mirror of
https://github.com/RPCSX/llvm.git
synced 2025-04-04 09:11:43 +00:00

Summary: To enable profile-guided indirect call promotion in ThinLTO mode, we simply add call graph edges for each profitable target from the profile to the summaries, then the summary-guided importing will consider the callee for importing as usual. Also we need to enable the indirect call promotion pass creation in the PassManagerBuilder when PerformThinLTO=true (we are in the ThinLTO backend), so that the newly imported functions are considered for promotion in the backends. The IC promotion profiles refer to callees by GUID, which required adding GUIDs to the per-module VST in bitcode (and assigning them valueIds similar to how they are assigned valueIds in the combined index). Reviewers: mehdi_amini, xur Subscribers: mehdi_amini, davidxl, llvm-commits Differential Revision: http://reviews.llvm.org/D21932 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@275707 91177308-0d34-0410-b5e6-96231b3b80d8
250 lines
9.3 KiB
C++
250 lines
9.3 KiB
C++
//===- ModuleSummaryAnalysis.cpp - Module summary index builder -----------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This pass builds a ModuleSummaryIndex object for the module, to be written
|
|
// to bitcode or LLVM assembly.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Analysis/ModuleSummaryAnalysis.h"
|
|
#include "llvm/Analysis/BlockFrequencyInfo.h"
|
|
#include "llvm/Analysis/BlockFrequencyInfoImpl.h"
|
|
#include "llvm/Analysis/BranchProbabilityInfo.h"
|
|
#include "llvm/Analysis/IndirectCallPromotionAnalysis.h"
|
|
#include "llvm/Analysis/LoopInfo.h"
|
|
#include "llvm/IR/CallSite.h"
|
|
#include "llvm/IR/Dominators.h"
|
|
#include "llvm/IR/InstIterator.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/IR/ValueSymbolTable.h"
|
|
#include "llvm/Pass.h"
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "module-summary-analysis"
|
|
|
|
// Walk through the operands of a given User via worklist iteration and populate
|
|
// the set of GlobalValue references encountered. Invoked either on an
|
|
// Instruction or a GlobalVariable (which walks its initializer).
|
|
static void findRefEdges(const User *CurUser, DenseSet<const Value *> &RefEdges,
|
|
SmallPtrSet<const User *, 8> &Visited) {
|
|
SmallVector<const User *, 32> Worklist;
|
|
Worklist.push_back(CurUser);
|
|
|
|
while (!Worklist.empty()) {
|
|
const User *U = Worklist.pop_back_val();
|
|
|
|
if (!Visited.insert(U).second)
|
|
continue;
|
|
|
|
ImmutableCallSite CS(U);
|
|
|
|
for (const auto &OI : U->operands()) {
|
|
const User *Operand = dyn_cast<User>(OI);
|
|
if (!Operand)
|
|
continue;
|
|
if (isa<BlockAddress>(Operand))
|
|
continue;
|
|
if (isa<GlobalValue>(Operand)) {
|
|
// We have a reference to a global value. This should be added to
|
|
// the reference set unless it is a callee. Callees are handled
|
|
// specially by WriteFunction and are added to a separate list.
|
|
if (!(CS && CS.isCallee(&OI)))
|
|
RefEdges.insert(Operand);
|
|
continue;
|
|
}
|
|
Worklist.push_back(Operand);
|
|
}
|
|
}
|
|
}
|
|
|
|
void ModuleSummaryIndexBuilder::computeFunctionSummary(
|
|
const Function &F, BlockFrequencyInfo *BFI) {
|
|
// Summary not currently supported for anonymous functions, they must
|
|
// be renamed.
|
|
if (!F.hasName())
|
|
return;
|
|
|
|
unsigned NumInsts = 0;
|
|
// Map from callee ValueId to profile count. Used to accumulate profile
|
|
// counts for all static calls to a given callee.
