mirror of
https://github.com/RPCSX/llvm.git
synced 2025-01-12 23:40:54 +00:00
aa96bc9c68
This patch moves some helper functions related to interleaved access vectorization out of LoopVectorize.cpp and into VectorUtils.cpp. We would like to use these functions in a follow-on patch that improves interleaved load and store lowering in (ARM/AArch64)ISelLowering.cpp. One of the functions was already duplicated there and has been removed. Differential Revision: https://reviews.llvm.org/D29398 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@293788 91177308-0d34-0410-b5e6-96231b3b80d8
576 lines
20 KiB
C++
576 lines
20 KiB
C++
//===----------- VectorUtils.cpp - Vectorizer utility functions -----------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines vectorizer utilities.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/ADT/EquivalenceClasses.h"
|
|
#include "llvm/Analysis/DemandedBits.h"
|
|
#include "llvm/Analysis/LoopInfo.h"
|
|
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
|
|
#include "llvm/Analysis/ScalarEvolution.h"
|
|
#include "llvm/Analysis/TargetTransformInfo.h"
|
|
#include "llvm/Analysis/ValueTracking.h"
|
|
#include "llvm/Analysis/VectorUtils.h"
|
|
#include "llvm/IR/GetElementPtrTypeIterator.h"
|
|
#include "llvm/IR/PatternMatch.h"
|
|
#include "llvm/IR/Value.h"
|
|
#include "llvm/IR/Constants.h"
|
|
|
|
using namespace llvm;
|
|
using namespace llvm::PatternMatch;
|
|
|
|
/// \brief Identify if the intrinsic is trivially vectorizable.
|
|
/// This method returns true if the intrinsic's argument types are all
|
|
/// scalars for the scalar form of the intrinsic and all vectors for
|
|
/// the vector form of the intrinsic.
|
|
bool llvm::isTriviallyVectorizable(Intrinsic::ID ID) {
|
|
switch (ID) {
|
|
case Intrinsic::sqrt:
|
|
case Intrinsic::sin:
|
|
case Intrinsic::cos:
|
|
case Intrinsic::exp:
|
|
case Intrinsic::exp2:
|
|
case Intrinsic::log:
|
|
case Intrinsic::log10:
|
|
case Intrinsic::log2:
|
|
case Intrinsic::fabs:
|
|
case Intrinsic::minnum:
|
|
case Intrinsic::maxnum:
|
|
case Intrinsic::copysign:
|
|
case Intrinsic::floor:
|
|
case Intrinsic::ceil:
|
|
case Intrinsic::trunc:
|
|
case Intrinsic::rint:
|
|
case Intrinsic::nearbyint:
|
|
case Intrinsic::round:
|
|
case Intrinsic::bswap:
|
|
case Intrinsic::bitreverse:
|
|
case Intrinsic::ctpop:
|
|
case Intrinsic::pow:
|
|
case Intrinsic::fma:
|
|
case Intrinsic::fmuladd:
|
|
case Intrinsic::ctlz:
|
|
case Intrinsic::cttz:
|
|
case Intrinsic::powi:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/// \brief Identifies if the intrinsic has a scalar operand. It check for
|
|
/// ctlz,cttz and powi special intrinsics whose argument is scalar.
|
|
bool llvm::hasVectorInstrinsicScalarOpd(Intrinsic::ID ID,
|
|
unsigned ScalarOpdIdx) {
|
|
switch (ID) {
|
|
case Intrinsic::ctlz:
|
|
case Intrinsic::cttz:
|
|
case Intrinsic::powi:
|
|
return (ScalarOpdIdx == 1);
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/// \brief Returns intrinsic ID for call.
|
|
/// For the input call instruction it finds mapping intrinsic and returns
|
|
/// its ID, in case it does not found it return not_intrinsic.
