: alloca
|
|
; CHECK: %[[SHIFT:.*]] = lshr i16 0, 8
|
|
; CHECK: %[[TRUNC:.*]] = trunc i16 %[[SHIFT]] to i8
|
|
; CHECK: %[[ZEXT:.*]] = zext i8 %[[TRUNC]] to i16
|
|
; CHECK: ret i16 %[[ZEXT]]
|
|
entry:
|
|
%alloca = alloca [3 x i8]
|
|
%gep1 = getelementptr inbounds [3 x i8], [3 x i8]* %alloca, i64 0, i64 1
|
|
%bc1 = bitcast i8* %gep1 to i16*
|
|
store i16 0, i16* %bc1
|
|
%gep2 = getelementptr inbounds [3 x i8], [3 x i8]* %alloca, i64 0, i64 2
|
|
%bc2 = bitcast i8* %gep2 to i16*
|
|
%load = load i16, i16* %bc2
|
|
ret i16 %load
|
|
}
|