mirror of
https://github.com/RPCSX/llvm.git
synced 2025-01-01 17:28:26 +00:00
788dfe597c
Or they were not instantiated as expected; llvm::InnerAnalysisManagerProxy<llvm::AnalysisManager<llvm::Function>, llvm::LazyCallGraph::SCC>::PassID llvm::InnerAnalysisManagerProxy<llvm::AnalysisManager<llvm::Function>, llvm::LazyCallGraph::SCC>::PassID git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@280105 91177308-0d34-0410-b5e6-96231b3b80d8
362 lines
15 KiB
C++
362 lines
15 KiB
C++
//===- CGSCCPassManager.cpp - Managing & running CGSCC passes -------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Analysis/CGSCCPassManager.h"
|
|
#include "llvm/IR/CallSite.h"
|
|
|
|
using namespace llvm;
|
|
|
|
namespace llvm {
|
|
|
|
// Explicit instantiations for the core proxy templates.
|
|
template class AnalysisManager<LazyCallGraph::SCC, LazyCallGraph &>;
|
|
template class PassManager<LazyCallGraph::SCC, CGSCCAnalysisManager,
|
|
LazyCallGraph &, CGSCCUpdateResult &>;
|
|
template class InnerAnalysisManagerProxy<CGSCCAnalysisManager, Module>;
|
|
template class OuterAnalysisManagerProxy<ModuleAnalysisManager,
|
|
LazyCallGraph::SCC>;
|
|
template class InnerAnalysisManagerProxy<FunctionAnalysisManager,
|
|
LazyCallGraph::SCC>;
|
|
template class OuterAnalysisManagerProxy<CGSCCAnalysisManager, Function>;
|
|
|
|
/// Explicitly specialize the pass manager run method to handle call graph
|
|
/// updates.
|
|
template <>
|
|
PreservedAnalyses
|
|
PassManager<LazyCallGraph::SCC, CGSCCAnalysisManager, LazyCallGraph &,
|
|
CGSCCUpdateResult &>::run(LazyCallGraph::SCC &InitialC,
|
|
CGSCCAnalysisManager &AM,
|
|
LazyCallGraph &G, CGSCCUpdateResult &UR) {
|
|
PreservedAnalyses PA = PreservedAnalyses::all();
|
|
|
|
if (DebugLogging)
|
|
dbgs() << "Starting CGSCC pass manager run.\n";
|
|
|
|
// The SCC may be refined while we are running passes over it, so set up
|
|
// a pointer that we can update.
|
|
LazyCallGraph::SCC *C = &InitialC;
|
|
|
|
for (auto &Pass : Passes) {
|
|
if (DebugLogging)
|
|
dbgs() << "Running pass: " << Pass->name() << " on " << *C << "\n";
|
|
|
|
PreservedAnalyses PassPA = Pass->run(*C, AM, G, UR);
|
|
|
|
// Update the SCC if necessary.
|
|
C = UR.UpdatedC ? UR.UpdatedC : C;
|
|
|
|
// Check that we didn't miss any update scenario.
|
|
assert(!UR.InvalidatedSCCs.count(C) && "Processing an invalid SCC!");
|
|
assert(C->begin() != C->end() && "Cannot have an empty SCC!");
|
|
|
|
// Update the analysis manager as each pass runs and potentially
|
|
// invalidates analyses. We also update the preserved set of analyses
|
|
// based on what analyses we have already handled the invalidation for
|
|
// here and don't need to invalidate when finished.
|
|
PassPA = AM.invalidate(*C, std::move(PassPA));
|
|
|
|
// Finally, we intersect the final preserved analyses to compute the
|
|
// aggregate preserved set for this pass manager.
|
|
PA.intersect(std::move(PassPA));
|
|
|
|
// FIXME: Historically, the pass managers all called the LLVM context's
|
|
// yield function here. We don't have a generic way to acquire the
|
|
// context and it isn't yet clear what the right pattern is for yielding
|
|
// in the new pass manager so it is currently omitted.
|
|
// ...getContext().yield();
|
|
}
|
|
|
|
if (DebugLogging)
|
|
dbgs() << "Finished CGSCC pass manager run.\n";
|
|
|
|
return PA;
|
|
}
|
|
|
|
} // End llvm namespace
|
|
|
|
namespace {
|
|
/// Helper function to update both the \c CGSCCAnalysisManager \p AM and the \c
|
|
/// CGSCCPassManager's \c CGSCCUpdateResult \p UR based on a range of newly
|
|
/// added SCCs.
|
|
///
|
|
/// The range of new SCCs must be in postorder already. The SCC they were split
|
|
/// out of must be provided as \p C. The current node being mutated and
|
|
/// triggering updates must be passed as \p N.