|
|
Intrinsic::ID llvm::getVectorIntrinsicIDForCall(const CallInst *CI,
|
|
const TargetLibraryInfo *TLI) {
|
|
Intrinsic::ID ID = getIntrinsicForCallSite(CI, TLI);
|
|
if (ID == Intrinsic::not_intrinsic)
|
|
return Intrinsic::not_intrinsic;
|
|
|
|
if (isTriviallyVectorizable(ID) || ID == Intrinsic::lifetime_start ||
|
|
ID == Intrinsic::lifetime_end || ID == Intrinsic::assume)
|
|
return ID;
|
|
return Intrinsic::not_intrinsic;
|
|
}
|
|
|
|
/// \brief Find the operand of the GEP that should be checked for consecutive
|
|
/// stores. This ignores trailing indices that have no effect on the final
|
|
/// pointer.
|
|
unsigned llvm::getGEPInductionOperand(const GetElementPtrInst *Gep) {
|
|
const DataLayout &DL = Gep->getModule()->getDataLayout();
|
|
unsigned LastOperand = Gep->getNumOperands() - 1;
|
|
unsigned GEPAllocSize = DL.getTypeAllocSize(Gep->getResultElementType());
|
|
|
|
// Walk backwards and try to peel off zeros.
|
|
while (LastOperand > 1 && match(Gep->getOperand(LastOperand), m_Zero())) {
|
|
// Find the type we're currently indexing into.
|
|
gep_type_iterator GEPTI = gep_type_begin(Gep);
|
|
std::advance(GEPTI, LastOperand - 2);
|
|
|
|
// If it's a type with the same allocation size as the result of the GEP we
|
|
// can peel off the zero index.
|
|
if (DL.getTypeAllocSize(GEPTI.getIndexedType()) != GEPAllocSize)
|
|
break;
|
|
--LastOperand;
|
|
}
|
|
|
|
return LastOperand;
|
|
}
|
|
|
|
/// \brief If the argument is a GEP, then returns the operand identified by
|
|
/// getGEPInductionOperand. However, if there is some other non-loop-invariant
|
|
/// operand, it returns that instead.
|
|
Value *llvm::stripGetElementPtr(Value *Ptr, ScalarEvolution *SE, Loop *Lp) {
|
|
GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
|
|
if (!GEP)
|
|
return Ptr;
|
|
|
|
unsigned InductionOperand = getGEPInductionOperand(GEP);
|
|
|
|
// Check that all of the gep indices are uniform except for our induction
|
|
// operand.
|
|
for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i)
|
|
if (i != InductionOperand &&
|
|
!SE->isLoopInvariant(SE->getSCEV(GEP->getOperand(i)), Lp))
|
|
return Ptr;
|
|
return GEP->getOperand(InductionOperand);
|
|
}
|
|
|
|
/// \brief If a value has only one user that is a CastInst, return it.
|
|
Value *llvm::getUniqueCastUse(Value *Ptr, Loop *Lp, Type *Ty) {
|
|
Value *UniqueCast = nullptr;
|
|
for (User *U : Ptr->users()) {
|
|
CastInst *CI = dyn_cast<CastInst>(U);
|
|
if (CI && CI->getType() == Ty) {
|
|
if (!UniqueCast)
|
|
UniqueCast = CI;
|
|
else
|
|
return nullptr;
|
|
}
|
|
}
|
|
return UniqueCast;
|
|
}
|
|
|
|
/// \brief Get the stride of a pointer access in a loop. Looks for symbolic
|
|
/// strides "a[i*stride]". Returns the symbolic stride, or null otherwise.
|
|
Value *llvm::getStrideFromPointer(Value *Ptr, ScalarEvolution *SE, Loop *Lp) {
|
|
auto *PtrTy = dyn_cast<PointerType>(Ptr->getType());
|
|
if (!PtrTy || PtrTy->isAggregateType())
|
|
return nullptr;
|
|
|
|
// Try to remove a gep instruction to make the pointer (actually index at this
|
|
// point) easier analyzable. If OrigPtr is equal to Ptr we are analzying the
|
|
// pointer, otherwise, we are analyzing the index.
