mirror of
https://github.com/RPCSX/llvm.git
synced 2025-01-08 21:10:31 +00:00
0b4a709cf7
We currently only support folding a subtract into a select but not a PHI. This fixes that. I had to fix an assumption in FoldOpIntoPhi that assumed the PHI node was always in operand 0. Now we pass it in like we do for FoldOpIntoSelect. But we still require some dancing to find the Constant when we create the BinOp or ConstantExpr. This is based code is similar to what we do for selects. Since I touched all call sites, this also renames FoldOpIntoPhi to foldOpIntoPhi to match coding standards. Differential Revision: https://reviews.llvm.org/D31686 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@300363 91177308-0d34-0410-b5e6-96231b3b80d8
1492 lines
55 KiB
C++
1492 lines
55 KiB
C++
//===- InstCombineSelect.cpp ----------------------------------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the visitSelect function.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "InstCombineInternal.h"
|
|
#include "llvm/Analysis/ConstantFolding.h"
|
|
#include "llvm/Analysis/InstructionSimplify.h"
|
|
#include "llvm/Analysis/ValueTracking.h"
|
|
#include "llvm/IR/MDBuilder.h"
|
|
#include "llvm/IR/PatternMatch.h"
|
|
using namespace llvm;
|
|
using namespace PatternMatch;
|
|
|
|
#define DEBUG_TYPE "instcombine"
|
|
|
|
static SelectPatternFlavor
|
|
getInverseMinMaxSelectPattern(SelectPatternFlavor SPF) {
|
|
switch (SPF) {
|
|
default:
|
|
llvm_unreachable("unhandled!");
|
|
|
|
case SPF_SMIN:
|
|
return SPF_SMAX;
|
|
case SPF_UMIN:
|
|
return SPF_UMAX;
|
|
case SPF_SMAX:
|
|
return SPF_SMIN;
|
|
case SPF_UMAX:
|
|
return SPF_UMIN;
|
|
}
|
|
}
|
|
|
|
static CmpInst::Predicate getCmpPredicateForMinMax(SelectPatternFlavor SPF,
|
|
bool Ordered=false) {
|
|
switch (SPF) {
|
|
default:
|
|
llvm_unreachable("unhandled!");
|
|
|
|
case SPF_SMIN:
|
|
return ICmpInst::ICMP_SLT;
|
|
case SPF_UMIN:
|
|
return ICmpInst::ICMP_ULT;
|
|
case SPF_SMAX:
|
|
return ICmpInst::ICMP_SGT;
|
|
case SPF_UMAX:
|
|
return ICmpInst::ICMP_UGT;
|
|
case SPF_FMINNUM:
|
|
return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT;
|
|
case SPF_FMAXNUM:
|
|
return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT;
|
|
}
|
|
}
|
|
|
|
static Value *generateMinMaxSelectPattern(InstCombiner::BuilderTy *Builder,
|
|
SelectPatternFlavor SPF, Value *A,
|
|
Value *B) {
|
|
CmpInst::Predicate Pred = getCmpPredicateForMinMax(SPF);
|
|
assert(CmpInst::isIntPredicate(Pred));
|
|
return Builder->CreateSelect(Builder->CreateICmp(Pred, A, B), A, B);
|
|
}
|
|
|
|
/// We want to turn code that looks like this:
|
|
/// %C = or %A, %B
|
|
/// %D = select %cond, %C, %A
|
|
/// into:
|
|
/// %C = select %cond, %B, 0
|
|
/// %D = or %A, %C
|
|
///
|
|
/// Assuming that the specified instruction is an operand to the select, return
|
|
/// a bitmask indicating which operands of this instruction are foldable if they
|
|
/// equal the other incoming value of the select.
|
|
///
|
|
static unsigned getSelectFoldableOperands(Instruction *I) {
|
|
switch (I->getOpcode()) {
|
|
case Instruction::Add:
|
|
case Instruction::Mul:
|
|
case Instruction::And:
|
|
case Instruction::Or:
|
|
case Instruction::Xor:
|
|
return 3; // Can fold through either operand.
|
|
case Instruction::Sub: // Can only fold on the amount subtracted.
|
|
case Instruction::Shl: // Can only fold on the shift amount.
|
|
case Instruction::LShr:
|
|
case Instruction::AShr:
|
|
return 1;
|
|
default:
|
|
return 0; // Cannot fold
|
|
}
|
|
}
|
|
|
|
/// For the same transformation as the previous function, return the identity
|
|
/// constant that goes into the select.
|
|
static Constant *getSelectFoldableConstant(Instruction *I) {
|
|
switch (I->getOpcode()) {
|
|
default: llvm_unreachable("This cannot happen!");
|
|
case Instruction::Add:
|
|
case Instruction::Sub:
|
|
case Instruction::Or:
|
|
case Instruction::Xor:
|
|
case Instruction::Shl:
|
|
case Instruction::LShr:
|
|
case Instruction::AShr:
|
|
return Constant::getNullValue(I->getType());
|
|
case Instruction::And:
|
|
return Constant::getAllOnesValue(I->getType());
|
|
case Instruction::Mul:
|
|
return ConstantInt::get(I->getType(), 1);
|
|
}
|
|
}
|
|
|
|
/// We have (select c, TI, FI), and we know that TI and FI have the same opcode.
|
|
Instruction *InstCombiner::foldSelectOpOp(SelectInst &SI, Instruction *TI,
|
|
Instruction *FI) {
|
|
// Don't break up min/max patterns. The hasOneUse checks below prevent that
|
|
// for most cases, but vector min/max with bitcasts can be transformed. If the
|
|
// one-use restrictions are eased for other patterns, we still don't want to
|
|
// obfuscate min/max.
|
|
if ((match(&SI, m_SMin(m_Value(), m_Value())) ||
|
|
match(&SI, m_SMax(m_Value(), m_Value())) ||
|
|
match(&SI, m_UMin(m_Value(), m_Value())) ||
|
|
match(&SI, m_UMax(m_Value(), m_Value()))))
|
|
return nullptr;
|
|
|
|
// If this is a cast from the same type, merge.
|
|
if (TI->getNumOperands() == 1 && TI->isCast()) {
|
|
Type *FIOpndTy = FI->getOperand(0)->getType();
|
|
if (TI->getOperand(0)->getType() != FIOpndTy)
|
|
return nullptr;
|
|
|
|
// The select condition may be a vector. We may only change the operand
|
|
// type if the vector width remains the same (and matches the condition).
|
|
Type *CondTy = SI.getCondition()->getType();
|
|
if (CondTy->isVectorTy()) {
|
|
if (!FIOpndTy->isVectorTy())
|
|
return nullptr;
|
|
if (CondTy->getVectorNumElements() != FIOpndTy->getVectorNumElements())
|
|
return nullptr;
|
|
|
|
// TODO: If the backend knew how to deal with casts better, we could
|
|
// remove this limitation. For now, there's too much potential to create
|
|
// worse codegen by promoting the select ahead of size-altering casts
|
|
// (PR28160).
|
|
//
|
|
// Note that ValueTracking's matchSelectPattern() looks through casts
|
|
// without checking 'hasOneUse' when it matches min/max patterns, so this
|
|
// transform may end up happening anyway.
|
|
if (TI->getOpcode() != Instruction::BitCast &&
|
|
(!TI->hasOneUse() || !FI->hasOneUse()))
|
|
return nullptr;
|
|
|
|
} else if (!TI->hasOneUse() || !FI->hasOneUse()) {
|
|
// TODO: The one-use restrictions for a scalar select could be eased if
|
|
// the fold of a select in visitLoadInst() was enhanced to match a pattern
|
|
// that includes a cast.
|
|
return nullptr;
|
|
}
|
|
|
|
// Fold this by inserting a select from the input values.
|
|
Value *NewSI =
|
|
Builder->CreateSelect(SI.getCondition(), TI->getOperand(0),
|
|
FI->getOperand(0), SI.getName() + ".v", &SI);
|
|
return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI,
|
|
TI->getType());
|
|
}
|
|
|
|
// Only handle binary operators with one-use here. As with the cast case
|
|
// above, it may be possible to relax the one-use constraint, but that needs
|
|
// be examined carefully since it may not reduce the total number of
|
|
// instructions.
|
|
BinaryOperator *BO = dyn_cast<BinaryOperator>(TI);
|
|
if (!BO || !TI->hasOneUse() || !FI->hasOneUse())
|
|
return nullptr;
|
|
|
|
// Figure out if the operations have any operands in common.
|
|
Value *MatchOp, *OtherOpT, *OtherOpF;
|
|
bool MatchIsOpZero;
|
|
if (TI->getOperand(0) == FI->getOperand(0)) {
|
|
MatchOp = TI->getOperand(0);
|
|
OtherOpT = TI->getOperand(1);
|
|
OtherOpF = FI->getOperand(1);
|
|
MatchIsOpZero = true;
|
|
} else if (TI->getOperand(1) == FI->getOperand(1)) {
|
|
MatchOp = TI->getOperand(1);
|
|
OtherOpT = TI->getOperand(0);
|
|
OtherOpF = FI->getOperand(0);
|
|
MatchIsOpZero = false;
|
|
} else if (!TI->isCommutative()) {
|
|
return nullptr;
|
|
} else if (TI->getOperand(0) == FI->getOperand(1)) {
|
|
MatchOp = TI->getOperand(0);
|
|
OtherOpT = TI->getOperand(1);
|
|
OtherOpF = FI->getOperand(0);
|
|
MatchIsOpZero = true;
|
|
} else if (TI->getOperand(1) == FI->getOperand(0)) {
|
|
MatchOp = TI->getOperand(1);
|
|
OtherOpT = TI->getOperand(0);
|
|
OtherOpF = FI->getOperand(1);
|
|
MatchIsOpZero = true;
|
|
} else {
|
|
return nullptr;
|
|
}
|
|
|
|
// If we reach here, they do have operations in common.
