llvm/utils/TableGen/CodeGenMapTable.cpp
Matt Arsenault a7a00148d5 TableGen: Add LLVM_READONLY to generated InstrMapping functions
These just read from a generated table.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@248473 91177308-0d34-0410-b5e6-96231b3b80d8
2015-09-24 07:51:20 +00:00

601 lines
23 KiB
C++

//===- CodeGenMapTable.cpp - Instruction Mapping Table Generator ----------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// CodeGenMapTable provides functionality for the TabelGen to create
// relation mapping between instructions. Relation models are defined using
// InstrMapping as a base class. This file implements the functionality which
// parses these definitions and generates relation maps using the information
// specified there. These maps are emitted as tables in the XXXGenInstrInfo.inc
// file along with the functions to query them.
//
// A relationship model to relate non-predicate instructions with their
// predicated true/false forms can be defined as follows:
//
// def getPredOpcode : InstrMapping {
// let FilterClass = "PredRel";
// let RowFields = ["BaseOpcode"];
// let ColFields = ["PredSense"];
// let KeyCol = ["none"];
// let ValueCols = [["true"], ["false"]]; }
//
// CodeGenMapTable parses this map and generates a table in XXXGenInstrInfo.inc
// file that contains the instructions modeling this relationship. This table
// is defined in the function
// "int getPredOpcode(uint16_t Opcode, enum PredSense inPredSense)"
// that can be used to retrieve the predicated form of the instruction by
// passing its opcode value and the predicate sense (true/false) of the desired
// instruction as arguments.
//
// Short description of the algorithm:
//
// 1) Iterate through all the records that derive from "InstrMapping" class.
// 2) For each record, filter out instructions based on the FilterClass value.
// 3) Iterate through this set of instructions and insert them into
// RowInstrMap map based on their RowFields values. RowInstrMap is keyed by the
// vector of RowFields values and contains vectors of Records (instructions) as
// values. RowFields is a list of fields that are required to have the same
// values for all the instructions appearing in the same row of the relation
// table. All the instructions in a given row of the relation table have some
// sort of relationship with the key instruction defined by the corresponding
// relationship model.
//
// Ex: RowInstrMap(RowVal1, RowVal2, ...) -> [Instr1, Instr2, Instr3, ... ]
// Here Instr1, Instr2, Instr3 have same values (RowVal1, RowVal2) for
// RowFields. These groups of instructions are later matched against ValueCols
// to determine the column they belong to, if any.
//
// While building the RowInstrMap map, collect all the key instructions in
// KeyInstrVec. These are the instructions having the same values as KeyCol
// for all the fields listed in ColFields.
//
// For Example:
//
// Relate non-predicate instructions with their predicated true/false forms.
//
// def getPredOpcode : InstrMapping {
// let FilterClass = "PredRel";
// let RowFields = ["BaseOpcode"];
// let ColFields = ["PredSense"];
// let KeyCol = ["none"];
// let ValueCols = [["true"], ["false"]]; }
//
// Here, only instructions that have "none" as PredSense will be selected as key
// instructions.
//
// 4) For each key instruction, get the group of instructions that share the
// same key-value as the key instruction from RowInstrMap. Iterate over the list
// of columns in ValueCols (it is defined as a list<list<string> >. Therefore,
// it can specify multi-column relationships). For each column, find the
// instruction from the group that matches all the values for the column.
// Multiple matches are not allowed.
//
//===----------------------------------------------------------------------===//
#include "CodeGenTarget.h"
#include "llvm/Support/Format.h"
#include "llvm/TableGen/Error.h"
using namespace llvm;
typedef std::map<std::string, std::vector<Record*> > InstrRelMapTy;
typedef std::map<std::vector<Init*>, std::vector<Record*> > RowInstrMapTy;
namespace {
//===----------------------------------------------------------------------===//
// This class is used to represent InstrMapping class defined in Target.td file.
class InstrMap {
private:
std::string Name;
std::string FilterClass;
ListInit *RowFields;
ListInit *ColFields;
ListInit *KeyCol;
std::vector<ListInit*> ValueCols;
public:
InstrMap(Record* MapRec) {
Name = MapRec->getName();
// FilterClass - It's used to reduce the search space only to the
// instructions that define the kind of relationship modeled by
// this InstrMapping object/record.
const RecordVal *Filter = MapRec->getValue("FilterClass");
FilterClass = Filter->getValue()->getAsUnquotedString();
// List of fields/attributes that need to be same across all the
// instructions in a row of the relation table.