|
|
Value *OrigPtr = Ptr;
|
|
|
|
// The size of the pointer access.
|
|
int64_t PtrAccessSize = 1;
|
|
|
|
Ptr = stripGetElementPtr(Ptr, SE, Lp);
|
|
const SCEV *V = SE->getSCEV(Ptr);
|
|
|
|
if (Ptr != OrigPtr)
|
|
// Strip off casts.
|
|
while (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V))
|
|
V = C->getOperand();
|
|
|
|
const SCEVAddRecExpr *S = dyn_cast<SCEVAddRecExpr>(V);
|
|
if (!S)
|
|
return nullptr;
|
|
|
|
V = S->getStepRecurrence(*SE);
|
|
if (!V)
|
|
return nullptr;
|
|
|
|
// Strip off the size of access multiplication if we are still analyzing the
|
|
// pointer.
|
|
if (OrigPtr == Ptr) {
|
|
if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(V)) {
|
|
if (M->getOperand(0)->getSCEVType() != scConstant)
|
|
return nullptr;
|
|
|
|
const APInt &APStepVal = cast<SCEVConstant>(M->getOperand(0))->getAPInt();
|
|
|
|
// Huge step value - give up.
|
|
if (APStepVal.getBitWidth() > 64)
|
|
return nullptr;
|
|
|
|
int64_t StepVal = APStepVal.getSExtValue();
|
|
if (PtrAccessSize != StepVal)
|
|
return nullptr;
|
|
V = M->getOperand(1);
|
|
}
|
|
}
|
|
|
|
// Strip off casts.
|
|
Type *StripedOffRecurrenceCast = nullptr;
|
|
if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V)) {
|
|
StripedOffRecurrenceCast = C->getType();
|
|
V = C->getOperand();
|
|
}
|
|
|
|
// Look for the loop invariant symbolic value.
|
|
const SCEVUnknown *U = dyn_cast<SCEVUnknown>(V);
|
|
if (!U)
|
|
return nullptr;
|
|
|
|
Value *Stride = U->getValue();
|
|
if (!Lp->isLoopInvariant(Stride))
|
|
return nullptr;
|
|
|
|
// If we have stripped off the recurrence cast we have to make sure that we
|
|
// return the value that is used in this loop so that we can replace it later.
|
|
if (StripedOffRecurrenceCast)
|
|
Stride = getUniqueCastUse(Stride, Lp, StripedOffRecurrenceCast);
|
|
|
|
return Stride;
|
|
}
|
|
|
|
/// \brief Given a vector and an element number, see if the scalar value is
|
|
/// already around as a register, for example if it were inserted then extracted
|
|
/// from the vector.
|
|
Value *llvm::findScalarElement(Value *V, unsigned EltNo) {
|
|
assert(V->getType()->isVectorTy() && "Not looking at a vector?");
|
|
VectorType *VTy = cast<VectorType>(V->getType());
|
|
unsigned Width = VTy->getNumElements();
|
|
if (EltNo >= Width) // Out of range access.
|
|
return UndefValue::get(VTy->getElementType());
|
|
|
|
if (Constant *C = dyn_cast<Constant>(V))
|
|
return C->getAggregateElement(EltNo);
|
|
|
|
if (InsertElementInst *III = dyn_cast<InsertElementInst>(V)) {
|
|
// If this is an insert to a variable element, we don't know what it is.
|
|
if (!isa<ConstantInt>(III->getOperand(2)))
|
|
return nullptr;
|
|
unsigned IIElt = cast<ConstantInt>(III->getOperand(2))->getZExtValue();
|
|
|
|
// If this is an insert to the element we are looking for, return the
|
|
// inserted value.
|
|
if (EltNo == IIElt)
|
|
return III->getOperand(1);
|
|
|
|
// Otherwise, the insertelement doesn't modify the value, recurse on its
|
|
// vector input.
