llvm/lib/ProfileData/InstrProfReader.cpp
2015-03-09 18:54:49 +00:00

414 lines
14 KiB
C++

//=-- InstrProfReader.cpp - Instrumented profiling reader -------------------=//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains support for reading profiling data for clang's
// instrumentation based PGO and coverage.
//
//===----------------------------------------------------------------------===//
#include "llvm/ProfileData/InstrProfReader.h"
#include "InstrProfIndexed.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ProfileData/InstrProf.h"
#include <cassert>
using namespace llvm;
static ErrorOr<std::unique_ptr<MemoryBuffer>>
setupMemoryBuffer(std::string Path) {
ErrorOr<std::unique_ptr<MemoryBuffer>> BufferOrErr =
MemoryBuffer::getFileOrSTDIN(Path);
if (std::error_code EC = BufferOrErr.getError())
return EC;
return std::move(BufferOrErr.get());
}
static std::error_code initializeReader(InstrProfReader &Reader) {
return Reader.readHeader();
}
ErrorOr<std::unique_ptr<InstrProfReader>>
InstrProfReader::create(std::string Path) {
// Set up the buffer to read.
auto BufferOrError = setupMemoryBuffer(Path);
if (std::error_code EC = BufferOrError.getError())
return EC;
return InstrProfReader::create(std::move(BufferOrError.get()));
}
ErrorOr<std::unique_ptr<InstrProfReader>>
InstrProfReader::create(std::unique_ptr<MemoryBuffer> Buffer) {
// Sanity check the buffer.
if (Buffer->getBufferSize() > std::numeric_limits<unsigned>::max())
return instrprof_error::too_large;
std::unique_ptr<InstrProfReader> Result;
// Create the reader.
if (IndexedInstrProfReader::hasFormat(*Buffer))
Result.reset(new IndexedInstrProfReader(std::move(Buffer)));
else if (RawInstrProfReader64::hasFormat(*Buffer))
Result.reset(new RawInstrProfReader64(std::move(Buffer)));
else if (RawInstrProfReader32::hasFormat(*Buffer))
Result.reset(new RawInstrProfReader32(std::move(Buffer)));
else
Result.reset(new TextInstrProfReader(std::move(Buffer)));
// Initialize the reader and return the result.
if (std::error_code EC = initializeReader(*Result))
return EC;
return std::move(Result);
}
ErrorOr<std::unique_ptr<IndexedInstrProfReader>>
IndexedInstrProfReader::create(std::string Path) {
// Set up the buffer to read.
auto BufferOrError = setupMemoryBuffer(Path);
if (std::error_code EC = BufferOrError.getError())
return EC;
return IndexedInstrProfReader::create(std::move(BufferOrError.get()));
}
ErrorOr<std::unique_ptr<IndexedInstrProfReader>>
IndexedInstrProfReader::create(std::unique_ptr<MemoryBuffer> Buffer) {
// Sanity check the buffer.
if (Buffer->getBufferSize() > std::numeric_limits<unsigned>::max())
return instrprof_error::too_large;
// Create the reader.
if (!IndexedInstrProfReader::hasFormat(*Buffer))
return instrprof_error::bad_magic;
auto Result = llvm::make_unique<IndexedInstrProfReader>(std::move(Buffer));
// Initialize the reader and return the result.
if (std::error_code EC = initializeReader(*Result))
return EC;
return std::move(Result);
}
void InstrProfIterator::Increment() {
if (Reader->readNextRecord(Record))
*this = InstrProfIterator();
}
std::error_code TextInstrProfReader::readNextRecord(InstrProfRecord &Record) {
// Skip empty lines and comments.
while (!Line.is_at_end() && (Line->empty() || Line->startswith("#")))
++Line;
// If we hit EOF while looking for a name, we're done.
if (Line.is_at_end())
return error(instrprof_error::eof);
// Read the function name.
Record.Name = *Line++;
// Read the function hash.
if (Line.is_at_end())
return error(instrprof_error::truncated);
if ((Line++)->getAsInteger(0, Record.Hash))
return error(instrprof_error::malformed);
// Read the number of counters.
uint64_t NumCounters;
if (Line.is_at_end())
return error(instrprof_error::truncated);
if ((Line++)->getAsInteger(10, NumCounters))
return error(instrprof_error::malformed);
if (NumCounters == 0)
return error(instrprof_error::malformed);
// Read each counter and fill our internal storage with the values.
Counts.clear();
Counts.reserve(NumCounters);
for (uint64_t I = 0; I < NumCounters; ++I) {
if (Line.is_at_end())
return error(instrprof_error::truncated);
uint64_t Count;
if ((Line++)->getAsInteger(10, Count))
return error(instrprof_error::malformed);
Counts.push_back(Count);
}
// Give the record a reference to our internal counter storage.