|
|
///
|
|
/// This function returns the SCC containing \p N. This will be either \p C if
|
|
/// no new SCCs have been split out, or it will be the new SCC containing \p N.
|
|
template <typename SCCRangeT>
|
|
LazyCallGraph::SCC *
|
|
incorporateNewSCCRange(const SCCRangeT &NewSCCRange, LazyCallGraph &G,
|
|
LazyCallGraph::Node &N, LazyCallGraph::SCC *C,
|
|
CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR,
|
|
bool DebugLogging = false) {
|
|
typedef LazyCallGraph::SCC SCC;
|
|
|
|
if (NewSCCRange.begin() == NewSCCRange.end())
|
|
return C;
|
|
|
|
// Invalidate the analyses of the current SCC and add it to the worklist since
|
|
// it has changed its shape.
|
|
AM.invalidate(*C, PreservedAnalyses::none());
|
|
UR.CWorklist.insert(C);
|
|
if (DebugLogging)
|
|
dbgs() << "Enqueuing the existing SCC in the worklist:" << *C << "\n";
|
|
|
|
SCC *OldC = C;
|
|
(void)OldC;
|
|
|
|
// Update the current SCC. Note that if we have new SCCs, this must actually
|
|
// change the SCC.
|
|
assert(C != &*NewSCCRange.begin() &&
|
|
"Cannot insert new SCCs without changing current SCC!");
|
|
C = &*NewSCCRange.begin();
|
|
assert(G.lookupSCC(N) == C && "Failed to update current SCC!");
|
|
|
|
for (SCC &NewC :
|
|
reverse(make_range(std::next(NewSCCRange.begin()), NewSCCRange.end()))) {
|
|
assert(C != &NewC && "No need to re-visit the current SCC!");
|
|
assert(OldC != &NewC && "Already handled the original SCC!");
|
|
UR.CWorklist.insert(&NewC);
|
|
if (DebugLogging)
|
|
dbgs() << "Enqueuing a newly formed SCC:" << NewC << "\n";
|
|
}
|
|
return C;
|
|
}
|
|
}
|
|
|
|
LazyCallGraph::SCC &llvm::updateCGAndAnalysisManagerForFunctionPass(
|
|
LazyCallGraph &G, LazyCallGraph::SCC &InitialC, LazyCallGraph::Node &N,
|
|
CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR, bool DebugLogging) {
|
|
typedef LazyCallGraph::Node Node;
|
|
typedef LazyCallGraph::Edge Edge;
|
|
typedef LazyCallGraph::SCC SCC;
|
|
typedef LazyCallGraph::RefSCC RefSCC;
|
|
|
|
RefSCC &InitialRC = InitialC.getOuterRefSCC();
|
|
SCC *C = &InitialC;
|
|
RefSCC *RC = &InitialRC;
|
|
Function &F = N.getFunction();
|
|
|
|
// Walk the function body and build up the set of retained, promoted, and
|
|
// demoted edges.
|
|
SmallVector<Constant *, 16> Worklist;
|
|
SmallPtrSet<Constant *, 16> Visited;
|
|
SmallPtrSet<Function *, 16> RetainedEdges;
|
|
SmallSetVector<Function *, 4> PromotedRefTargets;
|
|
SmallSetVector<Function *, 4> DemotedCallTargets;
|
|
// First walk the function and handle all called functions. We do this first
|
|
// because if there is a single call edge, whether there are ref edges is
|
|
// irrelevant.
|
|
for (BasicBlock &BB : F)
|
|
for (Instruction &I : BB)
|
|
if (auto CS = CallSite(&I))
|
|
if (Function *Callee = CS.getCalledFunction())
|
|
if (Visited.insert(Callee).second && !Callee->isDeclaration()) {
|
|
const Edge *E = N.lookup(*Callee);
|
|
// FIXME: We should really handle adding new calls. While it will
|
|
// make downstream usage more complex, there is no fundamental
|
|
// limitation and it will allow passes within the CGSCC to be a bit
|
|
// more flexible in what transforms they can do. Until then, we
|
|
// verify that new calls haven't been introduced.
|
|
assert(E && "No function transformations should introduce *new* "
|
|
"call edges! Any new calls should be modeled as "
|
|
"promoted existing ref edges!");
|
|
RetainedEdges.insert(Callee);
|
|
if (!E->isCall())
|
|
PromotedRefTargets.insert(Callee);
|
|
}
|
|
|
|
// Now walk all references.
|
|
for (BasicBlock &BB : F)
|
|
for (Instruction &I : BB) {
|
|
for (Value *Op : I.operand_values())
|
|
if (Constant *C = dyn_cast<Constant>(Op))
|
|
if (Visited.insert(C).second)
|
|
Worklist.push_back(C);
|
|
|
|
LazyCallGraph::visitReferences(Worklist, Visited, [&](Function &Referee) {
|
|
// Skip declarations.