|
|
DenseMap<const Value *, CalleeInfo> CallGraphEdges;
|
|
DenseMap<GlobalValue::GUID, CalleeInfo> IndirectCallEdges;
|
|
DenseSet<const Value *> RefEdges;
|
|
ICallPromotionAnalysis ICallAnalysis;
|
|
|
|
SmallPtrSet<const User *, 8> Visited;
|
|
for (const BasicBlock &BB : F)
|
|
for (const Instruction &I : BB) {
|
|
if (!isa<DbgInfoIntrinsic>(I))
|
|
++NumInsts;
|
|
|
|
if (auto CS = ImmutableCallSite(&I)) {
|
|
auto *CalledFunction = CS.getCalledFunction();
|
|
// Check if this is a direct call to a known function.
|
|
if (CalledFunction) {
|
|
if (CalledFunction->hasName() && !CalledFunction->isIntrinsic()) {
|
|
auto ScaledCount = BFI ? BFI->getBlockProfileCount(&BB) : None;
|
|
auto *CalleeId =
|
|
M->getValueSymbolTable().lookup(CalledFunction->getName());
|
|
CallGraphEdges[CalleeId] +=
|
|
(ScaledCount ? ScaledCount.getValue() : 0);
|
|
}
|
|
} else {
|
|
// Otherwise, check for an indirect call (call to a non-const value
|
|
// that isn't an inline assembly call).
|
|
const CallInst *CI = dyn_cast<CallInst>(&I);
|
|
if (CS.getCalledValue() && !isa<Constant>(CS.getCalledValue()) &&
|
|
!(CI && CI->isInlineAsm())) {
|
|
uint32_t NumVals, NumCandidates;
|
|
uint64_t TotalCount;
|
|
auto CandidateProfileData =
|
|
ICallAnalysis.getPromotionCandidatesForInstruction(
|
|
&I, NumVals, TotalCount, NumCandidates);
|
|
for (auto &Candidate : CandidateProfileData)
|
|
IndirectCallEdges[Candidate.Value] += Candidate.Count;
|
|
}
|
|
}
|
|
}
|
|
findRefEdges(&I, RefEdges, Visited);
|
|
}
|
|
|
|
GlobalValueSummary::GVFlags Flags(F);
|
|
std::unique_ptr<FunctionSummary> FuncSummary =
|
|
llvm::make_unique<FunctionSummary>(Flags, NumInsts);
|
|
FuncSummary->addCallGraphEdges(CallGraphEdges);
|
|
FuncSummary->addCallGraphEdges(IndirectCallEdges);
|
|
FuncSummary->addRefEdges(RefEdges);
|
|
Index->addGlobalValueSummary(F.getName(), std::move(FuncSummary));
|
|
}
|
|
|
|
void ModuleSummaryIndexBuilder::computeVariableSummary(
|
|
const GlobalVariable &V) {
|
|
DenseSet<const Value *> RefEdges;
|
|
SmallPtrSet<const User *, 8> Visited;
|
|
findRefEdges(&V, RefEdges, Visited);
|
|
GlobalValueSummary::GVFlags Flags(V);
|
|
std::unique_ptr<GlobalVarSummary> GVarSummary =
|
|
llvm::make_unique<GlobalVarSummary>(Flags);
|
|
GVarSummary->addRefEdges(RefEdges);
|
|
Index->addGlobalValueSummary(V.getName(), std::move(GVarSummary));
|
|
}
|
|
|
|
ModuleSummaryIndexBuilder::ModuleSummaryIndexBuilder(
|
|
const Module *M,
|
|
std::function<BlockFrequencyInfo *(const Function &F)> Ftor)
|
|
: Index(llvm::make_unique<ModuleSummaryIndex>()), M(M) {
|
|
// Check if the module can be promoted, otherwise just disable importing from
|
|
// it by not emitting any summary.
|
|
// FIXME: we could still import *into* it most of the time.
|
|
if (!moduleCanBeRenamedForThinLTO(*M))
|
|
return;
|
|
|
|
// Compute summaries for all functions defined in module, and save in the
|
|
// index.
|
|
for (auto &F : *M) {
|
|
if (F.isDeclaration())
|
|
continue;
|
|
|
|
BlockFrequencyInfo *BFI = nullptr;
|
|
std::unique_ptr<BlockFrequencyInfo> BFIPtr;
|
|
if (Ftor)
|
|
BFI = Ftor(F);
|
|
else if (F.getEntryCount().hasValue()) {
|
|
LoopInfo LI{DominatorTree(const_cast<Function &>(F))};
|
|
BranchProbabilityInfo BPI{F, LI};
|
|
BFIPtr = llvm::make_unique<BlockFrequencyInfo>(F, BPI, LI);
|
|
BFI = BFIPtr.get();
|
|
}
|
|
|
|
computeFunctionSummary(F, BFI);
|
|
}
|
|
|
|
// Compute summaries for all variables defined in module, and save in the
|
|
// index.
