llvm/lib/Support/Unix/Signals.inc
Chandler Carruth d04a8d4b33 Use the new script to sort the includes of every file under lib.
Sooooo many of these had incorrect or strange main module includes.
I have manually inspected all of these, and fixed the main module
include to be the nearest plausible thing I could find. If you own or
care about any of these source files, I encourage you to take some time
and check that these edits were sensible. I can't have broken anything
(I strictly added headers, and reordered them, never removed), but they
may not be the headers you'd really like to identify as containing the
API being implemented.

Many forward declarations and missing includes were added to a header
files to allow them to parse cleanly when included first. The main
module rule does in fact have its merits. =]

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169131 91177308-0d34-0410-b5e6-96231b3b80d8
2012-12-03 16:50:05 +00:00

368 lines
11 KiB
C++

//===- Signals.cpp - Generic Unix Signals Implementation -----*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines some helpful functions for dealing with the possibility of
// Unix signals occurring while your program is running.
//
//===----------------------------------------------------------------------===//
#include "Unix.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/Mutex.h"
#include <algorithm>
#include <string>
#include <vector>
#if HAVE_EXECINFO_H
# include <execinfo.h> // For backtrace().
#endif
#if HAVE_SIGNAL_H
#include <signal.h>
#endif
#if HAVE_SYS_STAT_H
#include <sys/stat.h>
#endif
#if HAVE_DLFCN_H && __GNUG__
#include <dlfcn.h>
#include <cxxabi.h>
#endif
#if HAVE_MACH_MACH_H
#include <mach/mach.h>
#endif
using namespace llvm;
static RETSIGTYPE SignalHandler(int Sig); // defined below.
static SmartMutex<true> SignalsMutex;
/// InterruptFunction - The function to call if ctrl-c is pressed.
static void (*InterruptFunction)() = 0;
static std::vector<std::string> FilesToRemove;
static std::vector<std::pair<void(*)(void*), void*> > CallBacksToRun;
// IntSigs - Signals that may interrupt the program at any time.
static const int IntSigs[] = {
SIGHUP, SIGINT, SIGQUIT, SIGPIPE, SIGTERM, SIGUSR1, SIGUSR2
};
static const int *const IntSigsEnd =
IntSigs + sizeof(IntSigs) / sizeof(IntSigs[0]);
// KillSigs - Signals that are synchronous with the program that will cause it
// to die.
static const int KillSigs[] = {
SIGILL, SIGTRAP, SIGABRT, SIGFPE, SIGBUS, SIGSEGV
#ifdef SIGSYS
, SIGSYS
#endif
#ifdef SIGXCPU
, SIGXCPU
#endif
#ifdef SIGXFSZ
, SIGXFSZ
#endif
#ifdef SIGEMT
, SIGEMT
#endif
};
static const int *const KillSigsEnd =
KillSigs + sizeof(KillSigs) / sizeof(KillSigs[0]);
static unsigned NumRegisteredSignals = 0;
static struct {
struct sigaction SA;
int SigNo;
} RegisteredSignalInfo[(sizeof(IntSigs)+sizeof(KillSigs))/sizeof(KillSigs[0])];
static void RegisterHandler(int Signal) {
assert(NumRegisteredSignals <
sizeof(RegisteredSignalInfo)/sizeof(RegisteredSignalInfo[0]) &&
"Out of space for signal handlers!");
struct sigaction NewHandler;
NewHandler.sa_handler = SignalHandler;
NewHandler.sa_flags = SA_NODEFER|SA_RESETHAND;
sigemptyset(&NewHandler.sa_mask);
// Install the new handler, save the old one in RegisteredSignalInfo.
sigaction(Signal, &NewHandler,
&RegisteredSignalInfo[NumRegisteredSignals].SA);
RegisteredSignalInfo[NumRegisteredSignals].SigNo = Signal;
++NumRegisteredSignals;
}
static void RegisterHandlers() {
// If the handlers are already registered, we're done.
if (NumRegisteredSignals != 0) return;
std::for_each(IntSigs, IntSigsEnd, RegisterHandler);
std::for_each(KillSigs, KillSigsEnd, RegisterHandler);
}
static void UnregisterHandlers() {
// Restore all of the signal handlers to how they were before we showed up.
for (unsigned i = 0, e = NumRegisteredSignals; i != e; ++i)
sigaction(RegisteredSignalInfo[i].SigNo,
&RegisteredSignalInfo[i].SA, 0);
NumRegisteredSignals = 0;
}
/// RemoveFilesToRemove - Process the FilesToRemove list. This function
/// should be called with the SignalsMutex lock held.