|
|
return findScalarElement(III->getOperand(0), EltNo);
|
|
}
|
|
|
|
if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V)) {
|
|
unsigned LHSWidth = SVI->getOperand(0)->getType()->getVectorNumElements();
|
|
int InEl = SVI->getMaskValue(EltNo);
|
|
if (InEl < 0)
|
|
return UndefValue::get(VTy->getElementType());
|
|
if (InEl < (int)LHSWidth)
|
|
return findScalarElement(SVI->getOperand(0), InEl);
|
|
return findScalarElement(SVI->getOperand(1), InEl - LHSWidth);
|
|
}
|
|
|
|
// Extract a value from a vector add operation with a constant zero.
|
|
Value *Val = nullptr; Constant *Con = nullptr;
|
|
if (match(V, m_Add(m_Value(Val), m_Constant(Con))))
|
|
if (Constant *Elt = Con->getAggregateElement(EltNo))
|
|
if (Elt->isNullValue())
|
|
return findScalarElement(Val, EltNo);
|
|
|
|
// Otherwise, we don't know.
|
|
return nullptr;
|
|
}
|
|
|
|
/// \brief Get splat value if the input is a splat vector or return nullptr.
|
|
/// This function is not fully general. It checks only 2 cases:
|
|
/// the input value is (1) a splat constants vector or (2) a sequence
|
|
/// of instructions that broadcast a single value into a vector.
|
|
///
|
|
const llvm::Value *llvm::getSplatValue(const Value *V) {
|
|
|
|
if (auto *C = dyn_cast<Constant>(V))
|
|
if (isa<VectorType>(V->getType()))
|
|
return C->getSplatValue();
|
|
|
|
auto *ShuffleInst = dyn_cast<ShuffleVectorInst>(V);
|
|
if (!ShuffleInst)
|
|
return nullptr;
|
|
// All-zero (or undef) shuffle mask elements.
|
|
for (int MaskElt : ShuffleInst->getShuffleMask())
|
|
if (MaskElt != 0 && MaskElt != -1)
|
|
return nullptr;
|
|
// The first shuffle source is 'insertelement' with index 0.
|
|
auto *InsertEltInst =
|
|
dyn_cast<InsertElementInst>(ShuffleInst->getOperand(0));
|
|
if (!InsertEltInst || !isa<ConstantInt>(InsertEltInst->getOperand(2)) ||
|
|
!cast<ConstantInt>(InsertEltInst->getOperand(2))->isNullValue())
|
|
return nullptr;
|
|
|
|
return InsertEltInst->getOperand(1);
|
|
}
|
|
|
|
MapVector<Instruction *, uint64_t>
|
|
llvm::computeMinimumValueSizes(ArrayRef<BasicBlock *> Blocks, DemandedBits &DB,
|
|
const TargetTransformInfo *TTI) {
|
|
|
|
// DemandedBits will give us every value's live-out bits. But we want
|
|
// to ensure no extra casts would need to be inserted, so every DAG
|
|
// of connected values must have the same minimum bitwidth.
|
|
EquivalenceClasses<Value *> ECs;
|
|
SmallVector<Value *, 16> Worklist;
|
|
SmallPtrSet<Value *, 4> Roots;
|
|
SmallPtrSet<Value *, 16> Visited;
|
|
DenseMap<Value *, uint64_t> DBits;
|
|
SmallPtrSet<Instruction *, 4> InstructionSet;
|
|
MapVector<Instruction *, uint64_t> MinBWs;
|
|
|
|
// Determine the roots. We work bottom-up, from truncs or icmps.
