mirror of
https://github.com/RPCSX/llvm.git
synced 2025-01-16 17:38:14 +00:00
c5f802f164
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@276156 91177308-0d34-0410-b5e6-96231b3b80d8
1350 lines
42 KiB
C++
1350 lines
42 KiB
C++
//===-- Host.cpp - Implement OS Host Concept --------------------*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the operating system Host concept.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Support/Host.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/StringRef.h"
|
|
#include "llvm/ADT/StringSwitch.h"
|
|
#include "llvm/ADT/Triple.h"
|
|
#include "llvm/Config/config.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/FileSystem.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <string.h>
|
|
#include <assert.h>
|
|
|
|
// Include the platform-specific parts of this class.
|
|
#ifdef LLVM_ON_UNIX
|
|
#include "Unix/Host.inc"
|
|
#endif
|
|
#ifdef LLVM_ON_WIN32
|
|
#include "Windows/Host.inc"
|
|
#endif
|
|
#ifdef _MSC_VER
|
|
#include <intrin.h>
|
|
#endif
|
|
#if defined(__APPLE__) && (defined(__ppc__) || defined(__powerpc__))
|
|
#include <mach/host_info.h>
|
|
#include <mach/mach.h>
|
|
#include <mach/mach_host.h>
|
|
#include <mach/machine.h>
|
|
#endif
|
|
|
|
#define DEBUG_TYPE "host-detection"
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Implementations of the CPU detection routines
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
using namespace llvm;
|
|
|
|
#if defined(__linux__)
|
|
static ssize_t LLVM_ATTRIBUTE_UNUSED readCpuInfo(void *Buf, size_t Size) {
|
|
// Note: We cannot mmap /proc/cpuinfo here and then process the resulting
|
|
// memory buffer because the 'file' has 0 size (it can be read from only
|
|
// as a stream).
|
|
|
|
int FD;
|
|
std::error_code EC = sys::fs::openFileForRead("/proc/cpuinfo", FD);
|
|
if (EC) {
|
|
DEBUG(dbgs() << "Unable to open /proc/cpuinfo: " << EC.message() << "\n");
|
|
return -1;
|
|
}
|
|
int Ret = read(FD, Buf, Size);
|
|
int CloseStatus = close(FD);
|
|
if (CloseStatus)
|
|
return -1;
|
|
return Ret;
|
|
}
|
|
#endif
|
|
|
|
#if defined(__i386__) || defined(_M_IX86) || \
|
|
defined(__x86_64__) || defined(_M_X64)
|
|
|
|
#if defined(__GNUC__) || defined(__clang__)
|
|
#include <cpuid.h>
|
|
#endif
|
|
|
|
enum VendorSignatures {
|
|
SIG_INTEL = 0x756e6547 /* Genu */,
|
|
SIG_AMD = 0x68747541 /* Auth */
|
|
};
|
|
|
|
enum ProcessorVendors {
|
|
VENDOR_INTEL = 1,
|
|
VENDOR_AMD,
|
|
VENDOR_OTHER,
|
|
VENDOR_MAX
|
|
};
|
|
|
|
enum ProcessorTypes {
|
|
INTEL_ATOM = 1,
|
|
INTEL_CORE2,
|
|
INTEL_COREI7,
|
|
AMDFAM10H,
|
|
AMDFAM15H,
|
|
INTEL_i386,
|
|
INTEL_i486,
|
|
INTEL_PENTIUM,
|
|
INTEL_PENTIUM_PRO,
|
|
INTEL_PENTIUM_II,
|
|
INTEL_PENTIUM_III,
|
|
INTEL_PENTIUM_IV,
|
|
INTEL_PENTIUM_M,
|
|
INTEL_CORE_DUO,
|
|
INTEL_XEONPHI,
|
|
INTEL_X86_64,
|