RowFields = MapRec->getValueAsListInit("RowFields");
// List of fields/attributes that are constant across all the instruction
// in a column of the relation table. Ex: ColFields = 'predSense'
ColFields = MapRec->getValueAsListInit("ColFields");
// Values for the fields/attributes listed in 'ColFields'.
// Ex: KeyCol = 'noPred' -- key instruction is non-predicated
KeyCol = MapRec->getValueAsListInit("KeyCol");
// List of values for the fields/attributes listed in 'ColFields', one for
// each column in the relation table.
//
// Ex: ValueCols = [['true'],['false']] -- it results two columns in the
// table. First column requires all the instructions to have predSense
// set to 'true' and second column requires it to be 'false'.
ListInit *ColValList = MapRec->getValueAsListInit("ValueCols");
// Each instruction map must specify at least one column for it to be valid.
if (ColValList->empty())
PrintFatalError(MapRec->getLoc(), "InstrMapping record `" +
MapRec->getName() + "' has empty " + "`ValueCols' field!");
for (Init *I : ColValList->getValues()) {
ListInit *ColI = dyn_cast<ListInit>(I);
// Make sure that all the sub-lists in 'ValueCols' have same number of
// elements as the fields in 'ColFields'.
if (ColI->size() != ColFields->size())
PrintFatalError(MapRec->getLoc(), "Record `" + MapRec->getName() +
"', field `ValueCols' entries don't match with " +
" the entries in 'ColFields'!");
ValueCols.push_back(ColI);
}
}
std::string getName() const {
return Name;
}
std::string getFilterClass() {
return FilterClass;
}
ListInit *getRowFields() const {
return RowFields;
}
ListInit *getColFields() const {
return ColFields;
}
ListInit *getKeyCol() const {
return KeyCol;
}
const std::vector<ListInit*> &getValueCols() const {
return ValueCols;
}
};
} // End anonymous namespace.
//===----------------------------------------------------------------------===//
// class MapTableEmitter : It builds the instruction relation maps using
// the information provided in InstrMapping records. It outputs these
// relationship maps as tables into XXXGenInstrInfo.inc file along with the
// functions to query them.
namespace {
class MapTableEmitter {
private:
// std::string TargetName;
const CodeGenTarget &Target;
// InstrMapDesc - InstrMapping record to be processed.
InstrMap InstrMapDesc;
// InstrDefs - list of instructions filtered using FilterClass defined
// in InstrMapDesc.
std::vector<Record*> InstrDefs;
// RowInstrMap - maps RowFields values to the instructions. It's keyed by the
// values of the row fields and contains vector of records as values.
RowInstrMapTy RowInstrMap;
// KeyInstrVec - list of key instructions.
std::vector<Record*> KeyInstrVec;
DenseMap<Record*, std::vector<Record*> > MapTable;
public:
MapTableEmitter(CodeGenTarget &Target, RecordKeeper &Records, Record *IMRec):
Target(Target), InstrMapDesc(IMRec) {
const std::string FilterClass = InstrMapDesc.getFilterClass();
InstrDefs = Records.getAllDerivedDefinitions(FilterClass);
}
void buildRowInstrMap();
// Returns true if an instruction is a key instruction, i.e., its ColFields
// have same values as KeyCol.
bool isKeyColInstr(Record* CurInstr);
// Find column instruction corresponding to a key instruction based on the
// constraints for that column.
Record *getInstrForColumn(Record *KeyInstr, ListInit *CurValueCol);
// Find column instructions for each key instruction based
// on ValueCols and store them into MapTable.
void buildMapTable();
void emitBinSearch(raw_ostream &OS, unsigned TableSize);
void emitTablesWithFunc(raw_ostream &OS);
unsigned emitBinSearchTable(raw_ostream &OS);
// Lookup functions to query binary search tables.
void emitMapFuncBody(raw_ostream &OS, unsigned TableSize);
};
} // End anonymous namespace.
//===----------------------------------------------------------------------===//
// Process all the instructions that model this relation (alreday present in
// InstrDefs) and insert them into RowInstrMap which is keyed by the values of
// the fields listed as RowFields. It stores vectors of records as values.
// All the related instructions have the same values for the RowFields thus are
// part of the same key-value pair.
//===----------------------------------------------------------------------===//
void MapTableEmitter::buildRowInstrMap() {
for (Record *CurInstr : InstrDefs) {
std::vector<Init*> KeyValue;
ListInit *RowFields = InstrMapDesc.getRowFields();
for (Init *RowField : RowFields->getValues()) {
Init *CurInstrVal = CurInstr->getValue(RowField)->getValue();
KeyValue.push_back(CurInstrVal);
}
// Collect key instructions into KeyInstrVec. Later, these instructions are
// processed to assign column position to the instructions sharing
// their KeyValue in RowInstrMap.
if (isKeyColInstr(CurInstr))
KeyInstrVec.push_back(CurInstr);
RowInstrMap[KeyValue].push_back(CurInstr);
}
}
//===----------------------------------------------------------------------===//
// Return true if an instruction is a KeyCol instruction.