/// NB: This must be an async signal safe function. It cannot allocate or free
/// memory, even in debug builds.
static void RemoveFilesToRemove() {
// We avoid iterators in case of debug iterators that allocate or release
// memory.
for (unsigned i = 0, e = FilesToRemove.size(); i != e; ++i) {
// We rely on a std::string implementation for which repeated calls to
// 'c_str()' don't allocate memory. We pre-call 'c_str()' on all of these
// strings to try to ensure this is safe.
const char *path = FilesToRemove[i].c_str();
// Get the status so we can determine if it's a file or directory. If we
// can't stat the file, ignore it.
struct stat buf;
if (stat(path, &buf) != 0)
continue;
// If this is not a regular file, ignore it. We want to prevent removal of
// special files like /dev/null, even if the compiler is being run with the
// super-user permissions.
if (!S_ISREG(buf.st_mode))
continue;
// Otherwise, remove the file. We ignore any errors here as there is nothing
// else we can do.
unlink(path);
}
}
// SignalHandler - The signal handler that runs.
static RETSIGTYPE SignalHandler(int Sig) {
// Restore the signal behavior to default, so that the program actually
// crashes when we return and the signal reissues. This also ensures that if
// we crash in our signal handler that the program will terminate immediately
// instead of recursing in the signal handler.
UnregisterHandlers();
// Unmask all potentially blocked kill signals.
sigset_t SigMask;
sigfillset(&SigMask);
sigprocmask(SIG_UNBLOCK, &SigMask, 0);
SignalsMutex.acquire();
RemoveFilesToRemove();
if (std::find(IntSigs, IntSigsEnd, Sig) != IntSigsEnd) {
if (InterruptFunction) {
void (*IF)() = InterruptFunction;
SignalsMutex.release();
InterruptFunction = 0;
IF(); // run the interrupt function.
return;
}
SignalsMutex.release();
raise(Sig); // Execute the default handler.
return;
}
SignalsMutex.release();
// Otherwise if it is a fault (like SEGV) run any handler.
for (unsigned i = 0, e = CallBacksToRun.size(); i != e; ++i)
CallBacksToRun[i].first(CallBacksToRun[i].second);
}
void llvm::sys::RunInterruptHandlers() {
SignalsMutex.acquire();
RemoveFilesToRemove();
SignalsMutex.release();
}
void llvm::sys::SetInterruptFunction(void (*IF)()) {
SignalsMutex.acquire();
InterruptFunction = IF;
SignalsMutex.release();
RegisterHandlers();
}
// RemoveFileOnSignal - The public API
bool llvm::sys::RemoveFileOnSignal(const sys::Path &Filename,
std::string* ErrMsg) {
SignalsMutex.acquire();
std::string *OldPtr = FilesToRemove.empty() ? 0 : &FilesToRemove[0];
FilesToRemove.push_back(Filename.str());
// We want to call 'c_str()' on every std::string in this vector so that if
// the underlying implementation requires a re-allocation, it happens here
// rather than inside of the signal handler. If we see the vector grow, we
// have to call it on every entry. If it remains in place, we only need to
// call it on the latest one.
if (OldPtr == &FilesToRemove[0])
FilesToRemove.back().c_str();
else
for (unsigned i = 0, e = FilesToRemove.size(); i != e; ++i)
FilesToRemove[i].c_str();
SignalsMutex.release();
RegisterHandlers();
return false;
}
// DontRemoveFileOnSignal - The public API
void llvm::sys::DontRemoveFileOnSignal(const sys::Path &Filename) {
SignalsMutex.acquire();
std::vector<std::string>::reverse_iterator RI =
std::find(FilesToRemove.rbegin(), FilesToRemove.rend(), Filename.str());
std::vector<std::string>::iterator I = FilesToRemove.end();
if (RI != FilesToRemove.rend())
I = FilesToRemove.erase(RI.base()-1);
// We need to call c_str() on every element which would have been moved by
// the erase. These elements, in a C++98 implementation where c_str()
// requires a reallocation on the first call may have had the call to c_str()
// made on insertion become invalid by being copied down an element.