|
|
Value *NewSI = Builder->CreateSelect(SI.getCondition(), OtherOpT, OtherOpF,
|
|
SI.getName() + ".v", &SI);
|
|
Value *Op0 = MatchIsOpZero ? MatchOp : NewSI;
|
|
Value *Op1 = MatchIsOpZero ? NewSI : MatchOp;
|
|
return BinaryOperator::Create(BO->getOpcode(), Op0, Op1);
|
|
}
|
|
|
|
static bool isSelect01(Constant *C1, Constant *C2) {
|
|
ConstantInt *C1I = dyn_cast<ConstantInt>(C1);
|
|
if (!C1I)
|
|
return false;
|
|
ConstantInt *C2I = dyn_cast<ConstantInt>(C2);
|
|
if (!C2I)
|
|
return false;
|
|
if (!C1I->isZero() && !C2I->isZero()) // One side must be zero.
|
|
return false;
|
|
return C1I->isOne() || C1I->isAllOnesValue() ||
|
|
C2I->isOne() || C2I->isAllOnesValue();
|
|
}
|
|
|
|
/// Try to fold the select into one of the operands to allow further
|
|
/// optimization.
|
|
Instruction *InstCombiner::foldSelectIntoOp(SelectInst &SI, Value *TrueVal,
|
|
Value *FalseVal) {
|
|
// See the comment above GetSelectFoldableOperands for a description of the
|
|
// transformation we are doing here.
|
|
if (Instruction *TVI = dyn_cast<Instruction>(TrueVal)) {
|
|
if (TVI->hasOneUse() && TVI->getNumOperands() == 2 &&
|
|
!isa<Constant>(FalseVal)) {
|
|
if (unsigned SFO = getSelectFoldableOperands(TVI)) {
|
|
unsigned OpToFold = 0;
|
|
if ((SFO & 1) && FalseVal == TVI->getOperand(0)) {
|
|
OpToFold = 1;
|
|
} else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) {
|
|
OpToFold = 2;
|
|
}
|
|
|
|
if (OpToFold) {
|
|
Constant *C = getSelectFoldableConstant(TVI);
|
|
Value *OOp = TVI->getOperand(2-OpToFold);
|
|
// Avoid creating select between 2 constants unless it's selecting
|
|
// between 0, 1 and -1.
|
|
if (!isa<Constant>(OOp) || isSelect01(C, cast<Constant>(OOp))) {
|
|
Value *NewSel = Builder->CreateSelect(SI.getCondition(), OOp, C);
|
|
NewSel->takeName(TVI);
|
|
BinaryOperator *TVI_BO = cast<BinaryOperator>(TVI);
|
|
BinaryOperator *BO = BinaryOperator::Create(TVI_BO->getOpcode(),
|
|
FalseVal, NewSel);
|
|
BO->copyIRFlags(TVI_BO);
|
|
return BO;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (Instruction *FVI = dyn_cast<Instruction>(FalseVal)) {
|
|
if (FVI->hasOneUse() && FVI->getNumOperands() == 2 &&
|
|
!isa<Constant>(TrueVal)) {
|
|
if (unsigned SFO = getSelectFoldableOperands(FVI)) {
|
|
unsigned OpToFold = 0;
|
|
if ((SFO & 1) && TrueVal == FVI->getOperand(0)) {
|
|
OpToFold = 1;
|
|
} else if ((SFO & 2) && TrueVal == FVI->getOperand(1)) {
|
|
OpToFold = 2;
|
|
}
|
|
|
|
if (OpToFold) {
|
|
Constant *C = getSelectFoldableConstant(FVI);
|
|
Value *OOp = FVI->getOperand(2-OpToFold);
|
|
// Avoid creating select between 2 constants unless it's selecting
|
|
// between 0, 1 and -1.
|
|
if (!isa<Constant>(OOp) || isSelect01(C, cast<Constant>(OOp))) {
|
|
Value *NewSel = Builder->CreateSelect(SI.getCondition(), C, OOp);
|
|
NewSel->takeName(FVI);
|
|
BinaryOperator *FVI_BO = cast<BinaryOperator>(FVI);
|
|
BinaryOperator *BO = BinaryOperator::Create(FVI_BO->getOpcode(),
|
|
TrueVal, NewSel);
|
|
BO->copyIRFlags(FVI_BO);
|
|
return BO;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
/// We want to turn:
|
|
/// (select (icmp eq (and X, C1), 0), Y, (or Y, C2))
|
|
/// into:
|
|
/// (or (shl (and X, C1), C3), y)
|
|
/// iff:
|
|
/// C1 and C2 are both powers of 2
|
|
/// where:
|
|
/// C3 = Log(C2) - Log(C1)
|
|
///
|
|
/// This transform handles cases where:
|
|
/// 1. The icmp predicate is inverted
|
|
/// 2. The select operands are reversed
|
|
/// 3. The magnitude of C2 and C1 are flipped
|
|
static Value *foldSelectICmpAndOr(const SelectInst &SI, Value *TrueVal,
|
|
Value *FalseVal,
|
|
InstCombiner::BuilderTy *Builder) {
|
|
const ICmpInst *IC = dyn_cast<ICmpInst>(SI.getCondition());
|
|
if (!IC || !IC->isEquality() || !SI.getType()->isIntegerTy())
|
|
return nullptr;
|
|
|
|
Value *CmpLHS = IC->getOperand(0);
|
|
Value *CmpRHS = IC->getOperand(1);
|
|
|
|
if (!match(CmpRHS, m_Zero()))
|
|
return nullptr;
|
|
|
|
Value *X;
|
|
const APInt *C1;
|
|
if (!match(CmpLHS, m_And(m_Value(X), m_Power2(C1))))
|
|
return nullptr;
|
|
|
|
const APInt *C2;
|
|
bool OrOnTrueVal = false;
|
|
bool OrOnFalseVal = match(FalseVal, m_Or(m_Specific(TrueVal), m_Power2(C2)));
|
|
if (!OrOnFalseVal)
|
|
OrOnTrueVal = match(TrueVal, m_Or(m_Specific(FalseVal), m_Power2(C2)));
|
|
|
|
if (!OrOnFalseVal && !OrOnTrueVal)
|
|
return nullptr;
|
|
|
|
Value *V = CmpLHS;
|
|
Value *Y = OrOnFalseVal ? TrueVal : FalseVal;
|
|
|
|
unsigned C1Log = C1->logBase2();
|
|
unsigned C2Log = C2->logBase2();
|
|
if (C2Log > C1Log) {
|
|
V = Builder->CreateZExtOrTrunc(V, Y->getType());
|
|
V = Builder->CreateShl(V, C2Log - C1Log);
|
|
} else if (C1Log > C2Log) {
|
|
V = Builder->CreateLShr(V, C1Log - C2Log);
|
|
V = Builder->CreateZExtOrTrunc(V, Y->getType());
|
|
} else
|
|
V = Builder->CreateZExtOrTrunc(V, Y->getType());
|
|
|
|
ICmpInst::Predicate Pred = IC->getPredicate();
|
|
if ((Pred == ICmpInst::ICMP_NE && OrOnFalseVal) ||
|
|
(Pred == ICmpInst::ICMP_EQ && OrOnTrueVal))
|
|
V = Builder->CreateXor(V, *C2);
|
|
|
|
return Builder->CreateOr(V, Y);
|
|
}
|
|
|
|
/// Attempt to fold a cttz/ctlz followed by a icmp plus select into a single
|
|
/// call to cttz/ctlz with flag 'is_zero_undef' cleared.
|
|
///
|
|
/// For example, we can fold the following code sequence:
|
|
/// \code
|
|
/// %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 true)
|
|
/// %1 = icmp ne i32 %x, 0
|
|
/// %2 = select i1 %1, i32 %0, i32 32
|
|
/// \code
|
|
///
|
|
/// into:
|
|
/// %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 false)
|
|
static Value *foldSelectCttzCtlz(ICmpInst *ICI, Value *TrueVal, Value *FalseVal,
|
|
InstCombiner::BuilderTy *Builder) {
|
|
ICmpInst::Predicate Pred = ICI->getPredicate();
|
|
Value *CmpLHS = ICI->getOperand(0);
|
|
Value *CmpRHS = ICI->getOperand(1);
|
|
|
|
// Check if the condition value compares a value for equality against zero.
|
|
if (!ICI->isEquality() || !match(CmpRHS, m_Zero()))
|
|
return nullptr;
|
|
|
|
Value *Count = FalseVal;
|
|
Value *ValueOnZero = TrueVal;
|
|
if (Pred == ICmpInst::ICMP_NE)
|
|
std::swap(Count, ValueOnZero);
|
|
|
|
// Skip zero extend/truncate.
|
|
Value *V = nullptr;
|
|
if (match(Count, m_ZExt(m_Value(V))) ||
|
|
match(Count, m_Trunc(m_Value(V))))
|
|
Count = V;
|
|
|
|
// Check if the value propagated on zero is a constant number equal to the
|
|
// sizeof in bits of 'Count'.