Record.Counts = Counts;
return success();
}
template <class IntPtrT>
static uint64_t getRawMagic();
template <>
uint64_t getRawMagic<uint64_t>() {
return
uint64_t(255) << 56 |
uint64_t('l') << 48 |
uint64_t('p') << 40 |
uint64_t('r') << 32 |
uint64_t('o') << 24 |
uint64_t('f') << 16 |
uint64_t('r') << 8 |
uint64_t(129);
}
template <>
uint64_t getRawMagic<uint32_t>() {
return
uint64_t(255) << 56 |
uint64_t('l') << 48 |
uint64_t('p') << 40 |
uint64_t('r') << 32 |
uint64_t('o') << 24 |
uint64_t('f') << 16 |
uint64_t('R') << 8 |
uint64_t(129);
}
template <class IntPtrT>
bool RawInstrProfReader<IntPtrT>::hasFormat(const MemoryBuffer &DataBuffer) {
if (DataBuffer.getBufferSize() < sizeof(uint64_t))
return false;
uint64_t Magic =
*reinterpret_cast<const uint64_t *>(DataBuffer.getBufferStart());
return getRawMagic<IntPtrT>() == Magic ||
sys::getSwappedBytes(getRawMagic<IntPtrT>()) == Magic;
}
template <class IntPtrT>
std::error_code RawInstrProfReader<IntPtrT>::readHeader() {
if (!hasFormat(*DataBuffer))
return error(instrprof_error::bad_magic);
if (DataBuffer->getBufferSize() < sizeof(RawHeader))
return error(instrprof_error::bad_header);
auto *Header =
reinterpret_cast<const RawHeader *>(DataBuffer->getBufferStart());
ShouldSwapBytes = Header->Magic != getRawMagic<IntPtrT>();
return readHeader(*Header);
}
template <class IntPtrT>
std::error_code
RawInstrProfReader<IntPtrT>::readNextHeader(const char *CurrentPos) {
const char *End = DataBuffer->getBufferEnd();
// Skip zero padding between profiles.
while (CurrentPos != End && *CurrentPos == 0)
++CurrentPos;
// If there's nothing left, we're done.
if (CurrentPos == End)
return instrprof_error::eof;
// If there isn't enough space for another header, this is probably just
// garbage at the end of the file.
if (CurrentPos + sizeof(RawHeader) > End)
return instrprof_error::malformed;
// The writer ensures each profile is padded to start at an aligned address.
if (reinterpret_cast<size_t>(CurrentPos) % alignOf<uint64_t>())
return instrprof_error::malformed;
// The magic should have the same byte order as in the previous header.
uint64_t Magic = *reinterpret_cast<const uint64_t *>(CurrentPos);
if (Magic != swap(getRawMagic<IntPtrT>()))
return instrprof_error::bad_magic;
// There's another profile to read, so we need to process the header.
auto *Header = reinterpret_cast<const RawHeader *>(CurrentPos);
return readHeader(*Header);
}
static uint64_t getRawVersion() {
return 1;
}
template <class IntPtrT>
std::error_code
RawInstrProfReader<IntPtrT>::readHeader(const RawHeader &Header) {
if (swap(Header.Version) != getRawVersion())
return error(instrprof_error::unsupported_version);
CountersDelta = swap(Header.CountersDelta);
NamesDelta = swap(Header.NamesDelta);
auto DataSize = swap(Header.DataSize);
auto CountersSize = swap(Header.CountersSize);
auto NamesSize = swap(Header.NamesSize);
ptrdiff_t DataOffset = sizeof(RawHeader);
ptrdiff_t CountersOffset = DataOffset + sizeof(ProfileData) * DataSize;
ptrdiff_t NamesOffset = CountersOffset + sizeof(uint64_t) * CountersSize;
size_t ProfileSize = NamesOffset + sizeof(char) * NamesSize;
auto *Start = reinterpret_cast<const char *>(&Header);
if (Start + ProfileSize > DataBuffer->getBufferEnd())
return error(instrprof_error::bad_header);
Data = reinterpret_cast<const ProfileData *>(Start + DataOffset);
DataEnd = Data + DataSize;
CountersStart = reinterpret_cast<const uint64_t *>(Start + CountersOffset);
NamesStart = Start + NamesOffset;
ProfileEnd = Start + ProfileSize;
return success();
}
template <class IntPtrT>
std::error_code
RawInstrProfReader<IntPtrT>::readNextRecord(InstrProfRecord &Record) {
if (Data == DataEnd)
if (std::error_code EC = readNextHeader(ProfileEnd))
return EC;
// Get the raw data.
StringRef RawName(getName(Data->NamePtr), swap(Data->NameSize));
uint32_t NumCounters = swap(Data->NumCounters);
if (NumCounters == 0)
return error(instrprof_error::malformed);
auto RawCounts = makeArrayRef(getCounter(Data->CounterPtr), NumCounters);
// Check bounds.
auto *NamesStartAsCounter = reinterpret_cast<const uint64_t *>(NamesStart);
if (RawName.data() < NamesStart ||
RawName.data() + RawName.size() > DataBuffer->getBufferEnd() ||
RawCounts.data() < CountersStart ||
RawCounts.data() + RawCounts.size() > NamesStartAsCounter)
return error(instrprof_error::malformed);
// Store the data in Record, byte-swapping as necessary.