|
INTEL_NOCONA,
|
|
INTEL_PRESCOTT,
|
|
AMD_i486,
|
|
AMDPENTIUM,
|
|
AMDATHLON,
|
|
AMDFAM14H,
|
|
AMDFAM16H,
|
|
CPU_TYPE_MAX
|
|
};
|
|
|
|
enum ProcessorSubtypes {
|
|
INTEL_COREI7_NEHALEM = 1,
|
|
INTEL_COREI7_WESTMERE,
|
|
INTEL_COREI7_SANDYBRIDGE,
|
|
AMDFAM10H_BARCELONA,
|
|
AMDFAM10H_SHANGHAI,
|
|
AMDFAM10H_ISTANBUL,
|
|
AMDFAM15H_BDVER1,
|
|
AMDFAM15H_BDVER2,
|
|
INTEL_PENTIUM_MMX,
|
|
INTEL_CORE2_65,
|
|
INTEL_CORE2_45,
|
|
INTEL_COREI7_IVYBRIDGE,
|
|
INTEL_COREI7_HASWELL,
|
|
INTEL_COREI7_BROADWELL,
|
|
INTEL_COREI7_SKYLAKE,
|
|
INTEL_COREI7_SKYLAKE_AVX512,
|
|
INTEL_ATOM_BONNELL,
|
|
INTEL_ATOM_SILVERMONT,
|
|
INTEL_KNIGHTS_LANDING,
|
|
AMDPENTIUM_K6,
|
|
AMDPENTIUM_K62,
|
|
AMDPENTIUM_K63,
|
|
AMDPENTIUM_GEODE,
|
|
AMDATHLON_TBIRD,
|
|
AMDATHLON_MP,
|
|
AMDATHLON_XP,
|
|
AMDATHLON_K8SSE3,
|
|
AMDATHLON_OPTERON,
|
|
AMDATHLON_FX,
|
|
AMDATHLON_64,
|
|
AMD_BTVER1,
|
|
AMD_BTVER2,
|
|
AMDFAM15H_BDVER3,
|
|
AMDFAM15H_BDVER4,
|
|
CPU_SUBTYPE_MAX
|
|
};
|
|
|
|
enum ProcessorFeatures {
|
|
FEATURE_CMOV = 0,
|
|
FEATURE_MMX,
|
|
FEATURE_POPCNT,
|
|
FEATURE_SSE,
|
|
FEATURE_SSE2,
|
|
FEATURE_SSE3,
|
|
FEATURE_SSSE3,
|
|
FEATURE_SSE4_1,
|
|
FEATURE_SSE4_2,
|
|
FEATURE_AVX,
|
|
FEATURE_AVX2,
|
|
FEATURE_AVX512,
|
|
FEATURE_AVX512SAVE,
|
|
FEATURE_MOVBE,
|
|
FEATURE_ADX,
|
|
FEATURE_EM64T
|
|
};
|
|
|
|
/// getX86CpuIDAndInfo - Execute the specified cpuid and return the 4 values in
|
|
/// the specified arguments. If we can't run cpuid on the host, return true.
|
|
static bool getX86CpuIDAndInfo(unsigned value, unsigned *rEAX, unsigned *rEBX,
|
|
unsigned *rECX, unsigned *rEDX) {
|
|
#if defined(__GNUC__) || defined(__clang__) || defined(_MSC_VER)
|
|
#if defined(__GNUC__) || defined(__clang__)
|
|
#if defined(__x86_64__)
|
|
// gcc doesn't know cpuid would clobber ebx/rbx. Preserve it manually.
|
|
// FIXME: should we save this for Clang?
|
|
__asm__("movq\t%%rbx, %%rsi\n\t"
|
|
"cpuid\n\t"
|
|
"xchgq\t%%rbx, %%rsi\n\t"
|
|
: "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX)
|
|
: "a"(value));
|
|
#elif defined(__i386__)
|
|
__asm__("movl\t%%ebx, %%esi\n\t"
|
|
"cpuid\n\t"
|
|
"xchgl\t%%ebx, %%esi\n\t"
|
|
: "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX)
|
|
: "a"(value));
|
|
#else
|
|
assert(0 && "This method is defined only for x86.");
|
|
#endif
|
|
#elif defined(_MSC_VER)
|
|
// The MSVC intrinsic is portable across x86 and x64.
|
|
int registers[4];
|
|
__cpuid(registers, value);
|
|
*rEAX = registers[0];
|
|
*rEBX = registers[1];
|
|
*rECX = registers[2];
|
|
*rEDX = registers[3];
|
|
#endif
|
|
return false;
|
|
#else
|
|
return true;
|
|
#endif
|
|
}
|
|
|
|
/// getX86CpuIDAndInfoEx - Execute the specified cpuid with subleaf and return
|
|
/// the 4 values in the specified arguments. If we can't run cpuid on the host,
|
|
/// return true.