|
|
unsigned SizeOfInBits = Count->getType()->getScalarSizeInBits();
|
|
if (!match(ValueOnZero, m_SpecificInt(SizeOfInBits)))
|
|
return nullptr;
|
|
|
|
// Check that 'Count' is a call to intrinsic cttz/ctlz. Also check that the
|
|
// input to the cttz/ctlz is used as LHS for the compare instruction.
|
|
if (match(Count, m_Intrinsic<Intrinsic::cttz>(m_Specific(CmpLHS))) ||
|
|
match(Count, m_Intrinsic<Intrinsic::ctlz>(m_Specific(CmpLHS)))) {
|
|
IntrinsicInst *II = cast<IntrinsicInst>(Count);
|
|
// Explicitly clear the 'undef_on_zero' flag.
|
|
IntrinsicInst *NewI = cast<IntrinsicInst>(II->clone());
|
|
Type *Ty = NewI->getArgOperand(1)->getType();
|
|
NewI->setArgOperand(1, Constant::getNullValue(Ty));
|
|
Builder->Insert(NewI);
|
|
return Builder->CreateZExtOrTrunc(NewI, ValueOnZero->getType());
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
/// Return true if we find and adjust an icmp+select pattern where the compare
|
|
/// is with a constant that can be incremented or decremented to match the
|
|
/// minimum or maximum idiom.
|
|
static bool adjustMinMax(SelectInst &Sel, ICmpInst &Cmp) {
|
|
ICmpInst::Predicate Pred = Cmp.getPredicate();
|
|
Value *CmpLHS = Cmp.getOperand(0);
|
|
Value *CmpRHS = Cmp.getOperand(1);
|
|
Value *TrueVal = Sel.getTrueValue();
|
|
Value *FalseVal = Sel.getFalseValue();
|
|
|
|
// We may move or edit the compare, so make sure the select is the only user.
|
|
const APInt *CmpC;
|
|
if (!Cmp.hasOneUse() || !match(CmpRHS, m_APInt(CmpC)))
|
|
return false;
|
|
|
|
// These transforms only work for selects of integers or vector selects of
|
|
// integer vectors.
|
|
Type *SelTy = Sel.getType();
|
|
auto *SelEltTy = dyn_cast<IntegerType>(SelTy->getScalarType());
|
|
if (!SelEltTy || SelTy->isVectorTy() != Cmp.getType()->isVectorTy())
|
|
return false;
|
|
|
|
Constant *AdjustedRHS;
|
|
if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SGT)
|
|
AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC + 1);
|
|
else if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT)
|
|
AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC - 1);
|
|
else
|
|
return false;
|
|
|
|
// X > C ? X : C+1 --> X < C+1 ? C+1 : X
|
|
// X < C ? X : C-1 --> X > C-1 ? C-1 : X
|
|
if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) ||
|
|
(CmpLHS == FalseVal && AdjustedRHS == TrueVal)) {
|
|
; // Nothing to do here. Values match without any sign/zero extension.
|
|
}
|
|
// Types do not match. Instead of calculating this with mixed types, promote
|
|
// all to the larger type. This enables scalar evolution to analyze this
|
|
// expression.
|
|
else if (CmpRHS->getType()->getScalarSizeInBits() < SelEltTy->getBitWidth()) {
|
|
Constant *SextRHS = ConstantExpr::getSExt(AdjustedRHS, SelTy);
|
|
|
|
// X = sext x; x >s c ? X : C+1 --> X = sext x; X <s C+1 ? C+1 : X
|
|
// X = sext x; x <s c ? X : C-1 --> X = sext x; X >s C-1 ? C-1 : X
|
|
// X = sext x; x >u c ? X : C+1 --> X = sext x; X <u C+1 ? C+1 : X
|
|
// X = sext x; x <u c ? X : C-1 --> X = sext x; X >u C-1 ? C-1 : X
|
|
if (match(TrueVal, m_SExt(m_Specific(CmpLHS))) && SextRHS == FalseVal) {
|
|
CmpLHS = TrueVal;
|
|
AdjustedRHS = SextRHS;
|
|
} else if (match(FalseVal, m_SExt(m_Specific(CmpLHS))) &&
|
|
SextRHS == TrueVal) {
|
|
CmpLHS = FalseVal;
|
|
AdjustedRHS = SextRHS;
|
|
} else if (Cmp.isUnsigned()) {
|
|
Constant *ZextRHS = ConstantExpr::getZExt(AdjustedRHS, SelTy);
|
|
// X = zext x; x >u c ? X : C+1 --> X = zext x; X <u C+1 ? C+1 : X
|
|
// X = zext x; x <u c ? X : C-1 --> X = zext x; X >u C-1 ? C-1 : X
|
|
// zext + signed compare cannot be changed:
|
|
// 0xff <s 0x00, but 0x00ff >s 0x0000
|
|
if (match(TrueVal, m_ZExt(m_Specific(CmpLHS))) && ZextRHS == FalseVal) {
|
|
CmpLHS = TrueVal;
|
|
AdjustedRHS = ZextRHS;
|
|
} else if (match(FalseVal, m_ZExt(m_Specific(CmpLHS))) &&
|
|
ZextRHS == TrueVal) {
|
|
CmpLHS = FalseVal;
|
|
AdjustedRHS = ZextRHS;
|
|
} else {
|
|
return false;
|
|
}
|
|
} else {
|
|
return false;
|
|
}
|
|
} else {
|
|
return false;
|
|
}
|
|
|
|
Pred = ICmpInst::getSwappedPredicate(Pred);
|
|
CmpRHS = AdjustedRHS;
|
|
std::swap(FalseVal, TrueVal);
|
|
Cmp.setPredicate(Pred);
|
|
Cmp.setOperand(0, CmpLHS);
|
|
Cmp.setOperand(1, CmpRHS);
|
|
Sel.setOperand(1, TrueVal);
|
|
Sel.setOperand(2, FalseVal);
|
|
Sel.swapProfMetadata();
|
|
|
|
// Move the compare instruction right before the select instruction. Otherwise
|
|
// the sext/zext value may be defined after the compare instruction uses it.
|
|
Cmp.moveBefore(&Sel);
|
|
|
|
return true;
|
|
}
|
|
|
|
/// If this is an integer min/max (icmp + select) with a constant operand,
|
|
/// create the canonical icmp for the min/max operation and canonicalize the
|
|
/// constant to the 'false' operand of the select:
|
|
/// select (icmp Pred X, C1), C2, X --> select (icmp Pred' X, C2), X, C2
|
|
/// Note: if C1 != C2, this will change the icmp constant to the existing
|
|
/// constant operand of the select.
|
|
static Instruction *
|
|
canonicalizeMinMaxWithConstant(SelectInst &Sel, ICmpInst &Cmp,
|
|
InstCombiner::BuilderTy &Builder) {
|
|
if (!Cmp.hasOneUse() || !isa<Constant>(Cmp.getOperand(1)))
|
|
return nullptr;
|
|
|
|
// Canonicalize the compare predicate based on whether we have min or max.
|
|
Value *LHS, *RHS;
|
|
ICmpInst::Predicate NewPred;
|
|
SelectPatternResult SPR = matchSelectPattern(&Sel, LHS, RHS);
|
|
switch (SPR.Flavor) {
|
|
case SPF_SMIN: NewPred = ICmpInst::ICMP_SLT; break;
|
|
case SPF_UMIN: NewPred = ICmpInst::ICMP_ULT; break;
|
|
case SPF_SMAX: NewPred = ICmpInst::ICMP_SGT; break;
|
|
case SPF_UMAX: NewPred = ICmpInst::ICMP_UGT; break;
|
|
default: return nullptr;
|
|
}
|
|
|
|
// Is this already canonical?
|
|
if (Cmp.getOperand(0) == LHS && Cmp.getOperand(1) == RHS &&
|
|
Cmp.getPredicate() == NewPred)
|
|
return nullptr;
|
|
|
|
// Create the canonical compare and plug it into the select.
|
|
Sel.setCondition(Builder.CreateICmp(NewPred, LHS, RHS));
|
|
|
|
// If the select operands did not change, we're done.
|
|
if (Sel.getTrueValue() == LHS && Sel.getFalseValue() == RHS)
|
|
return &Sel;
|
|
|
|
// If we are swapping the select operands, swap the metadata too.
|
|
assert(Sel.getTrueValue() == RHS && Sel.getFalseValue() == LHS &&
|
|
"Unexpected results from matchSelectPattern");
|
|
Sel.setTrueValue(LHS);
|
|
Sel.setFalseValue(RHS);
|
|
Sel.swapProfMetadata();
|
|
return &Sel;
|
|
}
|
|
|
|
/// Visit a SelectInst that has an ICmpInst as its first operand.
|
|
Instruction *InstCombiner::foldSelectInstWithICmp(SelectInst &SI,
|
|
ICmpInst *ICI) {
|
|
if (Instruction *NewSel = canonicalizeMinMaxWithConstant(SI, *ICI, *Builder))
|
|
return NewSel;
|
|
|
|
bool Changed = adjustMinMax(SI, *ICI);
|
|
|
|
ICmpInst::Predicate Pred = ICI->getPredicate();
|
|
Value *CmpLHS = ICI->getOperand(0);
|
|
Value *CmpRHS = ICI->getOperand(1);
|
|
Value *TrueVal = SI.getTrueValue();
|
|
Value *FalseVal = SI.getFalseValue();
|
|
|
|
// Transform (X >s -1) ? C1 : C2 --> ((X >>s 31) & (C2 - C1)) + C1
|
|
// and (X <s 0) ? C2 : C1 --> ((X >>s 31) & (C2 - C1)) + C1
|
|
// FIXME: Type and constness constraints could be lifted, but we have to
|
|
// watch code size carefully. We should consider xor instead of
|
|
// sub/add when we decide to do that.
