llvm/utils/TableGen/ARMDecoderEmitter.cpp
Dale Johannesen 7835f1fcdb Changes to ARM tail calls, mostly cosmetic.
Add explicit testcases for tail calls within the same module.
Duplicate some code to humor those who think .w doesn't apply on ARM.
Leave this disabled on Thumb1, and add some comments explaining why it's hard
and won't gain much.



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@107851 91177308-0d34-0410-b5e6-96231b3b80d8
2010-07-08 01:18:23 +00:00

1880 lines
62 KiB
C++

//===------------ ARMDecoderEmitter.cpp - Decoder Generator ---------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file is part of the ARM Disassembler.
// It contains the tablegen backend that emits the decoder functions for ARM and
// Thumb. The disassembler core includes the auto-generated file, invokes the
// decoder functions, and builds up the MCInst based on the decoded Opcode.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "arm-decoder-emitter"
#include "ARMDecoderEmitter.h"
#include "CodeGenTarget.h"
#include "Record.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include <vector>
#include <map>
#include <string>
using namespace llvm;
/////////////////////////////////////////////////////
// //
// Enums and Utilities for ARM Instruction Format //
// //
/////////////////////////////////////////////////////
#define ARM_FORMATS \
ENTRY(ARM_FORMAT_PSEUDO, 0) \
ENTRY(ARM_FORMAT_MULFRM, 1) \
ENTRY(ARM_FORMAT_BRFRM, 2) \
ENTRY(ARM_FORMAT_BRMISCFRM, 3) \
ENTRY(ARM_FORMAT_DPFRM, 4) \
ENTRY(ARM_FORMAT_DPSOREGFRM, 5) \
ENTRY(ARM_FORMAT_LDFRM, 6) \
ENTRY(ARM_FORMAT_STFRM, 7) \
ENTRY(ARM_FORMAT_LDMISCFRM, 8) \
ENTRY(ARM_FORMAT_STMISCFRM, 9) \
ENTRY(ARM_FORMAT_LDSTMULFRM, 10) \
ENTRY(ARM_FORMAT_LDSTEXFRM, 11) \
ENTRY(ARM_FORMAT_ARITHMISCFRM, 12) \
ENTRY(ARM_FORMAT_EXTFRM, 13) \
ENTRY(ARM_FORMAT_VFPUNARYFRM, 14) \
ENTRY(ARM_FORMAT_VFPBINARYFRM, 15) \
ENTRY(ARM_FORMAT_VFPCONV1FRM, 16) \
ENTRY(ARM_FORMAT_VFPCONV2FRM, 17) \
ENTRY(ARM_FORMAT_VFPCONV3FRM, 18) \
ENTRY(ARM_FORMAT_VFPCONV4FRM, 19) \
ENTRY(ARM_FORMAT_VFPCONV5FRM, 20) \
ENTRY(ARM_FORMAT_VFPLDSTFRM, 21) \
ENTRY(ARM_FORMAT_VFPLDSTMULFRM, 22) \
ENTRY(ARM_FORMAT_VFPMISCFRM, 23) \
ENTRY(ARM_FORMAT_THUMBFRM, 24) \
ENTRY(ARM_FORMAT_NEONFRM, 25) \
ENTRY(ARM_FORMAT_NEONGETLNFRM, 26) \
ENTRY(ARM_FORMAT_NEONSETLNFRM, 27) \
ENTRY(ARM_FORMAT_NEONDUPFRM, 28) \
ENTRY(ARM_FORMAT_MISCFRM, 29) \
ENTRY(ARM_FORMAT_THUMBMISCFRM, 30) \
ENTRY(ARM_FORMAT_NLdSt, 31) \
ENTRY(ARM_FORMAT_N1RegModImm, 32) \
ENTRY(ARM_FORMAT_N2Reg, 33) \
ENTRY(ARM_FORMAT_NVCVT, 34) \
ENTRY(ARM_FORMAT_NVecDupLn, 35) \
ENTRY(ARM_FORMAT_N2RegVecShL, 36) \
ENTRY(ARM_FORMAT_N2RegVecShR, 37) \
ENTRY(ARM_FORMAT_N3Reg, 38) \
ENTRY(ARM_FORMAT_N3RegVecSh, 39) \
ENTRY(ARM_FORMAT_NVecExtract, 40) \
ENTRY(ARM_FORMAT_NVecMulScalar, 41) \
ENTRY(ARM_FORMAT_NVTBL, 42)
// ARM instruction format specifies the encoding used by the instruction.
#define ENTRY(n, v) n = v,
typedef enum {
ARM_FORMATS
ARM_FORMAT_NA
} ARMFormat;
#undef ENTRY
// Converts enum to const char*.
static const char *stringForARMFormat(ARMFormat form) {
#define ENTRY(n, v) case n: return #n;
switch(form) {
ARM_FORMATS
case ARM_FORMAT_NA:
default:
return "";
}
#undef ENTRY
}
enum {
IndexModeNone = 0,
IndexModePre = 1,
IndexModePost = 2,
IndexModeUpd = 3
};
/////////////////////////
// //
// Utility functions //
// //
/////////////////////////
/// byteFromBitsInit - Return the byte value from a BitsInit.
/// Called from getByteField().
static uint8_t byteFromBitsInit(BitsInit &init) {
int width = init.getNumBits();
assert(width <= 8 && "Field is too large for uint8_t!");
int index;
uint8_t mask = 0x01;
uint8_t ret = 0;
for (index = 0; index < width; index++) {
if (static_cast<BitInit*>(init.getBit(index))->getValue())
ret |= mask;
mask <<= 1;
}
return ret;
}
static uint8_t getByteField(const Record &def, const char *str) {
BitsInit *bits = def.getValueAsBitsInit(str);
return byteFromBitsInit(*bits);
}
static BitsInit &getBitsField(const Record &def, const char *str) {
BitsInit *bits = def.getValueAsBitsInit(str);
return *bits;
}
/// sameStringExceptSuffix - Return true if the two strings differ only in RHS's
/// suffix. ("VST4d8", "VST4d8_UPD", "_UPD") as input returns true.
static
bool sameStringExceptSuffix(const StringRef LHS, const StringRef RHS,
const StringRef Suffix) {
if (RHS.startswith(LHS) && RHS.endswith(Suffix))
return RHS.size() == LHS.size() + Suffix.size();
return false;
}
/// thumbInstruction - Determine whether we have a Thumb instruction.
/// See also ARMInstrFormats.td.
static bool thumbInstruction(uint8_t Form) {
return Form == ARM_FORMAT_THUMBFRM;
}
// The set (BIT_TRUE, BIT_FALSE, BIT_UNSET) represents a ternary logic system
// for a bit value.
//
// BIT_UNFILTERED is used as the init value for a filter position. It is used
// only for filter processings.
typedef enum {
BIT_TRUE, // '1'
BIT_FALSE, // '0'
BIT_UNSET, // '?'
BIT_UNFILTERED // unfiltered
} bit_value_t;
static bool ValueSet(bit_value_t V) {
return (V == BIT_TRUE || V == BIT_FALSE);
}
static bool ValueNotSet(bit_value_t V) {
return (V == BIT_UNSET);
}
static int Value(bit_value_t V) {
return ValueNotSet(V) ? -1 : (V == BIT_FALSE ? 0 : 1);
}
static bit_value_t bitFromBits(BitsInit &bits, unsigned index) {
if (BitInit *bit = dynamic_cast<BitInit*>(bits.getBit(index)))
return bit->getValue() ? BIT_TRUE : BIT_FALSE;
// The bit is uninitialized.
return BIT_UNSET;
}
// Prints the bit value for each position.
static void dumpBits(raw_ostream &o, BitsInit &bits) {
unsigned index;
for (index = bits.getNumBits(); index > 0; index--) {
switch (bitFromBits(bits, index - 1)) {
case BIT_TRUE:
o << "1";
break;
case BIT_FALSE:
o << "0";
break;
case BIT_UNSET:
o << "_";
break;
default:
assert(0 && "unexpected return value from bitFromBits");
}
}
}
// Enums for the available target names.
typedef enum {
TARGET_ARM = 0,
TARGET_THUMB
} TARGET_NAME_t;
// FIXME: Possibly auto-detected?
#define BIT_WIDTH 32
// Forward declaration.
class FilterChooser;
// Representation of the instruction to work on.
typedef bit_value_t insn_t[BIT_WIDTH];
/// Filter - Filter works with FilterChooser to produce the decoding tree for
/// the ISA.