//===----------------------------------------------------------------------===//
bool MapTableEmitter::isKeyColInstr(Record* CurInstr) {
ListInit *ColFields = InstrMapDesc.getColFields();
ListInit *KeyCol = InstrMapDesc.getKeyCol();
// Check if the instruction is a KeyCol instruction.
bool MatchFound = true;
for (unsigned j = 0, endCF = ColFields->size();
(j < endCF) && MatchFound; j++) {
RecordVal *ColFieldName = CurInstr->getValue(ColFields->getElement(j));
std::string CurInstrVal = ColFieldName->getValue()->getAsUnquotedString();
std::string KeyColValue = KeyCol->getElement(j)->getAsUnquotedString();
MatchFound = (CurInstrVal == KeyColValue);
}
return MatchFound;
}
//===----------------------------------------------------------------------===//
// Build a map to link key instructions with the column instructions arranged
// according to their column positions.
//===----------------------------------------------------------------------===//
void MapTableEmitter::buildMapTable() {
// Find column instructions for a given key based on the ColField
// constraints.
const std::vector<ListInit*> &ValueCols = InstrMapDesc.getValueCols();
unsigned NumOfCols = ValueCols.size();
for (Record *CurKeyInstr : KeyInstrVec) {
std::vector<Record*> ColInstrVec(NumOfCols);
// Find the column instruction based on the constraints for the column.
for (unsigned ColIdx = 0; ColIdx < NumOfCols; ColIdx++) {
ListInit *CurValueCol = ValueCols[ColIdx];
Record *ColInstr = getInstrForColumn(CurKeyInstr, CurValueCol);
ColInstrVec[ColIdx] = ColInstr;
}
MapTable[CurKeyInstr] = ColInstrVec;
}
}
//===----------------------------------------------------------------------===//
// Find column instruction based on the constraints for that column.
//===----------------------------------------------------------------------===//
Record *MapTableEmitter::getInstrForColumn(Record *KeyInstr,
ListInit *CurValueCol) {
ListInit *RowFields = InstrMapDesc.getRowFields();
std::vector<Init*> KeyValue;
// Construct KeyValue using KeyInstr's values for RowFields.
for (Init *RowField : RowFields->getValues()) {
Init *KeyInstrVal = KeyInstr->getValue(RowField)->getValue();
KeyValue.push_back(KeyInstrVal);
}
// Get all the instructions that share the same KeyValue as the KeyInstr
// in RowInstrMap. We search through these instructions to find a match
// for the current column, i.e., the instruction which has the same values
// as CurValueCol for all the fields in ColFields.
const std::vector<Record*> &RelatedInstrVec = RowInstrMap[KeyValue];
ListInit *ColFields = InstrMapDesc.getColFields();
Record *MatchInstr = nullptr;
for (unsigned i = 0, e = RelatedInstrVec.size(); i < e; i++) {
bool MatchFound = true;
Record *CurInstr = RelatedInstrVec[i];
for (unsigned j = 0, endCF = ColFields->size();
(j < endCF) && MatchFound; j++) {
Init *ColFieldJ = ColFields->getElement(j);
Init *CurInstrInit = CurInstr->getValue(ColFieldJ)->getValue();
std::string CurInstrVal = CurInstrInit->getAsUnquotedString();
Init *ColFieldJVallue = CurValueCol->getElement(j);
MatchFound = (CurInstrVal == ColFieldJVallue->getAsUnquotedString());
}
if (MatchFound) {
if (MatchInstr) // Already had a match
// Error if multiple matches are found for a column.
PrintFatalError("Multiple matches found for `" + KeyInstr->getName() +
"', for the relation `" + InstrMapDesc.getName());
MatchInstr = CurInstr;
}
}
return MatchInstr;
}
//===----------------------------------------------------------------------===//
// Emit one table per relation. Only instructions with a valid relation of a
// given type are included in the table sorted by their enum values (opcodes).
// Binary search is used for locating instructions in the table.