|
|
if (IntegerType *Ty = dyn_cast<IntegerType>(CmpLHS->getType())) {
|
|
if (TrueVal->getType() == Ty) {
|
|
if (ConstantInt *Cmp = dyn_cast<ConstantInt>(CmpRHS)) {
|
|
ConstantInt *C1 = nullptr, *C2 = nullptr;
|
|
if (Pred == ICmpInst::ICMP_SGT && Cmp->isAllOnesValue()) {
|
|
C1 = dyn_cast<ConstantInt>(TrueVal);
|
|
C2 = dyn_cast<ConstantInt>(FalseVal);
|
|
} else if (Pred == ICmpInst::ICMP_SLT && Cmp->isNullValue()) {
|
|
C1 = dyn_cast<ConstantInt>(FalseVal);
|
|
C2 = dyn_cast<ConstantInt>(TrueVal);
|
|
}
|
|
if (C1 && C2) {
|
|
// This shift results in either -1 or 0.
|
|
Value *AShr = Builder->CreateAShr(CmpLHS, Ty->getBitWidth()-1);
|
|
|
|
// Check if we can express the operation with a single or.
|
|
if (C2->isAllOnesValue())
|
|
return replaceInstUsesWith(SI, Builder->CreateOr(AShr, C1));
|
|
|
|
Value *And = Builder->CreateAnd(AShr, C2->getValue()-C1->getValue());
|
|
return replaceInstUsesWith(SI, Builder->CreateAdd(And, C1));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// NOTE: if we wanted to, this is where to detect integer MIN/MAX
|
|
|
|
if (CmpRHS != CmpLHS && isa<Constant>(CmpRHS)) {
|
|
if (CmpLHS == TrueVal && Pred == ICmpInst::ICMP_EQ) {
|
|
// Transform (X == C) ? X : Y -> (X == C) ? C : Y
|
|
SI.setOperand(1, CmpRHS);
|
|
Changed = true;
|
|
} else if (CmpLHS == FalseVal && Pred == ICmpInst::ICMP_NE) {
|
|
// Transform (X != C) ? Y : X -> (X != C) ? Y : C
|
|
SI.setOperand(2, CmpRHS);
|
|
Changed = true;
|
|
}
|
|
}
|
|
|
|
// FIXME: This code is nearly duplicated in InstSimplify. Using/refactoring
|
|
// decomposeBitTestICmp() might help.
|
|
{
|
|
unsigned BitWidth =
|
|
DL.getTypeSizeInBits(TrueVal->getType()->getScalarType());
|
|
APInt MinSignedValue = APInt::getSignBit(BitWidth);
|
|
Value *X;
|
|
const APInt *Y, *C;
|
|
bool TrueWhenUnset;
|
|
bool IsBitTest = false;
|
|
if (ICmpInst::isEquality(Pred) &&
|
|
match(CmpLHS, m_And(m_Value(X), m_Power2(Y))) &&
|
|
match(CmpRHS, m_Zero())) {
|
|
IsBitTest = true;
|
|
TrueWhenUnset = Pred == ICmpInst::ICMP_EQ;
|
|
} else if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, m_Zero())) {
|
|
X = CmpLHS;
|
|
Y = &MinSignedValue;
|
|
IsBitTest = true;
|
|
TrueWhenUnset = false;
|
|
} else if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, m_AllOnes())) {
|
|
X = CmpLHS;
|
|
Y = &MinSignedValue;
|
|
IsBitTest = true;
|
|
TrueWhenUnset = true;
|
|
}
|
|
if (IsBitTest) {
|
|
Value *V = nullptr;
|
|
// (X & Y) == 0 ? X : X ^ Y --> X & ~Y
|
|
if (TrueWhenUnset && TrueVal == X &&
|
|
match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
|
|
V = Builder->CreateAnd(X, ~(*Y));
|
|
// (X & Y) != 0 ? X ^ Y : X --> X & ~Y
|
|
else if (!TrueWhenUnset && FalseVal == X &&
|
|
match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
|
|
V = Builder->CreateAnd(X, ~(*Y));
|
|
// (X & Y) == 0 ? X ^ Y : X --> X | Y
|
|
else if (TrueWhenUnset && FalseVal == X &&
|
|
match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
|
|
V = Builder->CreateOr(X, *Y);
|
|
// (X & Y) != 0 ? X : X ^ Y --> X | Y
|
|
else if (!TrueWhenUnset && TrueVal == X &&
|
|
match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
|
|
V = Builder->CreateOr(X, *Y);
|
|
|
|
if (V)
|
|
return replaceInstUsesWith(SI, V);
|
|
}
|
|
}
|
|
|
|
if (Value *V = foldSelectICmpAndOr(SI, TrueVal, FalseVal, Builder))
|
|
return replaceInstUsesWith(SI, V);
|
|
|
|
if (Value *V = foldSelectCttzCtlz(ICI, TrueVal, FalseVal, Builder))
|
|
return replaceInstUsesWith(SI, V);
|
|
|
|
return Changed ? &SI : nullptr;
|
|
}
|
|
|
|
|
|
/// SI is a select whose condition is a PHI node (but the two may be in
|
|
/// different blocks). See if the true/false values (V) are live in all of the
|
|
/// predecessor blocks of the PHI. For example, cases like this can't be mapped:
|
|
///
|
|
/// X = phi [ C1, BB1], [C2, BB2]
|
|
/// Y = add
|
|
/// Z = select X, Y, 0
|
|
///
|
|
/// because Y is not live in BB1/BB2.
|
|
///
|
|
static bool canSelectOperandBeMappingIntoPredBlock(const Value *V,
|
|
const SelectInst &SI) {
|
|
// If the value is a non-instruction value like a constant or argument, it
|
|
// can always be mapped.
|
|
const Instruction *I = dyn_cast<Instruction>(V);
|
|
if (!I) return true;
|
|
|
|
// If V is a PHI node defined in the same block as the condition PHI, we can
|
|
// map the arguments.
|
|
const PHINode *CondPHI = cast<PHINode>(SI.getCondition());
|
|
|
|
if (const PHINode *VP = dyn_cast<PHINode>(I))
|
|
if (VP->getParent() == CondPHI->getParent())
|
|
return true;
|
|
|
|
// Otherwise, if the PHI and select are defined in the same block and if V is
|
|
// defined in a different block, then we can transform it.
|
|
if (SI.getParent() == CondPHI->getParent() &&
|
|
I->getParent() != CondPHI->getParent())
|
|
return true;
|
|
|
|
// Otherwise we have a 'hard' case and we can't tell without doing more
|
|
// detailed dominator based analysis, punt.
|
|
return false;
|
|
}
|
|
|
|
/// We have an SPF (e.g. a min or max) of an SPF of the form:
|
|
/// SPF2(SPF1(A, B), C)
|
|
Instruction *InstCombiner::foldSPFofSPF(Instruction *Inner,
|
|
SelectPatternFlavor SPF1,
|
|
Value *A, Value *B,
|
|
Instruction &Outer,
|
|
SelectPatternFlavor SPF2, Value *C) {
|
|
if (Outer.getType() != Inner->getType())
|
|
return nullptr;
|
|
|
|
if (C == A || C == B) {
|
|
// MAX(MAX(A, B), B) -> MAX(A, B)
|
|
// MIN(MIN(a, b), a) -> MIN(a, b)
|
|
if (SPF1 == SPF2)
|
|
return replaceInstUsesWith(Outer, Inner);
|
|
|
|
// MAX(MIN(a, b), a) -> a
|
|
// MIN(MAX(a, b), a) -> a
|
|
if ((SPF1 == SPF_SMIN && SPF2 == SPF_SMAX) ||
|
|
(SPF1 == SPF_SMAX && SPF2 == SPF_SMIN) ||
|
|
(SPF1 == SPF_UMIN && SPF2 == SPF_UMAX) ||
|
|
(SPF1 == SPF_UMAX && SPF2 == SPF_UMIN))
|
|
return replaceInstUsesWith(Outer, C);
|
|
}
|
|
|
|
if (SPF1 == SPF2) {
|
|
const APInt *CB, *CC;
|
|
if (match(B, m_APInt(CB)) && match(C, m_APInt(CC))) {
|
|
// MIN(MIN(A, 23), 97) -> MIN(A, 23)
|
|
// MAX(MAX(A, 97), 23) -> MAX(A, 97)
|
|
if ((SPF1 == SPF_UMIN && CB->ule(*CC)) ||
|
|
(SPF1 == SPF_SMIN && CB->sle(*CC)) ||
|
|
(SPF1 == SPF_UMAX && CB->uge(*CC)) ||
|
|
(SPF1 == SPF_SMAX && CB->sge(*CC)))
|
|
return replaceInstUsesWith(Outer, Inner);
|
|
|
|
// MIN(MIN(A, 97), 23) -> MIN(A, 23)
|
|
// MAX(MAX(A, 23), 97) -> MAX(A, 97)
|
|
if ((SPF1 == SPF_UMIN && CB->ugt(*CC)) ||
|
|
(SPF1 == SPF_SMIN && CB->sgt(*CC)) ||
|
|
(SPF1 == SPF_UMAX && CB->ult(*CC)) ||
|
|
(SPF1 == SPF_SMAX && CB->slt(*CC))) {
|
|
Outer.replaceUsesOfWith(Inner, A);
|
|
return &Outer;
|
|
}
|
|
}
|
|
}
|
|
|
|
// ABS(ABS(X)) -> ABS(X)
|
|
// NABS(NABS(X)) -> NABS(X)
|
|
if (SPF1 == SPF2 && (SPF1 == SPF_ABS || SPF1 == SPF_NABS)) {
|
|
return replaceInstUsesWith(Outer, Inner);
|
|
}
|
|
|
|
// ABS(NABS(X)) -> ABS(X)
|
|
// NABS(ABS(X)) -> NABS(X)
|
|
if ((SPF1 == SPF_ABS && SPF2 == SPF_NABS) ||
|
|
(SPF1 == SPF_NABS && SPF2 == SPF_ABS)) {
|
|
SelectInst *SI = cast<SelectInst>(Inner);
|
|
Value *NewSI =
|
|
Builder->CreateSelect(SI->getCondition(), SI->getFalseValue(),
|
|
SI->getTrueValue(), SI->getName(), SI);
|
|
return replaceInstUsesWith(Outer, NewSI);
|
|
}
|
|
|
|
auto IsFreeOrProfitableToInvert =
|
|
[&](Value *V, Value *&NotV, bool &ElidesXor) {
|
|
if (match(V, m_Not(m_Value(NotV)))) {
|
|
// If V has at most 2 uses then we can get rid of the xor operation
|
|
// entirely.
