llvm/lib/Analysis/ScalarEvolutionNormalization.cpp
Sanjoy Das cfd7f99b33 Remove NormalizeAutodetect; NFC
It is cleaner to have a callback based system where the logic of
whether an add recurrence is normalized or not lives on IVUsers.

This is one step in a multi-step cleanup.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@300330 91177308-0d34-0410-b5e6-96231b3b80d8
2017-04-14 15:49:53 +00:00

170 lines
6.0 KiB
C++

//===- ScalarEvolutionNormalization.cpp - See below -----------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements utilities for working with "normalized" expressions.
// See the comments at the top of ScalarEvolutionNormalization.h for details.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/Analysis/ScalarEvolutionNormalization.h"
using namespace llvm;
namespace {
/// Hold the state used during post-inc expression transformation, including a
/// map of transformed expressions.
class PostIncTransform {
TransformKind Kind;
Optional<NormalizePredTy> Pred;
PostIncLoopSet &Loops;
ScalarEvolution &SE;
DenseMap<const SCEV*, const SCEV*> Transformed;
public:
PostIncTransform(TransformKind kind, Optional<NormalizePredTy> Pred,
PostIncLoopSet &loops, ScalarEvolution &se)
: Kind(kind), Pred(Pred), Loops(loops), SE(se) {}
const SCEV *TransformSubExpr(const SCEV *S);
protected:
const SCEV *TransformImpl(const SCEV *S);
};
} // namespace
/// Implement post-inc transformation for all valid expression types.
const SCEV *PostIncTransform::TransformImpl(const SCEV *S) {
if (const SCEVCastExpr *X = dyn_cast<SCEVCastExpr>(S)) {
const SCEV *O = X->getOperand();
const SCEV *N = TransformSubExpr(O);
if (O != N)
switch (S->getSCEVType()) {
case scZeroExtend: return SE.getZeroExtendExpr(N, S->getType());
case scSignExtend: return SE.getSignExtendExpr(N, S->getType());
case scTruncate: return SE.getTruncateExpr(N, S->getType());
default: llvm_unreachable("Unexpected SCEVCastExpr kind!");
}
return S;
}
if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
// An addrec. This is the interesting part.
SmallVector<const SCEV *, 8> Operands;
const Loop *L = AR->getLoop();
transform(AR->operands(), std::back_inserter(Operands),
[&](const SCEV *Op) { return TransformSubExpr(Op); });
// Conservatively use AnyWrap until/unless we need FlagNW.
const SCEV *Result = SE.getAddRecExpr(Operands, L, SCEV::FlagAnyWrap);
switch (Kind) {
case Normalize:
// We want to normalize step expression, because otherwise we might not be
// able to denormalize to the original expression.
//
// Here is an example what will happen if we don't normalize step:
// ORIGINAL ISE:
// {(100 /u {1,+,1}<%bb16>),+,(100 /u {1,+,1}<%bb16>)}<%bb25>
// NORMALIZED ISE:
// {((-1 * (100 /u {1,+,1}<%bb16>)) + (100 /u {0,+,1}<%bb16>)),+,
// (100 /u {0,+,1}<%bb16>)}<%bb25>
// DENORMALIZED BACK ISE:
// {((2 * (100 /u {1,+,1}<%bb16>)) + (-1 * (100 /u {2,+,1}<%bb16>))),+,
// (100 /u {1,+,1}<%bb16>)}<%bb25>
// Note that the initial value changes after normalization +
// denormalization, which isn't correct.
if ((Pred && (*Pred)(AR)) || (!Pred && Loops.count(L))) {
const SCEV *TransformedStep =
TransformSubExpr(AR->getStepRecurrence(SE));
Result = SE.getMinusSCEV(Result, TransformedStep);
}
#if 0
// See the comment on the assert above.
assert(S == TransformSubExpr(Result, User, OperandValToReplace) &&
"SCEV normalization is not invertible!");
#endif
break;
case Denormalize:
// Here we want to normalize step expressions for the same reasons, as
// stated above.
if (Loops.count(L)) {
const SCEV *TransformedStep =
TransformSubExpr(AR->getStepRecurrence(SE));
Result = SE.getAddExpr(Result, TransformedStep);
}
break;
}
return Result;
}
if (const SCEVNAryExpr *X = dyn_cast<SCEVNAryExpr>(S)) {
SmallVector<const SCEV *, 8> Operands;
bool Changed = false;
// Transform each operand.
for (SCEVNAryExpr::op_iterator I = X->op_begin(), E = X->op_end();
I != E; ++I) {
const SCEV *O = *I;
const SCEV *N = TransformSubExpr(O);
Changed |= N != O;
Operands.push_back(N);
}
// If any operand actually changed, return a transformed result.
if (Changed)
switch (S->getSCEVType()) {
case scAddExpr: return SE.getAddExpr(Operands);
case scMulExpr: return SE.getMulExpr(Operands);
case scSMaxExpr: return SE.getSMaxExpr(Operands);
case scUMaxExpr: return SE.getUMaxExpr(Operands);
default: llvm_unreachable("Unexpected SCEVNAryExpr kind!");
}
return S;
}
if (const SCEVUDivExpr *X = dyn_cast<SCEVUDivExpr>(S)) {
const SCEV *LO = X->getLHS();
const SCEV *RO = X->getRHS();
const SCEV *LN = TransformSubExpr(LO);
const SCEV *RN = TransformSubExpr(RO);
if (LO != LN || RO != RN)
return SE.getUDivExpr(LN, RN);
return S;
}
llvm_unreachable("Unexpected SCEV kind!");
}
/// Manage recursive transformation across an expression DAG. Revisiting
/// expressions would lead to exponential recursion.
const SCEV *PostIncTransform::TransformSubExpr(const SCEV *S) {
if (isa<SCEVConstant>(S) || isa<SCEVUnknown>(S))
return S;
const SCEV *Result = Transformed.lookup(S);
if (Result)
return Result;
Result = TransformImpl(S);
Transformed[S] = Result;
return Result;
}
/// Top level driver for transforming an expression DAG into its requested
/// post-inc form (either "Normalized" or "Denormalized").
const SCEV *llvm::TransformForPostIncUse(TransformKind Kind, const SCEV *S,
Optional<NormalizePredTy> Pred,
PostIncLoopSet &Loops,
ScalarEvolution &SE) {
PostIncTransform Transform(Kind, Pred, Loops, SE);
return Transform.TransformSubExpr(S);
}