|
|
for (const GlobalVariable &G : M->globals()) {
|
|
if (G.isDeclaration())
|
|
continue;
|
|
computeVariableSummary(G);
|
|
}
|
|
}
|
|
|
|
char ModuleSummaryIndexWrapperPass::ID = 0;
|
|
INITIALIZE_PASS_BEGIN(ModuleSummaryIndexWrapperPass, "module-summary-analysis",
|
|
"Module Summary Analysis", false, true)
|
|
INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
|
|
INITIALIZE_PASS_END(ModuleSummaryIndexWrapperPass, "module-summary-analysis",
|
|
"Module Summary Analysis", false, true)
|
|
|
|
ModulePass *llvm::createModuleSummaryIndexWrapperPass() {
|
|
return new ModuleSummaryIndexWrapperPass();
|
|
}
|
|
|
|
ModuleSummaryIndexWrapperPass::ModuleSummaryIndexWrapperPass()
|
|
: ModulePass(ID) {
|
|
initializeModuleSummaryIndexWrapperPassPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
bool ModuleSummaryIndexWrapperPass::runOnModule(Module &M) {
|
|
IndexBuilder = llvm::make_unique<ModuleSummaryIndexBuilder>(
|
|
&M, [this](const Function &F) {
|
|
return &(this->getAnalysis<BlockFrequencyInfoWrapperPass>(
|
|
*const_cast<Function *>(&F))
|
|
.getBFI());
|
|
});
|
|
return false;
|
|
}
|
|
|
|
bool ModuleSummaryIndexWrapperPass::doFinalization(Module &M) {
|
|
IndexBuilder.reset();
|
|
return false;
|
|
}
|
|
|
|
void ModuleSummaryIndexWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
|
|
AU.setPreservesAll();
|
|
AU.addRequired<BlockFrequencyInfoWrapperPass>();
|
|
}
|
|
|
|
bool llvm::moduleCanBeRenamedForThinLTO(const Module &M) {
|
|
// We cannot currently promote or rename anything used in inline assembly,
|
|
// which are not visible to the compiler. Detect a possible case by looking
|
|
// for a llvm.used local value, in conjunction with an inline assembly call
|
|
// in the module. Prevent importing of any modules containing these uses by
|
|
// suppressing generation of the index. This also prevents importing
|
|
// into this module, which is also necessary to avoid needing to rename
|
|
// in case of a name clash between a local in this module and an imported
|
|
// global.
|
|
// FIXME: If we find we need a finer-grained approach of preventing promotion
|
|
// and renaming of just the functions using inline assembly we will need to:
|
|
// - Add flag in the function summaries to identify those with inline asm.
|
|
// - Prevent importing of any functions with flag set.
|
|
// - Prevent importing of any global function with the same name as a
|
|
// function in current module that has the flag set.
|
|
// - For any llvm.used value that is exported and promoted, add a private
|
|
// alias to the original name in the current module (even if we don't
|
|
// export the function using those values in inline asm, another function
|
|
// with a reference could be exported).
|
|
SmallPtrSet<GlobalValue *, 8> Used;
|
|
collectUsedGlobalVariables(M, Used, /*CompilerUsed*/ false);
|
|
bool LocalIsUsed =
|
|
llvm::any_of(Used, [](GlobalValue *V) { return V->hasLocalLinkage(); });
|
|
if (!LocalIsUsed)
|
|
return true;
|
|
|
|
// Walk all the instructions in the module and find if one is inline ASM
|
|
auto HasInlineAsm = llvm::any_of(M, [](const Function &F) {
|
|
return llvm::any_of(instructions(F), [](const Instruction &I) {
|
|
const CallInst *CallI = dyn_cast<CallInst>(&I);
|
|
if (!CallI)
|
|
return false;
|
|
return CallI->isInlineAsm();
|
|
});
|
|
});
|
|
return !HasInlineAsm;
|
|
}
|