|
|
ElidesXor |= !V->hasNUsesOrMore(3);
|
|
return true;
|
|
}
|
|
|
|
if (IsFreeToInvert(V, !V->hasNUsesOrMore(3))) {
|
|
NotV = nullptr;
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
};
|
|
|
|
Value *NotA, *NotB, *NotC;
|
|
bool ElidesXor = false;
|
|
|
|
// MIN(MIN(~A, ~B), ~C) == ~MAX(MAX(A, B), C)
|
|
// MIN(MAX(~A, ~B), ~C) == ~MAX(MIN(A, B), C)
|
|
// MAX(MIN(~A, ~B), ~C) == ~MIN(MAX(A, B), C)
|
|
// MAX(MAX(~A, ~B), ~C) == ~MIN(MIN(A, B), C)
|
|
//
|
|
// This transform is performance neutral if we can elide at least one xor from
|
|
// the set of three operands, since we'll be tacking on an xor at the very
|
|
// end.
|
|
if (SelectPatternResult::isMinOrMax(SPF1) &&
|
|
SelectPatternResult::isMinOrMax(SPF2) &&
|
|
IsFreeOrProfitableToInvert(A, NotA, ElidesXor) &&
|
|
IsFreeOrProfitableToInvert(B, NotB, ElidesXor) &&
|
|
IsFreeOrProfitableToInvert(C, NotC, ElidesXor) && ElidesXor) {
|
|
if (!NotA)
|
|
NotA = Builder->CreateNot(A);
|
|
if (!NotB)
|
|
NotB = Builder->CreateNot(B);
|
|
if (!NotC)
|
|
NotC = Builder->CreateNot(C);
|
|
|
|
Value *NewInner = generateMinMaxSelectPattern(
|
|
Builder, getInverseMinMaxSelectPattern(SPF1), NotA, NotB);
|
|
Value *NewOuter = Builder->CreateNot(generateMinMaxSelectPattern(
|
|
Builder, getInverseMinMaxSelectPattern(SPF2), NewInner, NotC));
|
|
return replaceInstUsesWith(Outer, NewOuter);
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
/// If one of the constants is zero (we know they can't both be) and we have an
|
|
/// icmp instruction with zero, and we have an 'and' with the non-constant value
|
|
/// and a power of two we can turn the select into a shift on the result of the
|
|
/// 'and'.
|
|
static Value *foldSelectICmpAnd(const SelectInst &SI, ConstantInt *TrueVal,
|
|
ConstantInt *FalseVal,
|
|
InstCombiner::BuilderTy *Builder) {
|
|
const ICmpInst *IC = dyn_cast<ICmpInst>(SI.getCondition());
|
|
if (!IC || !IC->isEquality() || !SI.getType()->isIntegerTy())
|
|
return nullptr;
|
|
|
|
if (!match(IC->getOperand(1), m_Zero()))
|
|
return nullptr;
|
|
|
|
ConstantInt *AndRHS;
|
|
Value *LHS = IC->getOperand(0);
|
|
if (!match(LHS, m_And(m_Value(), m_ConstantInt(AndRHS))))
|
|
return nullptr;
|
|
|
|
// If both select arms are non-zero see if we have a select of the form
|
|
// 'x ? 2^n + C : C'. Then we can offset both arms by C, use the logic
|
|
// for 'x ? 2^n : 0' and fix the thing up at the end.
|
|
ConstantInt *Offset = nullptr;
|
|
if (!TrueVal->isZero() && !FalseVal->isZero()) {
|
|
if ((TrueVal->getValue() - FalseVal->getValue()).isPowerOf2())
|
|
Offset = FalseVal;
|
|
else if ((FalseVal->getValue() - TrueVal->getValue()).isPowerOf2())
|
|
Offset = TrueVal;
|
|
else
|
|
return nullptr;
|
|
|
|
// Adjust TrueVal and FalseVal to the offset.
|
|
TrueVal = ConstantInt::get(Builder->getContext(),
|
|
TrueVal->getValue() - Offset->getValue());
|
|
FalseVal = ConstantInt::get(Builder->getContext(),
|
|
FalseVal->getValue() - Offset->getValue());
|
|
}
|
|
|
|
// Make sure the mask in the 'and' and one of the select arms is a power of 2.
|
|
if (!AndRHS->getValue().isPowerOf2() ||
|
|
(!TrueVal->getValue().isPowerOf2() &&
|
|
!FalseVal->getValue().isPowerOf2()))
|
|
return nullptr;
|
|
|
|
// Determine which shift is needed to transform result of the 'and' into the
|
|
// desired result.
|
|
ConstantInt *ValC = !TrueVal->isZero() ? TrueVal : FalseVal;
|
|
unsigned ValZeros = ValC->getValue().logBase2();
|
|
unsigned AndZeros = AndRHS->getValue().logBase2();
|
|
|
|
// If types don't match we can still convert the select by introducing a zext
|
|
// or a trunc of the 'and'. The trunc case requires that all of the truncated
|
|
// bits are zero, we can figure that out by looking at the 'and' mask.
|
|
if (AndZeros >= ValC->getBitWidth())
|
|
return nullptr;
|
|
|
|
Value *V = Builder->CreateZExtOrTrunc(LHS, SI.getType());
|
|
if (ValZeros > AndZeros)
|
|
V = Builder->CreateShl(V, ValZeros - AndZeros);
|
|
else if (ValZeros < AndZeros)
|
|
V = Builder->CreateLShr(V, AndZeros - ValZeros);
|
|
|
|
// Okay, now we know that everything is set up, we just don't know whether we
|
|
// have a icmp_ne or icmp_eq and whether the true or false val is the zero.
|
|
bool ShouldNotVal = !TrueVal->isZero();
|
|
ShouldNotVal ^= IC->getPredicate() == ICmpInst::ICMP_NE;
|
|
if (ShouldNotVal)
|
|
V = Builder->CreateXor(V, ValC);
|
|
|
|
// Apply an offset if needed.
|
|
if (Offset)
|
|
V = Builder->CreateAdd(V, Offset);
|
|
return V;
|
|
}
|
|
|
|
/// Turn select C, (X + Y), (X - Y) --> (X + (select C, Y, (-Y))).
|
|
/// This is even legal for FP.