|
|
if (Referee.isDeclaration())
|
|
return;
|
|
|
|
const Edge *E = N.lookup(Referee);
|
|
// FIXME: Similarly to new calls, we also currently preclude
|
|
// introducing new references. See above for details.
|
|
assert(E && "No function transformations should introduce *new* ref "
|
|
"edges! Any new ref edges would require IPO which "
|
|
"function passes aren't allowed to do!");
|
|
RetainedEdges.insert(&Referee);
|
|
if (E->isCall())
|
|
DemotedCallTargets.insert(&Referee);
|
|
});
|
|
}
|
|
|
|
// First remove all of the edges that are no longer present in this function.
|
|
// We have to build a list of dead targets first and then remove them as the
|
|
// data structures will all be invalidated by removing them.
|
|
SmallVector<PointerIntPair<Node *, 1, Edge::Kind>, 4> DeadTargets;
|
|
for (Edge &E : N)
|
|
if (!RetainedEdges.count(&E.getFunction()))
|
|
DeadTargets.push_back({E.getNode(), E.getKind()});
|
|
for (auto DeadTarget : DeadTargets) {
|
|
Node &TargetN = *DeadTarget.getPointer();
|
|
bool IsCall = DeadTarget.getInt() == Edge::Call;
|
|
SCC &TargetC = *G.lookupSCC(TargetN);
|
|
RefSCC &TargetRC = TargetC.getOuterRefSCC();
|
|
|
|
if (&TargetRC != RC) {
|
|
RC->removeOutgoingEdge(N, TargetN);
|
|
if (DebugLogging)
|
|
dbgs() << "Deleting outgoing edge from '" << N << "' to '" << TargetN
|
|
<< "'\n";
|
|
continue;
|
|
}
|
|
if (DebugLogging)
|
|
dbgs() << "Deleting internal " << (IsCall ? "call" : "ref")
|
|
<< " edge from '" << N << "' to '" << TargetN << "'\n";
|
|
|
|
if (IsCall)
|
|
C = incorporateNewSCCRange(RC->switchInternalEdgeToRef(N, TargetN), G, N,
|
|
C, AM, UR, DebugLogging);
|
|
|
|
auto NewRefSCCs = RC->removeInternalRefEdge(N, TargetN);
|
|
if (!NewRefSCCs.empty()) {
|
|
// Note that we don't bother to invalidate analyses as ref-edge
|
|
// connectivity is not really observable in any way and is intended
|
|
// exclusively to be used for ordering of transforms rather than for
|
|
// analysis conclusions.
|
|
|
|
// The RC worklist is in reverse postorder, so we first enqueue the
|
|
// current RefSCC as it will remain the parent of all split RefSCCs, then
|
|
// we enqueue the new ones in RPO except for the one which contains the
|
|
// source node as that is the "bottom" we will continue processing in the
|
|
// bottom-up walk.
|
|
UR.RCWorklist.insert(RC);
|
|
if (DebugLogging)
|
|
dbgs() << "Enqueuing the existing RefSCC in the update worklist: "
|
|
<< *RC << "\n";
|
|
// Update the RC to the "bottom".
|
|
assert(G.lookupSCC(N) == C && "Changed the SCC when splitting RefSCCs!");
|
|
RC = &C->getOuterRefSCC();
|
|
assert(G.lookupRefSCC(N) == RC && "Failed to update current RefSCC!");
|
|
for (RefSCC *NewRC : reverse(NewRefSCCs))
|
|
if (NewRC != RC) {
|
|
UR.RCWorklist.insert(NewRC);
|
|
if (DebugLogging)
|
|
dbgs() << "Enqueuing a new RefSCC in the update worklist: "
|
|
<< *NewRC << "\n";
|
|
}
|
|
}
|
|
}
|
|
|
|
// Next demote all the call edges that are now ref edges. This helps make
|
|
// the SCCs small which should minimize the work below as we don't want to
|
|
// form cycles that this would break.
|
|
for (Function *RefTarget : DemotedCallTargets) {
|
|
Node &TargetN = *G.lookup(*RefTarget);
|
|
SCC &TargetC = *G.lookupSCC(TargetN);
|
|
RefSCC &TargetRC = TargetC.getOuterRefSCC();
|
|
|
|
// The easy case is when the target RefSCC is not this RefSCC. This is
|
|
// only supported when the target RefSCC is a child of this RefSCC.