///
/// It is useful to think of a Filter as governing the switch stmts of the
/// decoding tree in a certain level. Each case stmt delegates to an inferior
/// FilterChooser to decide what further decoding logic to employ, or in another
/// words, what other remaining bits to look at. The FilterChooser eventually
/// chooses a best Filter to do its job.
///
/// This recursive scheme ends when the number of Opcodes assigned to the
/// FilterChooser becomes 1 or if there is a conflict. A conflict happens when
/// the Filter/FilterChooser combo does not know how to distinguish among the
/// Opcodes assigned.
///
/// An example of a conflcit is
///
/// Conflict:
/// 111101000.00........00010000....
/// 111101000.00........0001........
/// 1111010...00........0001........
/// 1111010...00....................
/// 1111010.........................
/// 1111............................
/// ................................
/// VST4q8a 111101000_00________00010000____
/// VST4q8b 111101000_00________00010000____
///
/// The Debug output shows the path that the decoding tree follows to reach the
/// the conclusion that there is a conflict. VST4q8a is a vst4 to double-spaced
/// even registers, while VST4q8b is a vst4 to double-spaced odd regsisters.
///
/// The encoding info in the .td files does not specify this meta information,
/// which could have been used by the decoder to resolve the conflict. The
/// decoder could try to decode the even/odd register numbering and assign to
/// VST4q8a or VST4q8b, but for the time being, the decoder chooses the "a"
/// version and return the Opcode since the two have the same Asm format string.
class Filter {
protected:
FilterChooser *Owner; // points to the FilterChooser who owns this filter
unsigned StartBit; // the starting bit position
unsigned NumBits; // number of bits to filter
bool Mixed; // a mixed region contains both set and unset bits
// Map of well-known segment value to the set of uid's with that value.
std::map<uint64_t, std::vector<unsigned> > FilteredInstructions;
// Set of uid's with non-constant segment values.
std::vector<unsigned> VariableInstructions;
// Map of well-known segment value to its delegate.
std::map<unsigned, FilterChooser*> FilterChooserMap;
// Number of instructions which fall under FilteredInstructions category.
unsigned NumFiltered;
// Keeps track of the last opcode in the filtered bucket.
unsigned LastOpcFiltered;
// Number of instructions which fall under VariableInstructions category.
unsigned NumVariable;
public:
unsigned getNumFiltered() { return NumFiltered; }
unsigned getNumVariable() { return NumVariable; }
unsigned getSingletonOpc() {
assert(NumFiltered == 1);
return LastOpcFiltered;
}
// Return the filter chooser for the group of instructions without constant
// segment values.
FilterChooser &getVariableFC() {
assert(NumFiltered == 1);
assert(FilterChooserMap.size() == 1);
return *(FilterChooserMap.find((unsigned)-1)->second);
}
Filter(const Filter &f);
Filter(FilterChooser &owner, unsigned startBit, unsigned numBits, bool mixed);
~Filter();
// Divides the decoding task into sub tasks and delegates them to the
// inferior FilterChooser's.
//
// A special case arises when there's only one entry in the filtered
// instructions. In order to unambiguously decode the singleton, we need to
// match the remaining undecoded encoding bits against the singleton.
void recurse();
// Emit code to decode instructions given a segment or segments of bits.
void emit(raw_ostream &o, unsigned &Indentation);
// Returns the number of fanout produced by the filter. More fanout implies
// the filter distinguishes more categories of instructions.
unsigned usefulness() const;
}; // End of class Filter
// These are states of our finite state machines used in FilterChooser's
// filterProcessor() which produces the filter candidates to use.
typedef enum {
ATTR_NONE,
ATTR_FILTERED,
ATTR_ALL_SET,
ATTR_ALL_UNSET,
ATTR_MIXED
} bitAttr_t;
/// FilterChooser - FilterChooser chooses the best filter among a set of Filters
/// in order to perform the decoding of instructions at the current level.
///
/// Decoding proceeds from the top down. Based on the well-known encoding bits
/// of instructions available, FilterChooser builds up the possible Filters that
/// can further the task of decoding by distinguishing among the remaining
/// candidate instructions.
///
/// Once a filter has been chosen, it is called upon to divide the decoding task
/// into sub-tasks and delegates them to its inferior FilterChoosers for further
/// processings.
///
/// It is useful to think of a Filter as governing the switch stmts of the
/// decoding tree. And each case is delegated to an inferior FilterChooser to
/// decide what further remaining bits to look at.
class FilterChooser {
static TARGET_NAME_t TargetName;
protected:
friend class Filter;
// Vector of codegen instructions to choose our filter.
const std::vector<const CodeGenInstruction*> &AllInstructions;
// Vector of uid's for this filter chooser to work on.
const std::vector<unsigned> Opcodes;
// Vector of candidate filters.
std::vector<Filter> Filters;
// Array of bit values passed down from our parent.
// Set to all BIT_UNFILTERED's for Parent == NULL.
bit_value_t FilterBitValues[BIT_WIDTH];
// Links to the FilterChooser above us in the decoding tree.
FilterChooser *Parent;
// Index of the best filter from Filters.
int BestIndex;
public:
static void setTargetName(TARGET_NAME_t tn) { TargetName = tn; }
FilterChooser(const FilterChooser &FC) :
AllInstructions(FC.AllInstructions), Opcodes(FC.Opcodes),
Filters(FC.Filters), Parent(FC.Parent), BestIndex(FC.BestIndex) {
memcpy(FilterBitValues, FC.FilterBitValues, sizeof(FilterBitValues));
}
FilterChooser(const std::vector<const CodeGenInstruction*> &Insts,
const std::vector<unsigned> &IDs) :
AllInstructions(Insts), Opcodes(IDs), Filters(), Parent(NULL),
BestIndex(-1) {
for (unsigned i = 0; i < BIT_WIDTH; ++i)
FilterBitValues[i] = BIT_UNFILTERED;
doFilter();
}
FilterChooser(const std::vector<const CodeGenInstruction*> &Insts,
const std::vector<unsigned> &IDs,
bit_value_t (&ParentFilterBitValues)[BIT_WIDTH],
FilterChooser &parent) :
AllInstructions(Insts), Opcodes(IDs), Filters(), Parent(&parent),
BestIndex(-1) {
for (unsigned i = 0; i < BIT_WIDTH; ++i)
FilterBitValues[i] = ParentFilterBitValues[i];
doFilter();
}
// The top level filter chooser has NULL as its parent.
bool isTopLevel() { return Parent == NULL; }
// This provides an opportunity for target specific code emission.
void emitTopHook(raw_ostream &o);
// Emit the top level typedef and decodeInstruction() function.
void emitTop(raw_ostream &o, unsigned &Indentation);
// This provides an opportunity for target specific code emission after
// emitTop().
void emitBot(raw_ostream &o, unsigned &Indentation);
protected:
// Populates the insn given the uid.
void insnWithID(insn_t &Insn, unsigned Opcode) const {
BitsInit &Bits = getBitsField(*AllInstructions[Opcode]->TheDef, "Inst");
for (unsigned i = 0; i < BIT_WIDTH; ++i)
Insn[i] = bitFromBits(Bits, i);
// Set Inst{21} to 1 (wback) when IndexModeBits == IndexModeUpd.
if (getByteField(*AllInstructions[Opcode]->TheDef, "IndexModeBits")
== IndexModeUpd)
Insn[21] = BIT_TRUE;
}
// Returns the record name.
const std::string &nameWithID(unsigned Opcode) const {
return AllInstructions[Opcode]->TheDef->getName();
}
// Populates the field of the insn given the start position and the number of
// consecutive bits to scan for.
//
// Returns false if there exists any uninitialized bit value in the range.
// Returns true, otherwise.
bool fieldFromInsn(uint64_t &Field, insn_t &Insn, unsigned StartBit,
unsigned NumBits) const;
/// dumpFilterArray - dumpFilterArray prints out debugging info for the given
/// filter array as a series of chars.
void dumpFilterArray(raw_ostream &o, bit_value_t (&filter)[BIT_WIDTH]);
/// dumpStack - dumpStack traverses the filter chooser chain and calls
/// dumpFilterArray on each filter chooser up to the top level one.
void dumpStack(raw_ostream &o, const char *prefix);
Filter &bestFilter() {
assert(BestIndex != -1 && "BestIndex not set");
return Filters[BestIndex];
}
// Called from Filter::recurse() when singleton exists. For debug purpose.
void SingletonExists(unsigned Opc);
bool PositionFiltered(unsigned i) {
return ValueSet(FilterBitValues[i]);
}
// Calculates the island(s) needed to decode the instruction.