|
|
static Instruction *foldAddSubSelect(SelectInst &SI,
|
|
InstCombiner::BuilderTy &Builder) {
|
|
Value *CondVal = SI.getCondition();
|
|
Value *TrueVal = SI.getTrueValue();
|
|
Value *FalseVal = SI.getFalseValue();
|
|
auto *TI = dyn_cast<Instruction>(TrueVal);
|
|
auto *FI = dyn_cast<Instruction>(FalseVal);
|
|
if (!TI || !FI || !TI->hasOneUse() || !FI->hasOneUse())
|
|
return nullptr;
|
|
|
|
Instruction *AddOp = nullptr, *SubOp = nullptr;
|
|
if ((TI->getOpcode() == Instruction::Sub &&
|
|
FI->getOpcode() == Instruction::Add) ||
|
|
(TI->getOpcode() == Instruction::FSub &&
|
|
FI->getOpcode() == Instruction::FAdd)) {
|
|
AddOp = FI;
|
|
SubOp = TI;
|
|
} else if ((FI->getOpcode() == Instruction::Sub &&
|
|
TI->getOpcode() == Instruction::Add) ||
|
|
(FI->getOpcode() == Instruction::FSub &&
|
|
TI->getOpcode() == Instruction::FAdd)) {
|
|
AddOp = TI;
|
|
SubOp = FI;
|
|
}
|
|
|
|
if (AddOp) {
|
|
Value *OtherAddOp = nullptr;
|
|
if (SubOp->getOperand(0) == AddOp->getOperand(0)) {
|
|
OtherAddOp = AddOp->getOperand(1);
|
|
} else if (SubOp->getOperand(0) == AddOp->getOperand(1)) {
|
|
OtherAddOp = AddOp->getOperand(0);
|
|
}
|
|
|
|
if (OtherAddOp) {
|
|
// So at this point we know we have (Y -> OtherAddOp):
|
|
// select C, (add X, Y), (sub X, Z)
|
|
Value *NegVal; // Compute -Z
|
|
if (SI.getType()->isFPOrFPVectorTy()) {
|
|
NegVal = Builder.CreateFNeg(SubOp->getOperand(1));
|
|
if (Instruction *NegInst = dyn_cast<Instruction>(NegVal)) {
|
|
FastMathFlags Flags = AddOp->getFastMathFlags();
|
|
Flags &= SubOp->getFastMathFlags();
|
|
NegInst->setFastMathFlags(Flags);
|
|
}
|
|
} else {
|
|
NegVal = Builder.CreateNeg(SubOp->getOperand(1));
|
|
}
|
|
|
|
Value *NewTrueOp = OtherAddOp;
|
|
Value *NewFalseOp = NegVal;
|
|
if (AddOp != TI)
|
|
std::swap(NewTrueOp, NewFalseOp);
|
|
Value *NewSel = Builder.CreateSelect(CondVal, NewTrueOp, NewFalseOp,
|
|
SI.getName() + ".p", &SI);
|
|
|
|
if (SI.getType()->isFPOrFPVectorTy()) {
|
|
Instruction *RI =
|
|
BinaryOperator::CreateFAdd(SubOp->getOperand(0), NewSel);
|
|
|
|
FastMathFlags Flags = AddOp->getFastMathFlags();
|
|
Flags &= SubOp->getFastMathFlags();
|
|
RI->setFastMathFlags(Flags);
|
|
return RI;
|
|
} else
|
|
return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel);
|
|
}
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
Instruction *InstCombiner::foldSelectExtConst(SelectInst &Sel) {
|
|
Instruction *ExtInst;
|
|
if (!match(Sel.getTrueValue(), m_Instruction(ExtInst)) &&
|
|
!match(Sel.getFalseValue(), m_Instruction(ExtInst)))
|
|
return nullptr;
|
|
|
|
auto ExtOpcode = ExtInst->getOpcode();
|
|
if (ExtOpcode != Instruction::ZExt && ExtOpcode != Instruction::SExt)
|
|
return nullptr;
|
|
|
|
// TODO: Handle larger types? That requires adjusting FoldOpIntoSelect too.
|
|
Value *X = ExtInst->getOperand(0);
|
|
Type *SmallType = X->getType();
|
|
if (!SmallType->getScalarType()->isIntegerTy(1))
|
|
return nullptr;
|
|
|
|
Constant *C;
|
|
if (!match(Sel.getTrueValue(), m_Constant(C)) &&
|
|
!match(Sel.getFalseValue(), m_Constant(C)))
|
|
return nullptr;
|
|
|
|
// If the constant is the same after truncation to the smaller type and
|
|
// extension to the original type, we can narrow the select.
|
|
Value *Cond = Sel.getCondition();
|
|
Type *SelType = Sel.getType();
|
|
Constant *TruncC = ConstantExpr::getTrunc(C, SmallType);
|
|
Constant *ExtC = ConstantExpr::getCast(ExtOpcode, TruncC, SelType);
|
|
if (ExtC == C) {
|
|
Value *TruncCVal = cast<Value>(TruncC);
|
|
if (ExtInst == Sel.getFalseValue())
|
|
std::swap(X, TruncCVal);
|
|
|
|
// select Cond, (ext X), C --> ext(select Cond, X, C')
|
|
// select Cond, C, (ext X) --> ext(select Cond, C', X)
|
|
Value *NewSel = Builder->CreateSelect(Cond, X, TruncCVal, "narrow", &Sel);
|
|
return CastInst::Create(Instruction::CastOps(ExtOpcode), NewSel, SelType);
|
|
}
|
|
|
|
// If one arm of the select is the extend of the condition, replace that arm
|
|
// with the extension of the appropriate known bool value.
|
|
if (Cond == X) {
|
|
if (ExtInst == Sel.getTrueValue()) {
|
|
// select X, (sext X), C --> select X, -1, C
|
|
// select X, (zext X), C --> select X, 1, C
|
|
Constant *One = ConstantInt::getTrue(SmallType);
|
|
Constant *AllOnesOrOne = ConstantExpr::getCast(ExtOpcode, One, SelType);
|
|
return SelectInst::Create(Cond, AllOnesOrOne, C, "", nullptr, &Sel);
|
|
} else {
|
|
// select X, C, (sext X) --> select X, C, 0
|
|
// select X, C, (zext X) --> select X, C, 0
|
|
Constant *Zero = ConstantInt::getNullValue(SelType);
|
|
return SelectInst::Create(Cond, C, Zero, "", nullptr, &Sel);
|
|
}
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
/// Try to transform a vector select with a constant condition vector into a
|
|
/// shuffle for easier combining with other shuffles and insert/extract.
|
|
static Instruction *canonicalizeSelectToShuffle(SelectInst &SI) {
|
|
Value *CondVal = SI.getCondition();
|
|
Constant *CondC;
|
|
if (!CondVal->getType()->isVectorTy() || !match(CondVal, m_Constant(CondC)))
|
|
return nullptr;
|
|
|
|
unsigned NumElts = CondVal->getType()->getVectorNumElements();
|
|
SmallVector<Constant *, 16> Mask;
|
|
Mask.reserve(NumElts);
|
|
Type *Int32Ty = Type::getInt32Ty(CondVal->getContext());
|
|
for (unsigned i = 0; i != NumElts; ++i) {
|
|
Constant *Elt = CondC->getAggregateElement(i);
|
|
if (!Elt)
|
|
return nullptr;
|
|
|
|
if (Elt->isOneValue()) {
|
|
// If the select condition element is true, choose from the 1st vector.
|
|
Mask.push_back(ConstantInt::get(Int32Ty, i));
|
|
} else if (Elt->isNullValue()) {
|
|
// If the select condition element is false, choose from the 2nd vector.
|
|
Mask.push_back(ConstantInt::get(Int32Ty, i + NumElts));
|
|
} else if (isa<UndefValue>(Elt)) {
|
|
// Undef in a select condition (choose one of the operands) does not mean
|
|
// the same thing as undef in a shuffle mask (any value is acceptable), so
|
|
// give up.
|
|
return nullptr;
|
|
} else {
|
|
// Bail out on a constant expression.
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
return new ShuffleVectorInst(SI.getTrueValue(), SI.getFalseValue(),
|
|
ConstantVector::get(Mask));
|
|
}
|
|
|
|
/// Reuse bitcasted operands between a compare and select:
|
|
/// select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) -->
|
|
/// bitcast (select (cmp (bitcast C), (bitcast D)), (bitcast C), (bitcast D))
|
|
static Instruction *foldSelectCmpBitcasts(SelectInst &Sel,
|
|
InstCombiner::BuilderTy &Builder) {
|
|
Value *Cond = Sel.getCondition();
|
|
Value *TVal = Sel.getTrueValue();
|
|
Value *FVal = Sel.getFalseValue();
|
|
|
|
CmpInst::Predicate Pred;
|
|
Value *A, *B;
|
|
if (!match(Cond, m_Cmp(Pred, m_Value(A), m_Value(B))))
|
|
return nullptr;
|
|
|
|
// The select condition is a compare instruction. If the select's true/false
|
|
// values are already the same as the compare operands, there's nothing to do.
|
|
if (TVal == A || TVal == B || FVal == A || FVal == B)
|
|
return nullptr;
|
|
|
|
Value *C, *D;
|
|
if (!match(A, m_BitCast(m_Value(C))) || !match(B, m_BitCast(m_Value(D))))
|
|
return nullptr;
|
|
|
|
// select (cmp (bitcast C), (bitcast D)), (bitcast TSrc), (bitcast FSrc)
|
|
Value *TSrc, *FSrc;
|
|
if (!match(TVal, m_BitCast(m_Value(TSrc))) ||
|
|
!match(FVal, m_BitCast(m_Value(FSrc))))
|
|
return nullptr;
|
|
|
|
// If the select true/false values are *different bitcasts* of the same source
|
|
// operands, make the select operands the same as the compare operands and
|
|
// cast the result. This is the canonical select form for min/max.