|
|
if (&TargetRC != RC) {
|
|
assert(RC->isAncestorOf(TargetRC) &&
|
|
"Cannot potentially form RefSCC cycles here!");
|
|
RC->switchOutgoingEdgeToRef(N, TargetN);
|
|
if (DebugLogging)
|
|
dbgs() << "Switch outgoing call edge to a ref edge from '" << N
|
|
<< "' to '" << TargetN << "'\n";
|
|
continue;
|
|
}
|
|
|
|
// Otherwise we are switching an internal call edge to a ref edge. This
|
|
// may split up some SCCs.
|
|
C = incorporateNewSCCRange(RC->switchInternalEdgeToRef(N, TargetN), G, N, C,
|
|
AM, UR, DebugLogging);
|
|
}
|
|
|
|
// Now promote ref edges into call edges.
|
|
for (Function *CallTarget : PromotedRefTargets) {
|
|
Node &TargetN = *G.lookup(*CallTarget);
|
|
SCC &TargetC = *G.lookupSCC(TargetN);
|
|
RefSCC &TargetRC = TargetC.getOuterRefSCC();
|
|
|
|
// The easy case is when the target RefSCC is not this RefSCC. This is
|
|
// only supported when the target RefSCC is a child of this RefSCC.
|
|
if (&TargetRC != RC) {
|
|
assert(RC->isAncestorOf(TargetRC) &&
|
|
"Cannot potentially form RefSCC cycles here!");
|
|
RC->switchOutgoingEdgeToCall(N, TargetN);
|
|
if (DebugLogging)
|
|
dbgs() << "Switch outgoing ref edge to a call edge from '" << N
|
|
<< "' to '" << TargetN << "'\n";
|
|
continue;
|
|
}
|
|
if (DebugLogging)
|
|
dbgs() << "Switch an internal ref edge to a call edge from '" << N
|
|
<< "' to '" << TargetN << "'\n";
|
|
|
|
// Otherwise we are switching an internal ref edge to a call edge. This
|
|
// may merge away some SCCs, and we add those to the UpdateResult. We also
|
|
// need to make sure to update the worklist in the event SCCs have moved
|
|
// before the current one in the post-order sequence.
|
|
auto InitialSCCIndex = RC->find(*C) - RC->begin();
|
|
auto InvalidatedSCCs = RC->switchInternalEdgeToCall(N, TargetN);
|
|
if (!InvalidatedSCCs.empty()) {
|
|
C = &TargetC;
|
|
assert(G.lookupSCC(N) == C && "Failed to update current SCC!");
|
|
|
|
// Any analyses cached for this SCC are no longer precise as the shape
|
|
// has changed by introducing this cycle.
|
|
AM.invalidate(*C, PreservedAnalyses::none());
|
|
|
|
for (SCC *InvalidatedC : InvalidatedSCCs) {
|
|
assert(InvalidatedC != C && "Cannot invalidate the current SCC!");
|
|
UR.InvalidatedSCCs.insert(InvalidatedC);
|
|
|
|
// Also clear any cached analyses for the SCCs that are dead. This
|
|
// isn't really necessary for correctness but can release memory.
|
|
AM.clear(*InvalidatedC);
|
|
}
|
|
}
|
|
auto NewSCCIndex = RC->find(*C) - RC->begin();
|
|
if (InitialSCCIndex < NewSCCIndex) {
|
|
// Put our current SCC back onto the worklist as we'll visit other SCCs
|
|
// that are now definitively ordered prior to the current one in the
|
|
// post-order sequence, and may end up observing more precise context to
|
|
// optimize the current SCC.
|
|
UR.CWorklist.insert(C);
|
|
if (DebugLogging)
|
|
dbgs() << "Enqueuing the existing SCC in the worklist: " << *C << "\n";
|
|
// Enqueue in reverse order as we pop off the back of the worklist.
|
|
for (SCC &MovedC : reverse(make_range(RC->begin() + InitialSCCIndex,
|
|
RC->begin() + NewSCCIndex))) {
|
|
UR.CWorklist.insert(&MovedC);
|
|
if (DebugLogging)
|
|
dbgs() << "Enqueuing a newly earlier in post-order SCC: " << MovedC
|
|
<< "\n";
|
|
}
|
|
}
|
|
}
|
|
|
|
assert(!UR.InvalidatedSCCs.count(C) && "Invalidated the current SCC!");
|
|
assert(!UR.InvalidatedRefSCCs.count(RC) && "Invalidated the current RefSCC!");
|
|
assert(&C->getOuterRefSCC() == RC && "Current SCC not in current RefSCC!");
|
|
|
|
// Record the current RefSCC and SCC for higher layers of the CGSCC pass
|
|
// manager now that all the updates have been applied.
|
|
if (RC != &InitialRC)
|
|
UR.UpdatedRC = RC;
|
|
if (C != &InitialC)
|
|
UR.UpdatedC = C;
|
|
|
|
return *C;
|
|
}
|