// This returns a lit of undecoded bits of an instructions, for example,
// Inst{20} = 1 && Inst{3-0} == 0b1111 represents two islands of yet-to-be
// decoded bits in order to verify that the instruction matches the Opcode.
unsigned getIslands(std::vector<unsigned> &StartBits,
std::vector<unsigned> &EndBits, std::vector<uint64_t> &FieldVals,
insn_t &Insn);
// The purpose of this function is for the API client to detect possible
// Load/Store Coprocessor instructions. If the coprocessor number is of
// the instruction is either 10 or 11, the decoder should not report the
// instruction as LDC/LDC2/STC/STC2, but should match against Advanced SIMD or
// VFP instructions.
bool LdStCopEncoding1(unsigned Opc) {
const std::string &Name = nameWithID(Opc);
if (Name == "LDC_OFFSET" || Name == "LDC_OPTION" ||
Name == "LDC_POST" || Name == "LDC_PRE" ||
Name == "LDCL_OFFSET" || Name == "LDCL_OPTION" ||
Name == "LDCL_POST" || Name == "LDCL_PRE" ||
Name == "STC_OFFSET" || Name == "STC_OPTION" ||
Name == "STC_POST" || Name == "STC_PRE" ||
Name == "STCL_OFFSET" || Name == "STCL_OPTION" ||
Name == "STCL_POST" || Name == "STCL_PRE")
return true;
else
return false;
}
// Emits code to decode the singleton. Return true if we have matched all the
// well-known bits.
bool emitSingletonDecoder(raw_ostream &o, unsigned &Indentation,unsigned Opc);
// Emits code to decode the singleton, and then to decode the rest.
void emitSingletonDecoder(raw_ostream &o, unsigned &Indentation,Filter &Best);
// Assign a single filter and run with it.
void runSingleFilter(FilterChooser &owner, unsigned startBit, unsigned numBit,
bool mixed);
// reportRegion is a helper function for filterProcessor to mark a region as
// eligible for use as a filter region.
void reportRegion(bitAttr_t RA, unsigned StartBit, unsigned BitIndex,
bool AllowMixed);
// FilterProcessor scans the well-known encoding bits of the instructions and
// builds up a list of candidate filters. It chooses the best filter and
// recursively descends down the decoding tree.
bool filterProcessor(bool AllowMixed, bool Greedy = true);
// Decides on the best configuration of filter(s) to use in order to decode
// the instructions. A conflict of instructions may occur, in which case we
// dump the conflict set to the standard error.
void doFilter();
// Emits code to decode our share of instructions. Returns true if the
// emitted code causes a return, which occurs if we know how to decode
// the instruction at this level or the instruction is not decodeable.
bool emit(raw_ostream &o, unsigned &Indentation);
};
///////////////////////////
// //
// Filter Implmenetation //
// //
///////////////////////////
Filter::Filter(const Filter &f) :
Owner(f.Owner), StartBit(f.StartBit), NumBits(f.NumBits), Mixed(f.Mixed),
FilteredInstructions(f.FilteredInstructions),
VariableInstructions(f.VariableInstructions),
FilterChooserMap(f.FilterChooserMap), NumFiltered(f.NumFiltered),
LastOpcFiltered(f.LastOpcFiltered), NumVariable(f.NumVariable) {
}
Filter::Filter(FilterChooser &owner, unsigned startBit, unsigned numBits,
bool mixed) : Owner(&owner), StartBit(startBit), NumBits(numBits),
Mixed(mixed) {
assert(StartBit + NumBits - 1 < BIT_WIDTH);
NumFiltered = 0;
LastOpcFiltered = 0;
NumVariable = 0;
for (unsigned i = 0, e = Owner->Opcodes.size(); i != e; ++i) {
insn_t Insn;
// Populates the insn given the uid.
Owner->insnWithID(Insn, Owner->Opcodes[i]);
uint64_t Field;
// Scans the segment for possibly well-specified encoding bits.
bool ok = Owner->fieldFromInsn(Field, Insn, StartBit, NumBits);
if (ok) {
// The encoding bits are well-known. Lets add the uid of the
// instruction into the bucket keyed off the constant field value.
LastOpcFiltered = Owner->Opcodes[i];
FilteredInstructions[Field].push_back(LastOpcFiltered);
++NumFiltered;
} else {
// Some of the encoding bit(s) are unspecfied. This contributes to
// one additional member of "Variable" instructions.
VariableInstructions.push_back(Owner->Opcodes[i]);
++NumVariable;
}
}
assert((FilteredInstructions.size() + VariableInstructions.size() > 0)
&& "Filter returns no instruction categories");
}
Filter::~Filter() {
std::map<unsigned, FilterChooser*>::iterator filterIterator;
for (filterIterator = FilterChooserMap.begin();
filterIterator != FilterChooserMap.end();
filterIterator++) {
delete filterIterator->second;
}
}
// Divides the decoding task into sub tasks and delegates them to the
// inferior FilterChooser's.
//
// A special case arises when there's only one entry in the filtered
// instructions. In order to unambiguously decode the singleton, we need to
// match the remaining undecoded encoding bits against the singleton.
void Filter::recurse() {
std::map<uint64_t, std::vector<unsigned> >::const_iterator mapIterator;
bit_value_t BitValueArray[BIT_WIDTH];
// Starts by inheriting our parent filter chooser's filter bit values.
memcpy(BitValueArray, Owner->FilterBitValues, sizeof(BitValueArray));
unsigned bitIndex;
if (VariableInstructions.size()) {
// Conservatively marks each segment position as BIT_UNSET.
for (bitIndex = 0; bitIndex < NumBits; bitIndex++)
BitValueArray[StartBit + bitIndex] = BIT_UNSET;
// Delegates to an inferior filter chooser for futher processing on this
// group of instructions whose segment values are variable.
FilterChooserMap.insert(std::pair<unsigned, FilterChooser*>(
(unsigned)-1,
new FilterChooser(Owner->AllInstructions,
VariableInstructions,
BitValueArray,
*Owner)
));
}
// No need to recurse for a singleton filtered instruction.
// See also Filter::emit().
if (getNumFiltered() == 1) {
//Owner->SingletonExists(LastOpcFiltered);
assert(FilterChooserMap.size() == 1);
return;
}
// Otherwise, create sub choosers.
for (mapIterator = FilteredInstructions.begin();
mapIterator != FilteredInstructions.end();
mapIterator++) {
// Marks all the segment positions with either BIT_TRUE or BIT_FALSE.
for (bitIndex = 0; bitIndex < NumBits; bitIndex++) {
if (mapIterator->first & (1ULL << bitIndex))
BitValueArray[StartBit + bitIndex] = BIT_TRUE;
else
BitValueArray[StartBit + bitIndex] = BIT_FALSE;
}
// Delegates to an inferior filter chooser for futher processing on this
// category of instructions.
FilterChooserMap.insert(std::pair<unsigned, FilterChooser*>(
mapIterator->first,
new FilterChooser(Owner->AllInstructions,
mapIterator->second,
BitValueArray,
*Owner)
));
}
}
// Emit code to decode instructions given a segment or segments of bits.
void Filter::emit(raw_ostream &o, unsigned &Indentation) {
o.indent(Indentation) << "// Check Inst{";
if (NumBits > 1)
o << (StartBit + NumBits - 1) << '-';
o << StartBit << "} ...\n";
o.indent(Indentation) << "switch (fieldFromInstruction(insn, "
<< StartBit << ", " << NumBits << ")) {\n";
std::map<unsigned, FilterChooser*>::iterator filterIterator;
bool DefaultCase = false;
for (filterIterator = FilterChooserMap.begin();
filterIterator != FilterChooserMap.end();
filterIterator++) {
// Field value -1 implies a non-empty set of variable instructions.
// See also recurse().
if (filterIterator->first == (unsigned)-1) {
DefaultCase = true;
o.indent(Indentation) << "default:\n";
o.indent(Indentation) << " break; // fallthrough\n";
// Closing curly brace for the switch statement.
// This is unconventional because we want the default processing to be
// performed for the fallthrough cases as well, i.e., when the "cases"
// did not prove a decoded instruction.
o.indent(Indentation) << "}\n";
} else
o.indent(Indentation) << "case " << filterIterator->first << ":\n";
// We arrive at a category of instructions with the same segment value.