|
|
bool SeenExtFromIllegalType = false;
|
|
for (auto *BB : Blocks)
|
|
for (auto &I : *BB) {
|
|
InstructionSet.insert(&I);
|
|
|
|
if (TTI && (isa<ZExtInst>(&I) || isa<SExtInst>(&I)) &&
|
|
!TTI->isTypeLegal(I.getOperand(0)->getType()))
|
|
SeenExtFromIllegalType = true;
|
|
|
|
// Only deal with non-vector integers up to 64-bits wide.
|
|
if ((isa<TruncInst>(&I) || isa<ICmpInst>(&I)) &&
|
|
!I.getType()->isVectorTy() &&
|
|
I.getOperand(0)->getType()->getScalarSizeInBits() <= 64) {
|
|
// Don't make work for ourselves. If we know the loaded type is legal,
|
|
// don't add it to the worklist.
|
|
if (TTI && isa<TruncInst>(&I) && TTI->isTypeLegal(I.getType()))
|
|
continue;
|
|
|
|
Worklist.push_back(&I);
|
|
Roots.insert(&I);
|
|
}
|
|
}
|
|
// Early exit.
|
|
if (Worklist.empty() || (TTI && !SeenExtFromIllegalType))
|
|
return MinBWs;
|
|
|
|
// Now proceed breadth-first, unioning values together.
|
|
while (!Worklist.empty()) {
|
|
Value *Val = Worklist.pop_back_val();
|
|
Value *Leader = ECs.getOrInsertLeaderValue(Val);
|
|
|
|
if (Visited.count(Val))
|
|
continue;
|
|
Visited.insert(Val);
|
|
|
|
// Non-instructions terminate a chain successfully.
|
|
if (!isa<Instruction>(Val))
|
|
continue;
|
|
Instruction *I = cast<Instruction>(Val);
|
|
|
|
// If we encounter a type that is larger than 64 bits, we can't represent
|
|
// it so bail out.
|
|
if (DB.getDemandedBits(I).getBitWidth() > 64)
|
|
return MapVector<Instruction *, uint64_t>();
|
|
|
|
uint64_t V = DB.getDemandedBits(I).getZExtValue();
|
|
DBits[Leader] |= V;
|
|
DBits[I] = V;
|
|
|
|
// Casts, loads and instructions outside of our range terminate a chain
|
|
// successfully.
|
|
if (isa<SExtInst>(I) || isa<ZExtInst>(I) || isa<LoadInst>(I) ||
|
|
!InstructionSet.count(I))
|
|
continue;
|
|
|
|
// Unsafe casts terminate a chain unsuccessfully. We can't do anything
|
|
// useful with bitcasts, ptrtoints or inttoptrs and it'd be unsafe to
|
|
// transform anything that relies on them.
|
|
if (isa<BitCastInst>(I) || isa<PtrToIntInst>(I) || isa<IntToPtrInst>(I) ||
|
|
!I->getType()->isIntegerTy()) {
|
|
DBits[Leader] |= ~0ULL;
|
|
continue;
|
|
}
|
|
|
|
// We don't modify the types of PHIs. Reductions will already have been
|
|
// truncated if possible, and inductions' sizes will have been chosen by
|
|
// indvars.
|
|
if (isa<PHINode>(I))
|
|
continue;
|
|
|
|
if (DBits[Leader] == ~0ULL)
|
|
// All bits demanded, no point continuing.
|
|
continue;
|
|
|
|
for (Value *O : cast<User>(I)->operands()) {
|
|
ECs.unionSets(Leader, O);
|
|
Worklist.push_back(O);
|
|
}
|
|
}
|
|
|
|
// Now we've discovered all values, walk them to see if there are
|
|
// any users we didn't see. If there are, we can't optimize that
|
|
// chain.