//===----------------------------------------------------------------------===//
unsigned MapTableEmitter::emitBinSearchTable(raw_ostream &OS) {
const std::vector<const CodeGenInstruction*> &NumberedInstructions =
Target.getInstructionsByEnumValue();
std::string TargetName = Target.getName();
const std::vector<ListInit*> &ValueCols = InstrMapDesc.getValueCols();
unsigned NumCol = ValueCols.size();
unsigned TotalNumInstr = NumberedInstructions.size();
unsigned TableSize = 0;
OS << "static const uint16_t "<<InstrMapDesc.getName();
// Number of columns in the table are NumCol+1 because key instructions are
// emitted as first column.
OS << "Table[]["<< NumCol+1 << "] = {\n";
for (unsigned i = 0; i < TotalNumInstr; i++) {
Record *CurInstr = NumberedInstructions[i]->TheDef;
std::vector<Record*> ColInstrs = MapTable[CurInstr];
std::string OutStr("");
unsigned RelExists = 0;
if (!ColInstrs.empty()) {
for (unsigned j = 0; j < NumCol; j++) {
if (ColInstrs[j] != nullptr) {
RelExists = 1;
OutStr += ", ";
OutStr += TargetName;
OutStr += "::";
OutStr += ColInstrs[j]->getName();
} else { OutStr += ", (uint16_t)-1U";}
}
if (RelExists) {
OS << " { " << TargetName << "::" << CurInstr->getName();
OS << OutStr <<" },\n";
TableSize++;
}
}
}
if (!TableSize) {
OS << " { " << TargetName << "::" << "INSTRUCTION_LIST_END, ";
OS << TargetName << "::" << "INSTRUCTION_LIST_END }";
}
OS << "}; // End of " << InstrMapDesc.getName() << "Table\n\n";
return TableSize;
}
//===----------------------------------------------------------------------===//
// Emit binary search algorithm as part of the functions used to query
// relation tables.
//===----------------------------------------------------------------------===//
void MapTableEmitter::emitBinSearch(raw_ostream &OS, unsigned TableSize) {
OS << " unsigned mid;\n";
OS << " unsigned start = 0;\n";
OS << " unsigned end = " << TableSize << ";\n";
OS << " while (start < end) {\n";
OS << " mid = start + (end - start)/2;\n";
OS << " if (Opcode == " << InstrMapDesc.getName() << "Table[mid][0]) {\n";
OS << " break;\n";
OS << " }\n";
OS << " if (Opcode < " << InstrMapDesc.getName() << "Table[mid][0])\n";
OS << " end = mid;\n";
OS << " else\n";
OS << " start = mid + 1;\n";
OS << " }\n";
OS << " if (start == end)\n";
OS << " return -1; // Instruction doesn't exist in this table.\n\n";
}
//===----------------------------------------------------------------------===//
// Emit functions to query relation tables.
//===----------------------------------------------------------------------===//
void MapTableEmitter::emitMapFuncBody(raw_ostream &OS,
unsigned TableSize) {
ListInit *ColFields = InstrMapDesc.getColFields();
const std::vector<ListInit*> &ValueCols = InstrMapDesc.getValueCols();
// Emit binary search algorithm to locate instructions in the
// relation table. If found, return opcode value from the appropriate column
// of the table.
emitBinSearch(OS, TableSize);
if (ValueCols.size() > 1) {
for (unsigned i = 0, e = ValueCols.size(); i < e; i++) {
ListInit *ColumnI = ValueCols[i];
for (unsigned j = 0, ColSize = ColumnI->size(); j < ColSize; ++j) {
std::string ColName = ColFields->getElement(j)->getAsUnquotedString();
OS << " if (in" << ColName;
OS << " == ";
OS << ColName << "_" << ColumnI->getElement(j)->getAsUnquotedString();
if (j < ColumnI->size() - 1) OS << " && ";
else OS << ")\n";
}
OS << " return " << InstrMapDesc.getName();
OS << "Table[mid]["<<i+1<<"];\n";
}
OS << " return -1;";
}
else
OS << " return " << InstrMapDesc.getName() << "Table[mid][1];\n";
OS <<"}\n\n";
}
//===----------------------------------------------------------------------===//
// Emit relation tables and the functions to query them.
//===----------------------------------------------------------------------===//
void MapTableEmitter::emitTablesWithFunc(raw_ostream &OS) {
// Emit function name and the input parameters : mostly opcode value of the
// current instruction. However, if a table has multiple columns (more than 2
// since first column is used for the key instructions), then we also need
// to pass another input to indicate the column to be selected.