// Now delegate to the sub filter chooser for further decodings.
// The case may fallthrough, which happens if the remaining well-known
// encoding bits do not match exactly.
if (!DefaultCase) { ++Indentation; ++Indentation; }
bool finished = filterIterator->second->emit(o, Indentation);
// For top level default case, there's no need for a break statement.
if (Owner->isTopLevel() && DefaultCase)
break;
if (!finished)
o.indent(Indentation) << "break;\n";
if (!DefaultCase) { --Indentation; --Indentation; }
}
// If there is no default case, we still need to supply a closing brace.
if (!DefaultCase) {
// Closing curly brace for the switch statement.
o.indent(Indentation) << "}\n";
}
}
// Returns the number of fanout produced by the filter. More fanout implies
// the filter distinguishes more categories of instructions.
unsigned Filter::usefulness() const {
if (VariableInstructions.size())
return FilteredInstructions.size();
else
return FilteredInstructions.size() + 1;
}
//////////////////////////////////
// //
// Filterchooser Implementation //
// //
//////////////////////////////////
// Define the symbol here.
TARGET_NAME_t FilterChooser::TargetName;
// This provides an opportunity for target specific code emission.
void FilterChooser::emitTopHook(raw_ostream &o) {
if (TargetName == TARGET_ARM) {
// Emit code that references the ARMFormat data type.
o << "static const ARMFormat ARMFormats[] = {\n";
for (unsigned i = 0, e = AllInstructions.size(); i != e; ++i) {
const Record &Def = *(AllInstructions[i]->TheDef);
const std::string &Name = Def.getName();
if (Def.isSubClassOf("InstARM") || Def.isSubClassOf("InstThumb"))
o.indent(2) <<
stringForARMFormat((ARMFormat)getByteField(Def, "Form"));
else
o << " ARM_FORMAT_NA";
o << ",\t// Inst #" << i << " = " << Name << '\n';
}
o << " ARM_FORMAT_NA\t// Unreachable.\n";
o << "};\n\n";
}
}
// Emit the top level typedef and decodeInstruction() function.
void FilterChooser::emitTop(raw_ostream &o, unsigned &Indentation) {
// Run the target specific emit hook.
emitTopHook(o);
switch (BIT_WIDTH) {
case 8:
o.indent(Indentation) << "typedef uint8_t field_t;\n";
break;
case 16:
o.indent(Indentation) << "typedef uint16_t field_t;\n";
break;
case 32:
o.indent(Indentation) << "typedef uint32_t field_t;\n";
break;
case 64:
o.indent(Indentation) << "typedef uint64_t field_t;\n";
break;
default:
assert(0 && "Unexpected instruction size!");
}
o << '\n';
o.indent(Indentation) << "static field_t " <<
"fieldFromInstruction(field_t insn, unsigned startBit, unsigned numBits)\n";
o.indent(Indentation) << "{\n";
++Indentation; ++Indentation;
o.indent(Indentation) << "assert(startBit + numBits <= " << BIT_WIDTH
<< " && \"Instruction field out of bounds!\");\n";
o << '\n';
o.indent(Indentation) << "field_t fieldMask;\n";
o << '\n';
o.indent(Indentation) << "if (numBits == " << BIT_WIDTH << ")\n";
++Indentation; ++Indentation;
o.indent(Indentation) << "fieldMask = (field_t)-1;\n";
--Indentation; --Indentation;
o.indent(Indentation) << "else\n";
++Indentation; ++Indentation;
o.indent(Indentation) << "fieldMask = ((1 << numBits) - 1) << startBit;\n";
--Indentation; --Indentation;
o << '\n';
o.indent(Indentation) << "return (insn & fieldMask) >> startBit;\n";
--Indentation; --Indentation;
o.indent(Indentation) << "}\n";
o << '\n';
o.indent(Indentation) << "static uint16_t decodeInstruction(field_t insn) {\n";
++Indentation; ++Indentation;
// Emits code to decode the instructions.
emit(o, Indentation);
o << '\n';
o.indent(Indentation) << "return 0;\n";
--Indentation; --Indentation;
o.indent(Indentation) << "}\n";
o << '\n';
}
// This provides an opportunity for target specific code emission after
// emitTop().
void FilterChooser::emitBot(raw_ostream &o, unsigned &Indentation) {
if (TargetName != TARGET_THUMB) return;
// Emit code that decodes the Thumb ISA.
o.indent(Indentation)
<< "static uint16_t decodeThumbInstruction(field_t insn) {\n";
++Indentation; ++Indentation;
// Emits code to decode the instructions.
emit(o, Indentation);
o << '\n';
o.indent(Indentation) << "return 0;\n";
--Indentation; --Indentation;
o.indent(Indentation) << "}\n";
}
// Populates the field of the insn given the start position and the number of
// consecutive bits to scan for.
//
// Returns false if and on the first uninitialized bit value encountered.
// Returns true, otherwise.
bool FilterChooser::fieldFromInsn(uint64_t &Field, insn_t &Insn,
unsigned StartBit, unsigned NumBits) const {
Field = 0;
for (unsigned i = 0; i < NumBits; ++i) {
if (Insn[StartBit + i] == BIT_UNSET)
return false;
if (Insn[StartBit + i] == BIT_TRUE)
Field = Field | (1ULL << i);
}
return true;
}
/// dumpFilterArray - dumpFilterArray prints out debugging info for the given
/// filter array as a series of chars.
void FilterChooser::dumpFilterArray(raw_ostream &o,
bit_value_t (&filter)[BIT_WIDTH]) {
unsigned bitIndex;
for (bitIndex = BIT_WIDTH; bitIndex > 0; bitIndex--) {
switch (filter[bitIndex - 1]) {
case BIT_UNFILTERED:
o << ".";
break;
case BIT_UNSET:
o << "_";
break;
case BIT_TRUE:
o << "1";
break;
case BIT_FALSE:
o << "0";
break;
}
}
}
/// dumpStack - dumpStack traverses the filter chooser chain and calls
/// dumpFilterArray on each filter chooser up to the top level one.
void FilterChooser::dumpStack(raw_ostream &o, const char *prefix) {
FilterChooser *current = this;
while (current) {
o << prefix;
dumpFilterArray(o, current->FilterBitValues);
o << '\n';
current = current->Parent;
}
}
// Called from Filter::recurse() when singleton exists. For debug purpose.
void FilterChooser::SingletonExists(unsigned Opc) {
insn_t Insn0;
insnWithID(Insn0, Opc);
errs() << "Singleton exists: " << nameWithID(Opc)
<< " with its decoding dominating ";
for (unsigned i = 0; i < Opcodes.size(); ++i) {
if (Opcodes[i] == Opc) continue;
errs() << nameWithID(Opcodes[i]) << ' ';
}
errs() << '\n';
dumpStack(errs(), "\t\t");
for (unsigned i = 0; i < Opcodes.size(); i++) {
const std::string &Name = nameWithID(Opcodes[i]);
errs() << '\t' << Name << " ";
dumpBits(errs(),
getBitsField(*AllInstructions[Opcodes[i]]->TheDef, "Inst"));
errs() << '\n';
}
}
// Calculates the island(s) needed to decode the instruction.