|
|
Value *NewSel;
|
|
if (TSrc == C && FSrc == D) {
|
|
// select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) -->
|
|
// bitcast (select (cmp A, B), A, B)
|
|
NewSel = Builder.CreateSelect(Cond, A, B, "", &Sel);
|
|
} else if (TSrc == D && FSrc == C) {
|
|
// select (cmp (bitcast C), (bitcast D)), (bitcast' D), (bitcast' C) -->
|
|
// bitcast (select (cmp A, B), B, A)
|
|
NewSel = Builder.CreateSelect(Cond, B, A, "", &Sel);
|
|
} else {
|
|
return nullptr;
|
|
}
|
|
return CastInst::CreateBitOrPointerCast(NewSel, Sel.getType());
|
|
}
|
|
|
|
Instruction *InstCombiner::visitSelectInst(SelectInst &SI) {
|
|
Value *CondVal = SI.getCondition();
|
|
Value *TrueVal = SI.getTrueValue();
|
|
Value *FalseVal = SI.getFalseValue();
|
|
Type *SelType = SI.getType();
|
|
|
|
if (Value *V =
|
|
SimplifySelectInst(CondVal, TrueVal, FalseVal, DL, &TLI, &DT, &AC))
|
|
return replaceInstUsesWith(SI, V);
|
|
|
|
if (Instruction *I = canonicalizeSelectToShuffle(SI))
|
|
return I;
|
|
|
|
if (SelType->getScalarType()->isIntegerTy(1) &&
|
|
TrueVal->getType() == CondVal->getType()) {
|
|
if (match(TrueVal, m_One())) {
|
|
// Change: A = select B, true, C --> A = or B, C
|
|
return BinaryOperator::CreateOr(CondVal, FalseVal);
|
|
}
|
|
if (match(TrueVal, m_Zero())) {
|
|
// Change: A = select B, false, C --> A = and !B, C
|
|
Value *NotCond = Builder->CreateNot(CondVal, "not." + CondVal->getName());
|
|
return BinaryOperator::CreateAnd(NotCond, FalseVal);
|
|
}
|
|
if (match(FalseVal, m_Zero())) {
|
|
// Change: A = select B, C, false --> A = and B, C
|
|
return BinaryOperator::CreateAnd(CondVal, TrueVal);
|
|
}
|
|
if (match(FalseVal, m_One())) {
|
|
// Change: A = select B, C, true --> A = or !B, C
|
|
Value *NotCond = Builder->CreateNot(CondVal, "not." + CondVal->getName());
|
|
return BinaryOperator::CreateOr(NotCond, TrueVal);
|
|
}
|
|
|
|
// select a, a, b -> a | b
|
|
// select a, b, a -> a & b
|
|
if (CondVal == TrueVal)
|
|
return BinaryOperator::CreateOr(CondVal, FalseVal);
|
|
if (CondVal == FalseVal)
|
|
return BinaryOperator::CreateAnd(CondVal, TrueVal);
|
|
|
|
// select a, ~a, b -> (~a) & b
|
|
// select a, b, ~a -> (~a) | b
|
|
if (match(TrueVal, m_Not(m_Specific(CondVal))))
|
|
return BinaryOperator::CreateAnd(TrueVal, FalseVal);
|
|
if (match(FalseVal, m_Not(m_Specific(CondVal))))
|
|
return BinaryOperator::CreateOr(TrueVal, FalseVal);
|
|
}
|
|
|
|
// Selecting between two integer or vector splat integer constants?
|
|
//
|
|
// Note that we don't handle a scalar select of vectors:
|
|
// select i1 %c, <2 x i8> <1, 1>, <2 x i8> <0, 0>
|
|
// because that may need 3 instructions to splat the condition value:
|
|
// extend, insertelement, shufflevector.
|
|
if (CondVal->getType()->isVectorTy() == SelType->isVectorTy()) {
|
|
// select C, 1, 0 -> zext C to int
|
|
if (match(TrueVal, m_One()) && match(FalseVal, m_Zero()))
|
|
return new ZExtInst(CondVal, SelType);
|
|
|
|
// select C, -1, 0 -> sext C to int
|
|
if (match(TrueVal, m_AllOnes()) && match(FalseVal, m_Zero()))
|
|
return new SExtInst(CondVal, SelType);
|
|
|
|
// select C, 0, 1 -> zext !C to int
|
|
if (match(TrueVal, m_Zero()) && match(FalseVal, m_One())) {
|
|
Value *NotCond = Builder->CreateNot(CondVal, "not." + CondVal->getName());
|
|
return new ZExtInst(NotCond, SelType);
|
|
}
|
|
|
|
// select C, 0, -1 -> sext !C to int
|
|
if (match(TrueVal, m_Zero()) && match(FalseVal, m_AllOnes())) {
|
|
Value *NotCond = Builder->CreateNot(CondVal, "not." + CondVal->getName());
|
|
return new SExtInst(NotCond, SelType);
|
|
}
|
|
}
|
|
|
|
if (ConstantInt *TrueValC = dyn_cast<ConstantInt>(TrueVal))
|
|
if (ConstantInt *FalseValC = dyn_cast<ConstantInt>(FalseVal))
|
|
if (Value *V = foldSelectICmpAnd(SI, TrueValC, FalseValC, Builder))
|
|
return replaceInstUsesWith(SI, V);
|
|
|
|
// See if we are selecting two values based on a comparison of the two values.
|
|
if (FCmpInst *FCI = dyn_cast<FCmpInst>(CondVal)) {
|
|
if (FCI->getOperand(0) == TrueVal && FCI->getOperand(1) == FalseVal) {
|
|
// Transform (X == Y) ? X : Y -> Y
|
|
if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) {
|
|
// This is not safe in general for floating point:
|
|
// consider X== -0, Y== +0.
|
|
// It becomes safe if either operand is a nonzero constant.
|
|
ConstantFP *CFPt, *CFPf;
|
|
if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
|
|
!CFPt->getValueAPF().isZero()) ||
|
|
((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
|
|
!CFPf->getValueAPF().isZero()))
|
|
return replaceInstUsesWith(SI, FalseVal);
|
|
}
|
|
// Transform (X une Y) ? X : Y -> X
|
|
if (FCI->getPredicate() == FCmpInst::FCMP_UNE) {
|
|
// This is not safe in general for floating point:
|
|
// consider X== -0, Y== +0.
|
|
// It becomes safe if either operand is a nonzero constant.
|
|
ConstantFP *CFPt, *CFPf;
|
|
if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
|
|
!CFPt->getValueAPF().isZero()) ||
|
|
((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
|
|
!CFPf->getValueAPF().isZero()))
|
|
return replaceInstUsesWith(SI, TrueVal);
|
|
}
|
|
|
|
// Canonicalize to use ordered comparisons by swapping the select
|
|
// operands.
|
|
//
|
|
// e.g.
|
|
// (X ugt Y) ? X : Y -> (X ole Y) ? Y : X
|
|
if (FCI->hasOneUse() && FCmpInst::isUnordered(FCI->getPredicate())) {
|
|
FCmpInst::Predicate InvPred = FCI->getInversePredicate();
|
|
IRBuilder<>::FastMathFlagGuard FMFG(*Builder);
|
|
Builder->setFastMathFlags(FCI->getFastMathFlags());
|
|
Value *NewCond = Builder->CreateFCmp(InvPred, TrueVal, FalseVal,
|
|
FCI->getName() + ".inv");
|
|
|
|
return SelectInst::Create(NewCond, FalseVal, TrueVal,
|
|
SI.getName() + ".p");
|
|
}
|
|
|
|
// NOTE: if we wanted to, this is where to detect MIN/MAX
|
|
} else if (FCI->getOperand(0) == FalseVal && FCI->getOperand(1) == TrueVal){
|
|
// Transform (X == Y) ? Y : X -> X
|
|
if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) {
|
|
// This is not safe in general for floating point:
|
|
// consider X== -0, Y== +0.
|
|
// It becomes safe if either operand is a nonzero constant.
|
|
ConstantFP *CFPt, *CFPf;
|
|
if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
|
|
!CFPt->getValueAPF().isZero()) ||
|
|
((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
|
|
!CFPf->getValueAPF().isZero()))
|
|
return replaceInstUsesWith(SI, FalseVal);
|
|
}
|
|
// Transform (X une Y) ? Y : X -> Y
|
|
if (FCI->getPredicate() == FCmpInst::FCMP_UNE) {
|
|
// This is not safe in general for floating point:
|
|
// consider X== -0, Y== +0.
|
|
// It becomes safe if either operand is a nonzero constant.
|
|
ConstantFP *CFPt, *CFPf;
|
|
if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
|
|
!CFPt->getValueAPF().isZero()) ||
|
|
((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
|
|
!CFPf->getValueAPF().isZero()))
|
|
return replaceInstUsesWith(SI, TrueVal);
|
|
}
|
|
|
|
// Canonicalize to use ordered comparisons by swapping the select
|
|
// operands.
|
|
//
|
|
// e.g.
|
|
// (X ugt Y) ? X : Y -> (X ole Y) ? X : Y
|
|
if (FCI->hasOneUse() && FCmpInst::isUnordered(FCI->getPredicate())) {
|
|
FCmpInst::Predicate InvPred = FCI->getInversePredicate();
|
|
IRBuilder<>::FastMathFlagGuard FMFG(*Builder);
|
|
Builder->setFastMathFlags(FCI->getFastMathFlags());
|
|
Value *NewCond = Builder->CreateFCmp(InvPred, FalseVal, TrueVal,
|
|
FCI->getName() + ".inv");
|
|
|
|
return SelectInst::Create(NewCond, FalseVal, TrueVal,
|
|
SI.getName() + ".p");
|
|
}
|
|
|
|
// NOTE: if we wanted to, this is where to detect MIN/MAX
|
|
}
|
|
// NOTE: if we wanted to, this is where to detect ABS
|
|
}
|
|
|
|
// See if we are selecting two values based on a comparison of the two values.
|
|
if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal))
|
|
if (Instruction *Result = foldSelectInstWithICmp(SI, ICI))
|
|
return Result;
|
|
|
|
if (Instruction *Add = foldAddSubSelect(SI, *Builder))
|
|
return Add;
|
|
|
|
// Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z))
|
|
auto *TI = dyn_cast<Instruction>(TrueVal);
|
|
auto *FI = dyn_cast<Instruction>(FalseVal);
|
|
if (TI && FI && TI->getOpcode() == FI->getOpcode())
|
|
if (Instruction *IV = foldSelectOpOp(SI, TI, FI))
|
|
return IV;
|
|
|
|
if (Instruction *I = foldSelectExtConst(SI))
|
|
return I;
|
|
|
|
// See if we can fold the select into one of our operands.
|
|
if (SelType->isIntOrIntVectorTy() || SelType->isFPOrFPVectorTy()) {
|
|
if (Instruction *FoldI = foldSelectIntoOp(SI, TrueVal, FalseVal))
|
|
return FoldI;
|
|
|
|
Value *LHS, *RHS, *LHS2, *RHS2;
|
|
Instruction::CastOps CastOp;
|
|
SelectPatternResult SPR = matchSelectPattern(&SI, LHS, RHS, &CastOp);
|
|
auto SPF = SPR.Flavor;
|
|
|
|
if (SelectPatternResult::isMinOrMax(SPF)) {
|
|
// Canonicalize so that type casts are outside select patterns.