for (std::vector<std::string>::iterator E = FilesToRemove.end(); I != E; ++I)
I->c_str();
SignalsMutex.release();
}
/// AddSignalHandler - Add a function to be called when a signal is delivered
/// to the process. The handler can have a cookie passed to it to identify
/// what instance of the handler it is.
void llvm::sys::AddSignalHandler(void (*FnPtr)(void *), void *Cookie) {
CallBacksToRun.push_back(std::make_pair(FnPtr, Cookie));
RegisterHandlers();
}
// PrintStackTrace - In the case of a program crash or fault, print out a stack
// trace so that the user has an indication of why and where we died.
//
// On glibc systems we have the 'backtrace' function, which works nicely, but
// doesn't demangle symbols.
static void PrintStackTrace(void *) {
#if defined(HAVE_BACKTRACE) && defined(ENABLE_BACKTRACES)
static void* StackTrace[256];
// Use backtrace() to output a backtrace on Linux systems with glibc.
int depth = backtrace(StackTrace,
static_cast<int>(array_lengthof(StackTrace)));
#if HAVE_DLFCN_H && __GNUG__
int width = 0;
for (int i = 0; i < depth; ++i) {
Dl_info dlinfo;
dladdr(StackTrace[i], &dlinfo);
const char* name = strrchr(dlinfo.dli_fname, '/');
int nwidth;
if (name == NULL) nwidth = strlen(dlinfo.dli_fname);
else nwidth = strlen(name) - 1;
if (nwidth > width) width = nwidth;
}
for (int i = 0; i < depth; ++i) {
Dl_info dlinfo;
dladdr(StackTrace[i], &dlinfo);
fprintf(stderr, "%-2d", i);
const char* name = strrchr(dlinfo.dli_fname, '/');
if (name == NULL) fprintf(stderr, " %-*s", width, dlinfo.dli_fname);
else fprintf(stderr, " %-*s", width, name+1);
fprintf(stderr, " %#0*lx",
(int)(sizeof(void*) * 2) + 2, (unsigned long)StackTrace[i]);
if (dlinfo.dli_sname != NULL) {
int res;
fputc(' ', stderr);
char* d = abi::__cxa_demangle(dlinfo.dli_sname, NULL, NULL, &res);
if (d == NULL) fputs(dlinfo.dli_sname, stderr);
else fputs(d, stderr);
free(d);
fprintf(stderr, " + %tu",(char*)StackTrace[i]-(char*)dlinfo.dli_saddr);
}
fputc('\n', stderr);
}
#else
backtrace_symbols_fd(StackTrace, depth, STDERR_FILENO);
#endif
#endif
}
/// PrintStackTraceOnErrorSignal - When an error signal (such as SIGABRT or
/// SIGSEGV) is delivered to the process, print a stack trace and then exit.
void llvm::sys::PrintStackTraceOnErrorSignal() {
AddSignalHandler(PrintStackTrace, 0);
#if defined(__APPLE__)
// Environment variable to disable any kind of crash dialog.
if (getenv("LLVM_DISABLE_CRASH_REPORT")) {
mach_port_t self = mach_task_self();
exception_mask_t mask = EXC_MASK_CRASH;
kern_return_t ret = task_set_exception_ports(self,
mask,
MACH_PORT_NULL,
EXCEPTION_STATE_IDENTITY | MACH_EXCEPTION_CODES,
THREAD_STATE_NONE);
(void)ret;
}
#endif
}
/***/
// On Darwin, raise sends a signal to the main thread instead of the current
// thread. This has the unfortunate effect that assert() and abort() will end up
// bypassing our crash recovery attempts. We work around this for anything in
// the same linkage unit by just defining our own versions of the assert handler
// and abort.
#ifdef __APPLE__
#include <signal.h>
#include <pthread.h>
int raise(int sig) {
return pthread_kill(pthread_self(), sig);
}
void __assert_rtn(const char *func,
const char *file,
int line,
const char *expr) {
if (func)
fprintf(stderr, "Assertion failed: (%s), function %s, file %s, line %d.\n",
expr, func, file, line);
else
fprintf(stderr, "Assertion failed: (%s), file %s, line %d.\n",
expr, file, line);
abort();
}
void abort() {
raise(SIGABRT);
usleep(1000);
__builtin_trap();
}
#endif