// This returns a list of undecoded bits of an instructions, for example,
// Inst{20} = 1 && Inst{3-0} == 0b1111 represents two islands of yet-to-be
// decoded bits in order to verify that the instruction matches the Opcode.
unsigned FilterChooser::getIslands(std::vector<unsigned> &StartBits,
std::vector<unsigned> &EndBits, std::vector<uint64_t> &FieldVals,
insn_t &Insn) {
unsigned Num, BitNo;
Num = BitNo = 0;
uint64_t FieldVal = 0;
// 0: Init
// 1: Water (the bit value does not affect decoding)
// 2: Island (well-known bit value needed for decoding)
int State = 0;
int Val = -1;
for (unsigned i = 0; i < BIT_WIDTH; ++i) {
Val = Value(Insn[i]);
bool Filtered = PositionFiltered(i);
switch (State) {
default:
assert(0 && "Unreachable code!");
break;
case 0:
case 1:
if (Filtered || Val == -1)
State = 1; // Still in Water
else {
State = 2; // Into the Island
BitNo = 0;
StartBits.push_back(i);
FieldVal = Val;
}
break;
case 2:
if (Filtered || Val == -1) {
State = 1; // Into the Water
EndBits.push_back(i - 1);
FieldVals.push_back(FieldVal);
++Num;
} else {
State = 2; // Still in Island
++BitNo;
FieldVal = FieldVal | Val << BitNo;
}
break;
}
}
// If we are still in Island after the loop, do some housekeeping.
if (State == 2) {
EndBits.push_back(BIT_WIDTH - 1);
FieldVals.push_back(FieldVal);
++Num;
}
assert(StartBits.size() == Num && EndBits.size() == Num &&
FieldVals.size() == Num);
return Num;
}
// Emits code to decode the singleton. Return true if we have matched all the
// well-known bits.
bool FilterChooser::emitSingletonDecoder(raw_ostream &o, unsigned &Indentation,
unsigned Opc) {
std::vector<unsigned> StartBits;
std::vector<unsigned> EndBits;
std::vector<uint64_t> FieldVals;
insn_t Insn;
insnWithID(Insn, Opc);
// This provides a good opportunity to check for possible Ld/St Coprocessor
// Opcode and escapes if the coproc # is either 10 or 11. It is a NEON/VFP
// instruction is disguise.
if (TargetName == TARGET_ARM && LdStCopEncoding1(Opc)) {
o.indent(Indentation);
// A8.6.51 & A8.6.188
// If coproc = 0b101?, i.e, slice(insn, 11, 8) = 10 or 11, escape.
o << "if (fieldFromInstruction(insn, 9, 3) == 5) break; // fallthrough\n";
}
// Look for islands of undecoded bits of the singleton.
getIslands(StartBits, EndBits, FieldVals, Insn);
unsigned Size = StartBits.size();
unsigned I, NumBits;
// If we have matched all the well-known bits, just issue a return.
if (Size == 0) {
o.indent(Indentation) << "return " << Opc << "; // " << nameWithID(Opc)
<< '\n';
return true;
}
// Otherwise, there are more decodings to be done!
// Emit code to match the island(s) for the singleton.
o.indent(Indentation) << "// Check ";
for (I = Size; I != 0; --I) {
o << "Inst{" << EndBits[I-1] << '-' << StartBits[I-1] << "} ";
if (I > 1)
o << "&& ";
else
o << "for singleton decoding...\n";
}
o.indent(Indentation) << "if (";
for (I = Size; I != 0; --I) {
NumBits = EndBits[I-1] - StartBits[I-1] + 1;
o << "fieldFromInstruction(insn, " << StartBits[I-1] << ", " << NumBits
<< ") == " << FieldVals[I-1];
if (I > 1)
o << " && ";
else
o << ")\n";
}
o.indent(Indentation) << " return " << Opc << "; // " << nameWithID(Opc)
<< '\n';
return false;
}
// Emits code to decode the singleton, and then to decode the rest.
void FilterChooser::emitSingletonDecoder(raw_ostream &o, unsigned &Indentation,
Filter &Best) {
unsigned Opc = Best.getSingletonOpc();
emitSingletonDecoder(o, Indentation, Opc);
// Emit code for the rest.
o.indent(Indentation) << "else\n";
Indentation += 2;
Best.getVariableFC().emit(o, Indentation);
Indentation -= 2;
}
// Assign a single filter and run with it. Top level API client can initialize
// with a single filter to start the filtering process.
void FilterChooser::runSingleFilter(FilterChooser &owner, unsigned startBit,
unsigned numBit, bool mixed) {
Filters.clear();
Filter F(*this, startBit, numBit, true);
Filters.push_back(F);
BestIndex = 0; // Sole Filter instance to choose from.
bestFilter().recurse();
}
// reportRegion is a helper function for filterProcessor to mark a region as
// eligible for use as a filter region.
void FilterChooser::reportRegion(bitAttr_t RA, unsigned StartBit,
unsigned BitIndex, bool AllowMixed) {
if (RA == ATTR_MIXED && AllowMixed)
Filters.push_back(Filter(*this, StartBit, BitIndex - StartBit, true));
else if (RA == ATTR_ALL_SET && !AllowMixed)
Filters.push_back(Filter(*this, StartBit, BitIndex - StartBit, false));
}
// FilterProcessor scans the well-known encoding bits of the instructions and
// builds up a list of candidate filters. It chooses the best filter and
// recursively descends down the decoding tree.
bool FilterChooser::filterProcessor(bool AllowMixed, bool Greedy) {
Filters.clear();
BestIndex = -1;
unsigned numInstructions = Opcodes.size();
assert(numInstructions && "Filter created with no instructions");
// No further filtering is necessary.
if (numInstructions == 1)
return true;
// Heuristics. See also doFilter()'s "Heuristics" comment when num of
// instructions is 3.
if (AllowMixed && !Greedy) {
assert(numInstructions == 3);
for (unsigned i = 0; i < Opcodes.size(); ++i) {
std::vector<unsigned> StartBits;
std::vector<unsigned> EndBits;
std::vector<uint64_t> FieldVals;
insn_t Insn;
insnWithID(Insn, Opcodes[i]);
// Look for islands of undecoded bits of any instruction.
if (getIslands(StartBits, EndBits, FieldVals, Insn) > 0) {
// Found an instruction with island(s). Now just assign a filter.
runSingleFilter(*this, StartBits[0], EndBits[0] - StartBits[0] + 1,
true);
return true;
}
}
}
unsigned BitIndex, InsnIndex;
// We maintain BIT_WIDTH copies of the bitAttrs automaton.
// The automaton consumes the corresponding bit from each
// instruction.
//
// Input symbols: 0, 1, and _ (unset).
// States: NONE, FILTERED, ALL_SET, ALL_UNSET, and MIXED.
// Initial state: NONE.
//
// (NONE) ------- [01] -> (ALL_SET)
// (NONE) ------- _ ----> (ALL_UNSET)
// (ALL_SET) ---- [01] -> (ALL_SET)
// (ALL_SET) ---- _ ----> (MIXED)
// (ALL_UNSET) -- [01] -> (MIXED)
// (ALL_UNSET) -- _ ----> (ALL_UNSET)
// (MIXED) ------ . ----> (MIXED)
// (FILTERED)---- . ----> (FILTERED)
bitAttr_t bitAttrs[BIT_WIDTH];
// FILTERED bit positions provide no entropy and are not worthy of pursuing.
// Filter::recurse() set either BIT_TRUE or BIT_FALSE for each position.
for (BitIndex = 0; BitIndex < BIT_WIDTH; ++BitIndex)
if (FilterBitValues[BitIndex] == BIT_TRUE ||
FilterBitValues[BitIndex] == BIT_FALSE)
bitAttrs[BitIndex] = ATTR_FILTERED;
else
bitAttrs[BitIndex] = ATTR_NONE;
for (InsnIndex = 0; InsnIndex < numInstructions; ++InsnIndex) {
insn_t insn;
insnWithID(insn, Opcodes[InsnIndex]);
for (BitIndex = 0; BitIndex < BIT_WIDTH; ++BitIndex) {
switch (bitAttrs[BitIndex]) {
case ATTR_NONE:
if (insn[BitIndex] == BIT_UNSET)
bitAttrs[BitIndex] = ATTR_ALL_UNSET;
else
bitAttrs[BitIndex] = ATTR_ALL_SET;
break;
case ATTR_ALL_SET:
if (insn[BitIndex] == BIT_UNSET)
bitAttrs[BitIndex] = ATTR_MIXED;
break;
case ATTR_ALL_UNSET:
if (insn[BitIndex] != BIT_UNSET)
bitAttrs[BitIndex] = ATTR_MIXED;
break;
case ATTR_MIXED:
case ATTR_FILTERED:
break;
}
}
}
// The regionAttr automaton consumes the bitAttrs automatons' state,
// lowest-to-highest.