|
|
for (auto &I : DBits)
|
|
for (auto *U : I.first->users())
|
|
if (U->getType()->isIntegerTy() && DBits.count(U) == 0)
|
|
DBits[ECs.getOrInsertLeaderValue(I.first)] |= ~0ULL;
|
|
|
|
for (auto I = ECs.begin(), E = ECs.end(); I != E; ++I) {
|
|
uint64_t LeaderDemandedBits = 0;
|
|
for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI)
|
|
LeaderDemandedBits |= DBits[*MI];
|
|
|
|
uint64_t MinBW = (sizeof(LeaderDemandedBits) * 8) -
|
|
llvm::countLeadingZeros(LeaderDemandedBits);
|
|
// Round up to a power of 2
|
|
if (!isPowerOf2_64((uint64_t)MinBW))
|
|
MinBW = NextPowerOf2(MinBW);
|
|
|
|
// We don't modify the types of PHIs. Reductions will already have been
|
|
// truncated if possible, and inductions' sizes will have been chosen by
|
|
// indvars.
|
|
// If we are required to shrink a PHI, abandon this entire equivalence class.
|
|
bool Abort = false;
|
|
for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI)
|
|
if (isa<PHINode>(*MI) && MinBW < (*MI)->getType()->getScalarSizeInBits()) {
|
|
Abort = true;
|
|
break;
|
|
}
|
|
if (Abort)
|
|
continue;
|
|
|
|
for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI) {
|
|
if (!isa<Instruction>(*MI))
|
|
continue;
|
|
Type *Ty = (*MI)->getType();
|
|
if (Roots.count(*MI))
|
|
Ty = cast<Instruction>(*MI)->getOperand(0)->getType();
|
|
if (MinBW < Ty->getScalarSizeInBits())
|
|
MinBWs[cast<Instruction>(*MI)] = MinBW;
|
|
}
|
|
}
|
|
|
|
return MinBWs;
|
|
}
|
|
|
|
/// \returns \p I after propagating metadata from \p VL.
|
|
Instruction *llvm::propagateMetadata(Instruction *Inst, ArrayRef<Value *> VL) {
|
|
Instruction *I0 = cast<Instruction>(VL[0]);
|
|
SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata;
|
|
I0->getAllMetadataOtherThanDebugLoc(Metadata);
|
|
|
|
for (auto Kind :
|
|
{LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope,
|
|
LLVMContext::MD_noalias, LLVMContext::MD_fpmath,
|
|
LLVMContext::MD_nontemporal, LLVMContext::MD_invariant_load}) {
|
|
MDNode *MD = I0->getMetadata(Kind);
|
|
|
|
for (int J = 1, E = VL.size(); MD && J != E; ++J) {
|
|
const Instruction *IJ = cast<Instruction>(VL[J]);
|
|
MDNode *IMD = IJ->getMetadata(Kind);
|
|
switch (Kind) {
|
|
case LLVMContext::MD_tbaa:
|
|
MD = MDNode::getMostGenericTBAA(MD, IMD);
|
|
break;
|
|
case LLVMContext::MD_alias_scope:
|
|
MD = MDNode::getMostGenericAliasScope(MD, IMD);
|
|
break;
|
|
case LLVMContext::MD_fpmath:
|
|
MD = MDNode::getMostGenericFPMath(MD, IMD);
|
|
break;
|
|
case LLVMContext::MD_noalias:
|
|
case LLVMContext::MD_nontemporal:
|
|
case LLVMContext::MD_invariant_load:
|
|
MD = MDNode::intersect(MD, IMD);
|
|
break;
|
|
default:
|
|
llvm_unreachable("unhandled metadata");
|
|
}
|
|
}
|
|
|
|
Inst->setMetadata(Kind, MD);
|
|
}
|
|
|
|
return Inst;
|
|
}
|
|
|
|
Constant *llvm::createInterleaveMask(IRBuilder<> &Builder, unsigned VF,
|
|
unsigned NumVecs) {
|
|
SmallVector<Constant *, 16> Mask;
|
|