Record.Hash = swap(Data->FuncHash);
Record.Name = RawName;
if (ShouldSwapBytes) {
Counts.clear();
Counts.reserve(RawCounts.size());
for (uint64_t Count : RawCounts)
Counts.push_back(swap(Count));
Record.Counts = Counts;
} else
Record.Counts = RawCounts;
// Iterate.
++Data;
return success();
}
namespace llvm {
template class RawInstrProfReader<uint32_t>;
template class RawInstrProfReader<uint64_t>;
}
InstrProfLookupTrait::hash_value_type
InstrProfLookupTrait::ComputeHash(StringRef K) {
return IndexedInstrProf::ComputeHash(HashType, K);
}
bool IndexedInstrProfReader::hasFormat(const MemoryBuffer &DataBuffer) {
if (DataBuffer.getBufferSize() < 8)
return false;
using namespace support;
uint64_t Magic =
endian::read<uint64_t, little, aligned>(DataBuffer.getBufferStart());
return Magic == IndexedInstrProf::Magic;
}
std::error_code IndexedInstrProfReader::readHeader() {
const unsigned char *Start =
(const unsigned char *)DataBuffer->getBufferStart();
const unsigned char *Cur = Start;
if ((const unsigned char *)DataBuffer->getBufferEnd() - Cur < 24)
return error(instrprof_error::truncated);
using namespace support;
// Check the magic number.
uint64_t Magic = endian::readNext<uint64_t, little, unaligned>(Cur);
if (Magic != IndexedInstrProf::Magic)
return error(instrprof_error::bad_magic);
// Read the version.
FormatVersion = endian::readNext<uint64_t, little, unaligned>(Cur);
if (FormatVersion > IndexedInstrProf::Version)
return error(instrprof_error::unsupported_version);
// Read the maximal function count.
MaxFunctionCount = endian::readNext<uint64_t, little, unaligned>(Cur);
// Read the hash type and start offset.
IndexedInstrProf::HashT HashType = static_cast<IndexedInstrProf::HashT>(
endian::readNext<uint64_t, little, unaligned>(Cur));
if (HashType > IndexedInstrProf::HashT::Last)
return error(instrprof_error::unsupported_hash_type);
uint64_t HashOffset = endian::readNext<uint64_t, little, unaligned>(Cur);
// The rest of the file is an on disk hash table.
Index.reset(InstrProfReaderIndex::Create(Start + HashOffset, Cur, Start,
InstrProfLookupTrait(HashType)));
// Set up our iterator for readNextRecord.
RecordIterator = Index->data_begin();
return success();
}
std::error_code IndexedInstrProfReader::getFunctionCounts(
StringRef FuncName, uint64_t FuncHash, std::vector<uint64_t> &Counts) {
auto Iter = Index->find(FuncName);
if (Iter == Index->end())
return error(instrprof_error::unknown_function);
// Found it. Look for counters with the right hash.
ArrayRef<uint64_t> Data = (*Iter).Data;
uint64_t NumCounts;
for (uint64_t I = 0, E = Data.size(); I != E; I += NumCounts) {
// The function hash comes first.
uint64_t FoundHash = Data[I++];
// In v1, we have at least one count. Later, we have the number of counts.
if (I == E)
return error(instrprof_error::malformed);
NumCounts = FormatVersion == 1 ? E - I : Data[I++];
// If we have more counts than data, this is bogus.
if (I + NumCounts > E)
return error(instrprof_error::malformed);
// Check for a match and fill the vector if there is one.
if (FoundHash == FuncHash) {
Counts = Data.slice(I, NumCounts);
return success();
}
}
return error(instrprof_error::hash_mismatch);
}
std::error_code
IndexedInstrProfReader::readNextRecord(InstrProfRecord &Record) {
// Are we out of records?
if (RecordIterator == Index->data_end())
return error(instrprof_error::eof);
// Record the current function name.
Record.Name = (*RecordIterator).Name;
ArrayRef<uint64_t> Data = (*RecordIterator).Data;
// Valid data starts with a hash and either a count or the number of counts.
if (CurrentOffset + 1 > Data.size())
return error(instrprof_error::malformed);
// First we have a function hash.
Record.Hash = Data[CurrentOffset++];
// In version 1 we knew the number of counters implicitly, but in newer
// versions we store the number of counters next.
uint64_t NumCounts =
FormatVersion == 1 ? Data.size() - CurrentOffset : Data[CurrentOffset++];
if (CurrentOffset + NumCounts > Data.size())
return error(instrprof_error::malformed);
// And finally the counts themselves.
Record.Counts = Data.slice(CurrentOffset, NumCounts);
// If we've exhausted this function's data, increment the record.
CurrentOffset += NumCounts;
if (CurrentOffset == Data.size()) {
++RecordIterator;
CurrentOffset = 0;
}
return success();
}