//
// Input symbols: F(iltered), (all_)S(et), (all_)U(nset), M(ixed)
// States: NONE, ALL_SET, MIXED
// Initial state: NONE
//
// (NONE) ----- F --> (NONE)
// (NONE) ----- S --> (ALL_SET) ; and set region start
// (NONE) ----- U --> (NONE)
// (NONE) ----- M --> (MIXED) ; and set region start
// (ALL_SET) -- F --> (NONE) ; and report an ALL_SET region
// (ALL_SET) -- S --> (ALL_SET)
// (ALL_SET) -- U --> (NONE) ; and report an ALL_SET region
// (ALL_SET) -- M --> (MIXED) ; and report an ALL_SET region
// (MIXED) ---- F --> (NONE) ; and report a MIXED region
// (MIXED) ---- S --> (ALL_SET) ; and report a MIXED region
// (MIXED) ---- U --> (NONE) ; and report a MIXED region
// (MIXED) ---- M --> (MIXED)
bitAttr_t RA = ATTR_NONE;
unsigned StartBit = 0;
for (BitIndex = 0; BitIndex < BIT_WIDTH; BitIndex++) {
bitAttr_t bitAttr = bitAttrs[BitIndex];
assert(bitAttr != ATTR_NONE && "Bit without attributes");
switch (RA) {
case ATTR_NONE:
switch (bitAttr) {
case ATTR_FILTERED:
break;
case ATTR_ALL_SET:
StartBit = BitIndex;
RA = ATTR_ALL_SET;
break;
case ATTR_ALL_UNSET:
break;
case ATTR_MIXED:
StartBit = BitIndex;
RA = ATTR_MIXED;
break;
default:
assert(0 && "Unexpected bitAttr!");
}
break;
case ATTR_ALL_SET:
switch (bitAttr) {
case ATTR_FILTERED:
reportRegion(RA, StartBit, BitIndex, AllowMixed);
RA = ATTR_NONE;
break;
case ATTR_ALL_SET:
break;
case ATTR_ALL_UNSET:
reportRegion(RA, StartBit, BitIndex, AllowMixed);
RA = ATTR_NONE;
break;
case ATTR_MIXED:
reportRegion(RA, StartBit, BitIndex, AllowMixed);
StartBit = BitIndex;
RA = ATTR_MIXED;
break;
default:
assert(0 && "Unexpected bitAttr!");
}
break;
case ATTR_MIXED:
switch (bitAttr) {
case ATTR_FILTERED:
reportRegion(RA, StartBit, BitIndex, AllowMixed);
StartBit = BitIndex;
RA = ATTR_NONE;
break;
case ATTR_ALL_SET:
reportRegion(RA, StartBit, BitIndex, AllowMixed);
StartBit = BitIndex;
RA = ATTR_ALL_SET;
break;
case ATTR_ALL_UNSET:
reportRegion(RA, StartBit, BitIndex, AllowMixed);
RA = ATTR_NONE;
break;
case ATTR_MIXED:
break;
default:
assert(0 && "Unexpected bitAttr!");
}
break;
case ATTR_ALL_UNSET:
assert(0 && "regionAttr state machine has no ATTR_UNSET state");
case ATTR_FILTERED:
assert(0 && "regionAttr state machine has no ATTR_FILTERED state");
}
}
// At the end, if we're still in ALL_SET or MIXED states, report a region
switch (RA) {
case ATTR_NONE:
break;
case ATTR_FILTERED:
break;
case ATTR_ALL_SET:
reportRegion(RA, StartBit, BitIndex, AllowMixed);
break;
case ATTR_ALL_UNSET:
break;
case ATTR_MIXED:
reportRegion(RA, StartBit, BitIndex, AllowMixed);
break;
}
// We have finished with the filter processings. Now it's time to choose
// the best performing filter.
BestIndex = 0;
bool AllUseless = true;
unsigned BestScore = 0;
for (unsigned i = 0, e = Filters.size(); i != e; ++i) {
unsigned Usefulness = Filters[i].usefulness();
if (Usefulness)
AllUseless = false;
if (Usefulness > BestScore) {
BestIndex = i;
BestScore = Usefulness;
}
}
if (!AllUseless)
bestFilter().recurse();
return !AllUseless;
} // end of FilterChooser::filterProcessor(bool)
// Decides on the best configuration of filter(s) to use in order to decode
// the instructions. A conflict of instructions may occur, in which case we
// dump the conflict set to the standard error.
void FilterChooser::doFilter() {
unsigned Num = Opcodes.size();
assert(Num && "FilterChooser created with no instructions");
// Heuristics: Use Inst{31-28} as the top level filter for ARM ISA.
if (TargetName == TARGET_ARM && Parent == NULL) {
runSingleFilter(*this, 28, 4, false);
return;
}
// Try regions of consecutive known bit values first.
if (filterProcessor(false))
return;
// Then regions of mixed bits (both known and unitialized bit values allowed).
if (filterProcessor(true))
return;
// Heuristics to cope with conflict set {t2CMPrs, t2SUBSrr, t2SUBSrs} where
// no single instruction for the maximum ATTR_MIXED region Inst{14-4} has a
// well-known encoding pattern. In such case, we backtrack and scan for the
// the very first consecutive ATTR_ALL_SET region and assign a filter to it.
if (Num == 3 && filterProcessor(true, false))
return;
// If we come to here, the instruction decoding has failed.
// Set the BestIndex to -1 to indicate so.
BestIndex = -1;
}
// Emits code to decode our share of instructions. Returns true if the
// emitted code causes a return, which occurs if we know how to decode
// the instruction at this level or the instruction is not decodeable.
bool FilterChooser::emit(raw_ostream &o, unsigned &Indentation) {
if (Opcodes.size() == 1)
// There is only one instruction in the set, which is great!
// Call emitSingletonDecoder() to see whether there are any remaining
// encodings bits.
return emitSingletonDecoder(o, Indentation, Opcodes[0]);
// Choose the best filter to do the decodings!
if (BestIndex != -1) {
Filter &Best = bestFilter();
if (Best.getNumFiltered() == 1)
emitSingletonDecoder(o, Indentation, Best);
else
bestFilter().emit(o, Indentation);
return false;
}
// If we reach here, there is a conflict in decoding. Let's resolve the known
// conflicts!
if ((TargetName == TARGET_ARM || TargetName == TARGET_THUMB) &&
Opcodes.size() == 2) {
// Resolve the known conflict sets:
//
// 1. source registers are identical => VMOVDneon; otherwise => VORRd
// 2. source registers are identical => VMOVQ; otherwise => VORRq
// 3. LDR, LDRcp => return LDR for now.
// FIXME: How can we distinguish between LDR and LDRcp? Do we need to?
// 4. tLDM, tLDM_UPD => Rn = Inst{10-8}, reglist = Inst{7-0},
// wback = registers<Rn> = 0
// NOTE: (tLDM, tLDM_UPD) resolution must come before Advanced SIMD
// addressing mode resolution!!!
// 5. VLD[234]LN*/VST[234]LN* vs. VLD[234]LN*_UPD/VST[234]LN*_UPD conflicts
// are resolved returning the non-UPD versions of the instructions if the
// Rm field, i.e., Inst{3-0} is 0b1111. This is specified in A7.7.1
// Advanced SIMD addressing mode.
const std::string &name1 = nameWithID(Opcodes[0]);
const std::string &name2 = nameWithID(Opcodes[1]);
if ((name1 == "VMOVDneon" && name2 == "VORRd") ||
(name1 == "VMOVQ" && name2 == "VORRq")) {
// Inserting the opening curly brace for this case block.
--Indentation; --Indentation;
o.indent(Indentation) << "{\n";
++Indentation; ++Indentation;
o.indent(Indentation)
<< "field_t N = fieldFromInstruction(insn, 7, 1), "
<< "M = fieldFromInstruction(insn, 5, 1);\n";
o.indent(Indentation)
<< "field_t Vn = fieldFromInstruction(insn, 16, 4), "
<< "Vm = fieldFromInstruction(insn, 0, 4);\n";
o.indent(Indentation)
<< "return (N == M && Vn == Vm) ? "
<< Opcodes[0] << " /* " << name1 << " */ : "
<< Opcodes[1] << " /* " << name2 << " */ ;\n";
// Inserting the closing curly brace for this case block.
--Indentation; --Indentation;
o.indent(Indentation) << "}\n";
++Indentation; ++Indentation;
return true;
}
if (name1 == "LDR" && name2 == "LDRcp") {
o.indent(Indentation)
<< "return " << Opcodes[0]
<< "; // Returning LDR for {LDR, LDRcp}\n";
return true;
}
if (name1 == "tLDM" && name2 == "tLDM_UPD") {
// Inserting the opening curly brace for this case block.
--Indentation; --Indentation;
o.indent(Indentation) << "{\n";
++Indentation; ++Indentation;
o.indent(Indentation)
<< "unsigned Rn = fieldFromInstruction(insn, 8, 3), "
<< "list = fieldFromInstruction(insn, 0, 8);\n";
o.indent(Indentation)
<< "return ((list >> Rn) & 1) == 0 ? "
<< Opcodes[1] << " /* " << name2 << " */ : "
<< Opcodes[0] << " /* " << name1 << " */ ;\n";
// Inserting the closing curly brace for this case block.