for (unsigned i = 0; i < VF; i++)
|
|
for (unsigned j = 0; j < NumVecs; j++)
|
|
Mask.push_back(Builder.getInt32(j * VF + i));
|
|
|
|
return ConstantVector::get(Mask);
|
|
}
|
|
|
|
Constant *llvm::createStrideMask(IRBuilder<> &Builder, unsigned Start,
|
|
unsigned Stride, unsigned VF) {
|
|
SmallVector<Constant *, 16> Mask;
|
|
for (unsigned i = 0; i < VF; i++)
|
|
Mask.push_back(Builder.getInt32(Start + i * Stride));
|
|
|
|
return ConstantVector::get(Mask);
|
|
}
|
|
|
|
Constant *llvm::createSequentialMask(IRBuilder<> &Builder, unsigned Start,
|
|
unsigned NumInts, unsigned NumUndefs) {
|
|
SmallVector<Constant *, 16> Mask;
|
|
for (unsigned i = 0; i < NumInts; i++)
|
|
Mask.push_back(Builder.getInt32(Start + i));
|
|
|
|
Constant *Undef = UndefValue::get(Builder.getInt32Ty());
|
|
for (unsigned i = 0; i < NumUndefs; i++)
|
|
Mask.push_back(Undef);
|
|
|
|
return ConstantVector::get(Mask);
|
|
}
|
|
|
|
/// A helper function for concatenating vectors. This function concatenates two
|
|
/// vectors having the same element type. If the second vector has fewer
|
|
/// elements than the first, it is padded with undefs.
|
|
static Value *concatenateTwoVectors(IRBuilder<> &Builder, Value *V1,
|
|
Value *V2) {
|
|
VectorType *VecTy1 = dyn_cast<VectorType>(V1->getType());
|
|
VectorType *VecTy2 = dyn_cast<VectorType>(V2->getType());
|
|
assert(VecTy1 && VecTy2 &&
|
|
VecTy1->getScalarType() == VecTy2->getScalarType() &&
|
|
"Expect two vectors with the same element type");
|
|
|
|
unsigned NumElts1 = VecTy1->getNumElements();
|
|
unsigned NumElts2 = VecTy2->getNumElements();
|
|
assert(NumElts1 >= NumElts2 && "Unexpect the first vector has less elements");
|
|
|
|
if (NumElts1 > NumElts2) {
|
|
// Extend with UNDEFs.
|
|
Constant *ExtMask =
|
|
createSequentialMask(Builder, 0, NumElts2, NumElts1 - NumElts2);
|
|
V2 = Builder.CreateShuffleVector(V2, UndefValue::get(VecTy2), ExtMask);
|
|
}
|
|
|
|
Constant *Mask = createSequentialMask(Builder, 0, NumElts1 + NumElts2, 0);
|
|
return Builder.CreateShuffleVector(V1, V2, Mask);
|
|
}
|
|
|
|
Value *llvm::concatenateVectors(IRBuilder<> &Builder, ArrayRef<Value *> Vecs) {
|
|
unsigned NumVecs = Vecs.size();
|
|
assert(NumVecs > 1 && "Should be at least two vectors");
|
|
|
|
SmallVector<Value *, 8> ResList;
|
|
ResList.append(Vecs.begin(), Vecs.end());
|
|
do {
|
|
SmallVector<Value *, 8> TmpList;
|
|
for (unsigned i = 0; i < NumVecs - 1; i += 2) {
|
|
Value *V0 = ResList[i], *V1 = ResList[i + 1];
|
|
assert((V0->getType() == V1->getType() || i == NumVecs - 2) &&
|
|
"Only the last vector may have a different type");
|
|
|
|
TmpList.push_back(concatenateTwoVectors(Builder, V0, V1));
|
|
}
|
|
|
|
// Push the last vector if the total number of vectors is odd.
|
|
if (NumVecs % 2 != 0)
|
|
TmpList.push_back(ResList[NumVecs - 1]);
|
|
|
|
ResList = TmpList;
|
|
NumVecs = ResList.size();
|
|
} while (NumVecs > 1);
|
|
|
|
return ResList[0];
|
|
}
|