ListInit *ColFields = InstrMapDesc.getColFields();
const std::vector<ListInit*> &ValueCols = InstrMapDesc.getValueCols();
OS << "// "<< InstrMapDesc.getName() << "\nLLVM_READONLY\n";
OS << "int "<< InstrMapDesc.getName() << "(uint16_t Opcode";
if (ValueCols.size() > 1) {
for (Init *CF : ColFields->getValues()) {
std::string ColName = CF->getAsUnquotedString();
OS << ", enum " << ColName << " in" << ColName << ") {\n";
}
} else { OS << ") {\n"; }
// Emit map table.
unsigned TableSize = emitBinSearchTable(OS);
// Emit rest of the function body.
emitMapFuncBody(OS, TableSize);
}
//===----------------------------------------------------------------------===//
// Emit enums for the column fields across all the instruction maps.
//===----------------------------------------------------------------------===//
static void emitEnums(raw_ostream &OS, RecordKeeper &Records) {
std::vector<Record*> InstrMapVec;
InstrMapVec = Records.getAllDerivedDefinitions("InstrMapping");
std::map<std::string, std::vector<Init*> > ColFieldValueMap;
// Iterate over all InstrMapping records and create a map between column
// fields and their possible values across all records.
for (unsigned i = 0, e = InstrMapVec.size(); i < e; i++) {
Record *CurMap = InstrMapVec[i];
ListInit *ColFields;
ColFields = CurMap->getValueAsListInit("ColFields");
ListInit *List = CurMap->getValueAsListInit("ValueCols");
std::vector<ListInit*> ValueCols;
unsigned ListSize = List->size();
for (unsigned j = 0; j < ListSize; j++) {
ListInit *ListJ = dyn_cast<ListInit>(List->getElement(j));
if (ListJ->size() != ColFields->size())
PrintFatalError("Record `" + CurMap->getName() + "', field "
"`ValueCols' entries don't match with the entries in 'ColFields' !");
ValueCols.push_back(ListJ);
}
for (unsigned j = 0, endCF = ColFields->size(); j < endCF; j++) {
for (unsigned k = 0; k < ListSize; k++){
std::string ColName = ColFields->getElement(j)->getAsUnquotedString();
ColFieldValueMap[ColName].push_back((ValueCols[k])->getElement(j));
}
}
}
for (std::map<std::string, std::vector<Init*> >::iterator
II = ColFieldValueMap.begin(), IE = ColFieldValueMap.end();
II != IE; II++) {
std::vector<Init*> FieldValues = (*II).second;
// Delete duplicate entries from ColFieldValueMap
for (unsigned i = 0; i < FieldValues.size() - 1; i++) {
Init *CurVal = FieldValues[i];
for (unsigned j = i+1; j < FieldValues.size(); j++) {
if (CurVal == FieldValues[j]) {
FieldValues.erase(FieldValues.begin()+j);
}
}
}
// Emit enumerated values for the column fields.
OS << "enum " << (*II).first << " {\n";
for (unsigned i = 0, endFV = FieldValues.size(); i < endFV; i++) {
OS << "\t" << (*II).first << "_" << FieldValues[i]->getAsUnquotedString();
if (i != endFV - 1)
OS << ",\n";
else
OS << "\n};\n\n";
}
}
}
namespace llvm {
//===----------------------------------------------------------------------===//
// Parse 'InstrMapping' records and use the information to form relationship
// between instructions. These relations are emitted as a tables along with the
// functions to query them.
//===----------------------------------------------------------------------===//
void EmitMapTable(RecordKeeper &Records, raw_ostream &OS) {
CodeGenTarget Target(Records);
std::string TargetName = Target.getName();
std::vector<Record*> InstrMapVec;
InstrMapVec = Records.getAllDerivedDefinitions("InstrMapping");
if (InstrMapVec.empty())
return;
OS << "#ifdef GET_INSTRMAP_INFO\n";
OS << "#undef GET_INSTRMAP_INFO\n";
OS << "namespace llvm {\n\n";
OS << "namespace " << TargetName << " {\n\n";
// Emit coulumn field names and their values as enums.
emitEnums(OS, Records);
// Iterate over all instruction mapping records and construct relationship
// maps based on the information specified there.
//
for (unsigned i = 0, e = InstrMapVec.size(); i < e; i++) {
MapTableEmitter IMap(Target, Records, InstrMapVec[i]);
// Build RowInstrMap to group instructions based on their values for
// RowFields. In the process, also collect key instructions into
// KeyInstrVec.
IMap.buildRowInstrMap();
// Build MapTable to map key instructions with the corresponding column
// instructions.
IMap.buildMapTable();
// Emit map tables and the functions to query them.
IMap.emitTablesWithFunc(OS);
}
OS << "} // End " << TargetName << " namespace\n";
OS << "} // End llvm namespace\n";
OS << "#endif // GET_INSTRMAP_INFO\n\n";
}
} // End llvm namespace