--Indentation; --Indentation;
o.indent(Indentation) << "}\n";
++Indentation; ++Indentation;
return true;
}
if (sameStringExceptSuffix(name1, name2, "_UPD")) {
o.indent(Indentation)
<< "return fieldFromInstruction(insn, 0, 4) == 15 ? " << Opcodes[0]
<< " /* " << name1 << " */ : " << Opcodes[1] << "/* " << name2
<< " */ ; // Advanced SIMD addressing mode\n";
return true;
}
// Otherwise, it does not belong to the known conflict sets.
}
// We don't know how to decode these instructions! Return 0 and dump the
// conflict set!
o.indent(Indentation) << "return 0;" << " // Conflict set: ";
for (int i = 0, N = Opcodes.size(); i < N; ++i) {
o << nameWithID(Opcodes[i]);
if (i < (N - 1))
o << ", ";
else
o << '\n';
}
// Print out useful conflict information for postmortem analysis.
errs() << "Decoding Conflict:\n";
dumpStack(errs(), "\t\t");
for (unsigned i = 0; i < Opcodes.size(); i++) {
const std::string &Name = nameWithID(Opcodes[i]);
errs() << '\t' << Name << " ";
dumpBits(errs(),
getBitsField(*AllInstructions[Opcodes[i]]->TheDef, "Inst"));
errs() << '\n';
}
return true;
}
////////////////////////////////////////////
// //
// ARMDEBackend //
// (Helper class for ARMDecoderEmitter) //
// //
////////////////////////////////////////////
class ARMDecoderEmitter::ARMDEBackend {
public:
ARMDEBackend(ARMDecoderEmitter &frontend) :
NumberedInstructions(),
Opcodes(),
Frontend(frontend),
Target(),
FC(NULL)
{
if (Target.getName() == "ARM")
TargetName = TARGET_ARM;
else {
errs() << "Target name " << Target.getName() << " not recognized\n";
assert(0 && "Unknown target");
}
// Populate the instructions for our TargetName.
populateInstructions();
}
~ARMDEBackend() {
if (FC) {
delete FC;
FC = NULL;
}
}
void getInstructionsByEnumValue(std::vector<const CodeGenInstruction*>
&NumberedInstructions) {
// We must emit the PHI opcode first...
std::string Namespace = Target.getInstNamespace();
assert(!Namespace.empty() && "No instructions defined.");
NumberedInstructions = Target.getInstructionsByEnumValue();
}
bool populateInstruction(const CodeGenInstruction &CGI, TARGET_NAME_t TN);
void populateInstructions();
// Emits disassembler code for instruction decoding. This delegates to the
// FilterChooser instance to do the heavy lifting.
void emit(raw_ostream &o);
protected:
std::vector<const CodeGenInstruction*> NumberedInstructions;
std::vector<unsigned> Opcodes;
// Special case for the ARM chip, which supports ARM and Thumb ISAs.
// Opcodes2 will be populated with the Thumb opcodes.
std::vector<unsigned> Opcodes2;
ARMDecoderEmitter &Frontend;
CodeGenTarget Target;
FilterChooser *FC;
TARGET_NAME_t TargetName;
};
bool ARMDecoderEmitter::ARMDEBackend::populateInstruction(
const CodeGenInstruction &CGI, TARGET_NAME_t TN) {
const Record &Def = *CGI.TheDef;
const StringRef Name = Def.getName();
uint8_t Form = getByteField(Def, "Form");
BitsInit &Bits = getBitsField(Def, "Inst");
// If all the bit positions are not specified; do not decode this instruction.
// We are bound to fail! For proper disassembly, the well-known encoding bits
// of the instruction must be fully specified.
//
// This also removes pseudo instructions from considerations of disassembly,
// which is a better design and less fragile than the name matchings.
if (Bits.allInComplete()) return false;
if (TN == TARGET_ARM) {
// FIXME: what about Int_MemBarrierV6 and Int_SyncBarrierV6?
if ((Name != "Int_MemBarrierV7" && Name != "Int_SyncBarrierV7") &&
Form == ARM_FORMAT_PSEUDO)
return false;
if (thumbInstruction(Form))
return false;
if (Name.find("CMPz") != std::string::npos /* ||
Name.find("CMNz") != std::string::npos */)
return false;
// Ignore pseudo instructions.
if (Name == "BXr9" || Name == "BMOVPCRX" || Name == "BMOVPCRXr9")
return false;
// Tail calls are other patterns that generate existing instructions.
if (Name == "TCRETURNdi" || Name == "TCRETURNdiND" ||
Name == "TCRETURNri" || Name == "TCRETURNriND" ||
Name == "TAILJMPd" || Name == "TAILJMPdt" ||
Name == "TAILJMPdND" || Name == "TAILJMPdNDt" ||
Name == "TAILJMPr" || Name == "TAILJMPrND" ||
Name == "MOVr_TC")
return false;
// VLDMQ/VSTMQ can be hanlded with the more generic VLDMD/VSTMD.
if (Name == "VLDMQ" || Name == "VLDMQ_UPD" ||
Name == "VSTMQ" || Name == "VSTMQ_UPD")
return false;
//
// The following special cases are for conflict resolutions.
//
// NEON NLdStFrm conflict resolutions:
//
// 1. Ignore suffix "odd" and "odd_UPD", prefer the "even" register-
// numbered ones which have the same Asm format string.
// 2. Ignore VST2d64_UPD, which conflicts with VST1q64_UPD.
// 3. Ignore VLD2d64_UPD, which conflicts with VLD1q64_UPD.
// 4. Ignore VLD1q[_UPD], which conflicts with VLD1q64[_UPD].
// 5. Ignore VST1q[_UPD], which conflicts with VST1q64[_UPD].
if (Name.endswith("odd") || Name.endswith("odd_UPD") ||
Name == "VST2d64_UPD" || Name == "VLD2d64_UPD" ||
Name == "VLD1q" || Name == "VLD1q_UPD" ||
Name == "VST1q" || Name == "VST1q_UPD")
return false;
// RSCSri and RSCSrs set the 's' bit, but are not predicated. We are
// better off using the generic RSCri and RSCrs instructions.
if (Name == "RSCSri" || Name == "RSCSrs") return false;
// MOVCCr, MOVCCs, MOVCCi, FCYPScc, FCYPDcc, FNEGScc, and FNEGDcc are used
// in the compiler to implement conditional moves. We can ignore them in
// favor of their more generic versions of instructions.
// See also SDNode *ARMDAGToDAGISel::Select(SDValue Op).
if (Name == "MOVCCr" || Name == "MOVCCs" || Name == "MOVCCi" ||
Name == "FCPYScc" || Name == "FCPYDcc" ||
Name == "FNEGScc" || Name == "FNEGDcc")
return false;
// Ditto for VMOVDcc, VMOVScc, VNEGDcc, and VNEGScc.
if (Name == "VMOVDcc" || Name == "VMOVScc" || Name == "VNEGDcc" ||
Name == "VNEGScc")
return false;
// Ignore the *_sfp instructions when decoding. They are used by the
// compiler to implement scalar floating point operations using vector
// operations in order to work around some performance issues.
if (Name.find("_sfp") != std::string::npos) return false;
// LDM_RET is a special case of LDM (Load Multiple) where the registers
// loaded include the PC, causing a branch to a loaded address. Ignore
// the LDM_RET instruction when decoding.
if (Name == "LDM_RET") return false;
// Bcc is in a more generic form than B. Ignore B when decoding.
if (Name == "B") return false;
// Ignore the non-Darwin BL instructions and the TPsoft (TLS) instruction.
if (Name == "BL" || Name == "BL_pred" || Name == "BLX" || Name == "BX" ||
Name == "TPsoft")
return false;
// Ignore VDUPf[d|q] instructions known to conflict with VDUP32[d-q] for
// decoding. The instruction duplicates an element from an ARM core
// register into every element of the destination vector. There is no
// distinction between data types.
if (Name == "VDUPfd" || Name == "VDUPfq") return false;
// A8-598: VEXT
// Vector Extract extracts elements from the bottom end of the second
// operand vector and the top end of the first, concatenates them and
// places the result in the destination vector. The elements of the
// vectors are treated as being 8-bit bitfields. There is no distinction
// between data types. The size of the operation can be specified in
// assembler as vext.size. If the value is 16, 32, or 64, the syntax is
// a pseudo-instruction for a VEXT instruction specifying the equivalent
// number of bytes.