|
|
if (LHS->getType()->getPrimitiveSizeInBits() !=
|
|
SelType->getPrimitiveSizeInBits()) {
|
|
CmpInst::Predicate Pred = getCmpPredicateForMinMax(SPF, SPR.Ordered);
|
|
|
|
Value *Cmp;
|
|
if (CmpInst::isIntPredicate(Pred)) {
|
|
Cmp = Builder->CreateICmp(Pred, LHS, RHS);
|
|
} else {
|
|
IRBuilder<>::FastMathFlagGuard FMFG(*Builder);
|
|
auto FMF = cast<FPMathOperator>(SI.getCondition())->getFastMathFlags();
|
|
Builder->setFastMathFlags(FMF);
|
|
Cmp = Builder->CreateFCmp(Pred, LHS, RHS);
|
|
}
|
|
|
|
Value *NewSI = Builder->CreateCast(
|
|
CastOp, Builder->CreateSelect(Cmp, LHS, RHS, SI.getName(), &SI),
|
|
SelType);
|
|
return replaceInstUsesWith(SI, NewSI);
|
|
}
|
|
}
|
|
|
|
if (SPF) {
|
|
// MAX(MAX(a, b), a) -> MAX(a, b)
|
|
// MIN(MIN(a, b), a) -> MIN(a, b)
|
|
// MAX(MIN(a, b), a) -> a
|
|
// MIN(MAX(a, b), a) -> a
|
|
// ABS(ABS(a)) -> ABS(a)
|
|
// NABS(NABS(a)) -> NABS(a)
|
|
if (SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor)
|
|
if (Instruction *R = foldSPFofSPF(cast<Instruction>(LHS),SPF2,LHS2,RHS2,
|
|
SI, SPF, RHS))
|
|
return R;
|
|
if (SelectPatternFlavor SPF2 = matchSelectPattern(RHS, LHS2, RHS2).Flavor)
|
|
if (Instruction *R = foldSPFofSPF(cast<Instruction>(RHS),SPF2,LHS2,RHS2,
|
|
SI, SPF, LHS))
|
|
return R;
|
|
}
|
|
|
|
// MAX(~a, ~b) -> ~MIN(a, b)
|
|
if ((SPF == SPF_SMAX || SPF == SPF_UMAX) &&
|
|
IsFreeToInvert(LHS, LHS->hasNUses(2)) &&
|
|
IsFreeToInvert(RHS, RHS->hasNUses(2))) {
|
|
// For this transform to be profitable, we need to eliminate at least two
|
|
// 'not' instructions if we're going to add one 'not' instruction.
|
|
int NumberOfNots =
|
|
(LHS->hasNUses(2) && match(LHS, m_Not(m_Value()))) +
|
|
(RHS->hasNUses(2) && match(RHS, m_Not(m_Value()))) +
|
|
(SI.hasOneUse() && match(*SI.user_begin(), m_Not(m_Value())));
|
|
|
|
if (NumberOfNots >= 2) {
|
|
Value *NewLHS = Builder->CreateNot(LHS);
|
|
Value *NewRHS = Builder->CreateNot(RHS);
|
|
Value *NewCmp = SPF == SPF_SMAX
|
|
? Builder->CreateICmpSLT(NewLHS, NewRHS)
|
|
: Builder->CreateICmpULT(NewLHS, NewRHS);
|
|
Value *NewSI =
|
|
Builder->CreateNot(Builder->CreateSelect(NewCmp, NewLHS, NewRHS));
|
|
return replaceInstUsesWith(SI, NewSI);
|
|
}
|
|
}
|
|
|
|
// TODO.
|
|
// ABS(-X) -> ABS(X)
|
|
}
|
|
|
|
// See if we can fold the select into a phi node if the condition is a select.
|
|
if (auto *PN = dyn_cast<PHINode>(SI.getCondition()))
|
|
// The true/false values have to be live in the PHI predecessor's blocks.
|
|
if (canSelectOperandBeMappingIntoPredBlock(TrueVal, SI) &&
|
|
canSelectOperandBeMappingIntoPredBlock(FalseVal, SI))
|
|
if (Instruction *NV = foldOpIntoPhi(SI, PN))
|
|
return NV;
|
|
|
|
if (SelectInst *TrueSI = dyn_cast<SelectInst>(TrueVal)) {
|
|
if (TrueSI->getCondition()->getType() == CondVal->getType()) {
|
|
// select(C, select(C, a, b), c) -> select(C, a, c)
|
|
if (TrueSI->getCondition() == CondVal) {
|
|
if (SI.getTrueValue() == TrueSI->getTrueValue())
|
|
return nullptr;
|
|
SI.setOperand(1, TrueSI->getTrueValue());
|
|
return &SI;
|
|
}
|
|
// select(C0, select(C1, a, b), b) -> select(C0&C1, a, b)
|
|
// We choose this as normal form to enable folding on the And and shortening
|
|
// paths for the values (this helps GetUnderlyingObjects() for example).
|
|
if (TrueSI->getFalseValue() == FalseVal && TrueSI->hasOneUse()) {
|
|
Value *And = Builder->CreateAnd(CondVal, TrueSI->getCondition());
|
|
SI.setOperand(0, And);
|
|
SI.setOperand(1, TrueSI->getTrueValue());
|
|
return &SI;
|
|
}
|
|
}
|
|
}
|
|
if (SelectInst *FalseSI = dyn_cast<SelectInst>(FalseVal)) {
|
|
if (FalseSI->getCondition()->getType() == CondVal->getType()) {
|
|
// select(C, a, select(C, b, c)) -> select(C, a, c)
|
|
if (FalseSI->getCondition() == CondVal) {
|
|
if (SI.getFalseValue() == FalseSI->getFalseValue())
|
|
return nullptr;
|
|
SI.setOperand(2, FalseSI->getFalseValue());
|
|
return &SI;
|
|
}
|
|
// select(C0, a, select(C1, a, b)) -> select(C0|C1, a, b)
|
|
if (FalseSI->getTrueValue() == TrueVal && FalseSI->hasOneUse()) {
|
|
Value *Or = Builder->CreateOr(CondVal, FalseSI->getCondition());
|
|
SI.setOperand(0, Or);
|
|
SI.setOperand(2, FalseSI->getFalseValue());
|
|
return &SI;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (BinaryOperator::isNot(CondVal)) {
|
|
SI.setOperand(0, BinaryOperator::getNotArgument(CondVal));
|
|
SI.setOperand(1, FalseVal);
|
|
SI.setOperand(2, TrueVal);
|
|
return &SI;
|
|
}
|
|
|
|
if (VectorType *VecTy = dyn_cast<VectorType>(SelType)) {
|
|
unsigned VWidth = VecTy->getNumElements();
|
|
APInt UndefElts(VWidth, 0);
|
|
APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
|
|
if (Value *V = SimplifyDemandedVectorElts(&SI, AllOnesEltMask, UndefElts)) {
|
|
if (V != &SI)
|
|
return replaceInstUsesWith(SI, V);
|
|
return &SI;
|
|
}
|
|
|
|
if (isa<ConstantAggregateZero>(CondVal)) {
|
|
return replaceInstUsesWith(SI, FalseVal);
|
|
}
|
|
}
|
|
|
|
// See if we can determine the result of this select based on a dominating
|
|
// condition.
|
|
BasicBlock *Parent = SI.getParent();
|
|
if (BasicBlock *Dom = Parent->getSinglePredecessor()) {
|
|
auto *PBI = dyn_cast_or_null<BranchInst>(Dom->getTerminator());
|
|
if (PBI && PBI->isConditional() &&
|
|
PBI->getSuccessor(0) != PBI->getSuccessor(1) &&
|
|
(PBI->getSuccessor(0) == Parent || PBI->getSuccessor(1) == Parent)) {
|
|
bool CondIsFalse = PBI->getSuccessor(1) == Parent;
|
|
Optional<bool> Implication = isImpliedCondition(
|
|
PBI->getCondition(), SI.getCondition(), DL, CondIsFalse);
|
|
if (Implication) {
|
|
Value *V = *Implication ? TrueVal : FalseVal;
|
|
return replaceInstUsesWith(SI, V);
|
|
}
|
|
}
|
|
}
|
|
|
|
// If we can compute the condition, there's no need for a select.
|
|
// Like the above fold, we are attempting to reduce compile-time cost by
|
|
// putting this fold here with limitations rather than in InstSimplify.
|
|
// The motivation for this call into value tracking is to take advantage of
|
|
// the assumption cache, so make sure that is populated.
|
|
if (!CondVal->getType()->isVectorTy() && !AC.assumptions().empty()) {
|
|
APInt KnownOne(1, 0), KnownZero(1, 0);
|
|
computeKnownBits(CondVal, KnownZero, KnownOne, 0, &SI);
|
|
if (KnownOne == 1)
|
|
return replaceInstUsesWith(SI, TrueVal);
|
|
if (KnownZero == 1)
|
|
return replaceInstUsesWith(SI, FalseVal);
|
|
}
|
|
|
|
if (Instruction *BitCastSel = foldSelectCmpBitcasts(SI, *Builder))
|
|
return BitCastSel;
|
|
|
|
return nullptr;
|
|
}
|