//
// Variants VEXTd16, VEXTd32, VEXTd8, and VEXTdf are reduced to VEXTd8;
// variants VEXTq16, VEXTq32, VEXTq8, and VEXTqf are reduced to VEXTq8.
if (Name == "VEXTd16" || Name == "VEXTd32" || Name == "VEXTdf" ||
Name == "VEXTq16" || Name == "VEXTq32" || Name == "VEXTqf")
return false;
// Vector Reverse is similar to Vector Extract. There is no distinction
// between data types, other than size.
//
// VREV64df is equivalent to VREV64d32.
// VREV64qf is equivalent to VREV64q32.
if (Name == "VREV64df" || Name == "VREV64qf") return false;
// VDUPLNfd is equivalent to VDUPLN32d; VDUPfdf is specialized VDUPLN32d.
// VDUPLNfq is equivalent to VDUPLN32q; VDUPfqf is specialized VDUPLN32q.
// VLD1df is equivalent to VLD1d32.
// VLD1qf is equivalent to VLD1q32.
// VLD2d64 is equivalent to VLD1q64.
// VST1df is equivalent to VST1d32.
// VST1qf is equivalent to VST1q32.
// VST2d64 is equivalent to VST1q64.
if (Name == "VDUPLNfd" || Name == "VDUPfdf" ||
Name == "VDUPLNfq" || Name == "VDUPfqf" ||
Name == "VLD1df" || Name == "VLD1qf" || Name == "VLD2d64" ||
Name == "VST1df" || Name == "VST1qf" || Name == "VST2d64")
return false;
} else if (TN == TARGET_THUMB) {
if (!thumbInstruction(Form))
return false;
// On Darwin R9 is call-clobbered. Ignore the non-Darwin counterparts.
if (Name == "tBL" || Name == "tBLXi" || Name == "tBLXr")
return false;
// Ignore the TPsoft (TLS) instructions, which conflict with tBLr9.
if (Name == "tTPsoft" || Name == "t2TPsoft")
return false;
// Ignore tLEApcrel and tLEApcrelJT, prefer tADDrPCi.
if (Name == "tLEApcrel" || Name == "tLEApcrelJT")
return false;
// Ignore t2LEApcrel, prefer the generic t2ADD* for disassembly printing.
if (Name == "t2LEApcrel")
return false;
// Ignore tADDrSP, tADDspr, and tPICADD, prefer the generic tADDhirr.
// Ignore t2SUBrSPs, prefer the t2SUB[S]r[r|s].
// Ignore t2ADDrSPs, prefer the t2ADD[S]r[r|s].
// Ignore t2ADDrSPi/t2SUBrSPi, which have more generic couterparts.
// Ignore t2ADDrSPi12/t2SUBrSPi12, which have more generic couterparts
if (Name == "tADDrSP" || Name == "tADDspr" || Name == "tPICADD" ||
Name == "t2SUBrSPs" || Name == "t2ADDrSPs" ||
Name == "t2ADDrSPi" || Name == "t2SUBrSPi" ||
Name == "t2ADDrSPi12" || Name == "t2SUBrSPi12")
return false;
// Ignore t2LDRDpci, prefer the generic t2LDRDi8, t2LDRD_PRE, t2LDRD_POST.
if (Name == "t2LDRDpci")
return false;
// Ignore t2TBB, t2TBH and prefer the generic t2TBBgen, t2TBHgen.
if (Name == "t2TBB" || Name == "t2TBH")
return false;
// Resolve conflicts:
//
// tBfar conflicts with tBLr9
// tCMNz conflicts with tCMN (with assembly format strings being equal)
// tPOP_RET/t2LDM_RET conflict with tPOP/t2LDM (ditto)
// tMOVCCi conflicts with tMOVi8
// tMOVCCr conflicts with tMOVgpr2gpr
// tBR_JTr conflicts with tBRIND
// tSpill conflicts with tSTRspi
// tLDRcp conflicts with tLDRspi
// tRestore conflicts with tLDRspi
// t2LEApcrelJT conflicts with t2LEApcrel
if (Name == "tBfar" ||
/* Name == "tCMNz" || */ Name == "tCMPzi8" || Name == "tCMPzr" ||
Name == "tCMPzhir" || /* Name == "t2CMNzrr" || Name == "t2CMNzrs" ||
Name == "t2CMNzri" || */ Name == "t2CMPzrr" || Name == "t2CMPzrs" ||
Name == "t2CMPzri" || Name == "tPOP_RET" || Name == "t2LDM_RET" ||
Name == "tMOVCCi" || Name == "tMOVCCr" || Name == "tBR_JTr" ||
Name == "tSpill" || Name == "tLDRcp" || Name == "tRestore" ||
Name == "t2LEApcrelJT")
return false;
}
// Dumps the instruction encoding format.
switch (TargetName) {
case TARGET_ARM:
case TARGET_THUMB:
DEBUG(errs() << Name << " " << stringForARMFormat((ARMFormat)Form));
break;
}
DEBUG({
errs() << " ";
// Dumps the instruction encoding bits.
dumpBits(errs(), Bits);
errs() << '\n';
// Dumps the list of operand info.
for (unsigned i = 0, e = CGI.OperandList.size(); i != e; ++i) {
CodeGenInstruction::OperandInfo Info = CGI.OperandList[i];
const std::string &OperandName = Info.Name;
const Record &OperandDef = *Info.Rec;
errs() << "\t" << OperandName << " (" << OperandDef.getName() << ")\n";
}
});
return true;
}
void ARMDecoderEmitter::ARMDEBackend::populateInstructions() {
getInstructionsByEnumValue(NumberedInstructions);
uint16_t numUIDs = NumberedInstructions.size();
uint16_t uid;
const char *instClass = NULL;
switch (TargetName) {
case TARGET_ARM:
instClass = "InstARM";
break;
default:
assert(0 && "Unreachable code!");
}
for (uid = 0; uid < numUIDs; uid++) {
// filter out intrinsics
if (!NumberedInstructions[uid]->TheDef->isSubClassOf(instClass))
continue;
if (populateInstruction(*NumberedInstructions[uid], TargetName))
Opcodes.push_back(uid);
}
// Special handling for the ARM chip, which supports two modes of execution.
// This branch handles the Thumb opcodes.
if (TargetName == TARGET_ARM) {
for (uid = 0; uid < numUIDs; uid++) {
// filter out intrinsics
if (!NumberedInstructions[uid]->TheDef->isSubClassOf("InstARM")
&& !NumberedInstructions[uid]->TheDef->isSubClassOf("InstThumb"))
continue;
if (populateInstruction(*NumberedInstructions[uid], TARGET_THUMB))
Opcodes2.push_back(uid);
}
}
}
// Emits disassembler code for instruction decoding. This delegates to the
// FilterChooser instance to do the heavy lifting.
void ARMDecoderEmitter::ARMDEBackend::emit(raw_ostream &o) {
switch (TargetName) {
case TARGET_ARM:
Frontend.EmitSourceFileHeader("ARM/Thumb Decoders", o);
break;
default:
assert(0 && "Unreachable code!");
}
o << "#include \"llvm/System/DataTypes.h\"\n";
o << "#include <assert.h>\n";
o << '\n';
o << "namespace llvm {\n\n";
FilterChooser::setTargetName(TargetName);
switch (TargetName) {
case TARGET_ARM: {
// Emit common utility and ARM ISA decoder.
FC = new FilterChooser(NumberedInstructions, Opcodes);
// Reset indentation level.
unsigned Indentation = 0;
FC->emitTop(o, Indentation);
delete FC;
// Emit Thumb ISA decoder as well.
FilterChooser::setTargetName(TARGET_THUMB);
FC = new FilterChooser(NumberedInstructions, Opcodes2);
// Reset indentation level.
Indentation = 0;
FC->emitBot(o, Indentation);
break;
}
default:
assert(0 && "Unreachable code!");
}
o << "\n} // End llvm namespace \n";
}
/////////////////////////
// Backend interface //
/////////////////////////
void ARMDecoderEmitter::initBackend()
{
Backend = new ARMDEBackend(*this);
}
void ARMDecoderEmitter::run(raw_ostream &o)
{
Backend->emit(o);
}
void ARMDecoderEmitter::shutdownBackend()
{
delete Backend;
Backend = NULL;
}