|
|
static bool getX86CpuIDAndInfoEx(unsigned value, unsigned subleaf,
|
|
unsigned *rEAX, unsigned *rEBX, unsigned *rECX,
|
|
unsigned *rEDX) {
|
|
#if defined(__GNUC__) || defined(__clang__) || defined(_MSC_VER)
|
|
#if defined(__x86_64__) || defined(_M_X64)
|
|
#if defined(__GNUC__) || defined(__clang__)
|
|
// gcc doesn't know cpuid would clobber ebx/rbx. Preseve it manually.
|
|
// FIXME: should we save this for Clang?
|
|
__asm__("movq\t%%rbx, %%rsi\n\t"
|
|
"cpuid\n\t"
|
|
"xchgq\t%%rbx, %%rsi\n\t"
|
|
: "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX)
|
|
: "a"(value), "c"(subleaf));
|
|
#elif defined(_MSC_VER)
|
|
int registers[4];
|
|
__cpuidex(registers, value, subleaf);
|
|
*rEAX = registers[0];
|
|
*rEBX = registers[1];
|
|
*rECX = registers[2];
|
|
*rEDX = registers[3];
|
|
#endif
|
|
#elif defined(__i386__) || defined(_M_IX86)
|
|
#if defined(__GNUC__) || defined(__clang__)
|
|
__asm__("movl\t%%ebx, %%esi\n\t"
|
|
"cpuid\n\t"
|
|
"xchgl\t%%ebx, %%esi\n\t"
|
|
: "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX)
|
|
: "a"(value), "c"(subleaf));
|
|
#elif defined(_MSC_VER)
|
|
__asm {
|
|
mov eax,value
|
|
mov ecx,subleaf
|
|
cpuid
|
|
mov esi,rEAX
|
|
mov dword ptr [esi],eax
|
|
mov esi,rEBX
|
|
mov dword ptr [esi],ebx
|
|
mov esi,rECX
|
|
mov dword ptr [esi],ecx
|
|
mov esi,rEDX
|
|
mov dword ptr [esi],edx
|
|
}
|
|
#endif
|
|
#else
|
|
assert(0 && "This method is defined only for x86.");
|
|
#endif
|
|
return false;
|
|
#else
|
|
return true;
|
|
#endif
|
|
}
|
|
|
|
static bool getX86XCR0(unsigned *rEAX, unsigned *rEDX) {
|
|
#if defined(__GNUC__) || defined(__clang__)
|
|
// Check xgetbv; this uses a .byte sequence instead of the instruction
|
|
// directly because older assemblers do not include support for xgetbv and
|
|
// there is no easy way to conditionally compile based on the assembler used.
|
|
__asm__(".byte 0x0f, 0x01, 0xd0" : "=a"(*rEAX), "=d"(*rEDX) : "c"(0));
|
|
return false;
|
|
#elif defined(_MSC_FULL_VER) && defined(_XCR_XFEATURE_ENABLED_MASK)
|
|
unsigned long long Result = _xgetbv(_XCR_XFEATURE_ENABLED_MASK);
|
|
*rEAX = Result;
|
|
*rEDX = Result >> 32;
|
|
return false;
|
|
#else
|
|
return true;
|
|
#endif
|
|
}
|
|
|
|
static void detectX86FamilyModel(unsigned EAX, unsigned *Family,
|
|
unsigned *Model) {
|
|
*Family = (EAX >> 8) & 0xf; // Bits 8 - 11
|
|
*Model = (EAX >> 4) & 0xf; // Bits 4 - 7
|
|
if (*Family == 6 || *Family == 0xf) {
|
|
if (*Family == 0xf)
|
|
// Examine extended family ID if family ID is F.
|
|
*Family += (EAX >> 20) & 0xff; // Bits 20 - 27
|
|
// Examine extended model ID if family ID is 6 or F.
|
|
*Model += ((EAX >> 16) & 0xf) << 4; // Bits 16 - 19
|
|
}
|
|
}
|
|
|
|
static void
|
|
getIntelProcessorTypeAndSubtype(unsigned int Family, unsigned int Model,
|
|
unsigned int Brand_id, unsigned int Features,
|
|
unsigned *Type, unsigned *Subtype) {
|
|
if (Brand_id != 0)
|
|
return;
|
|
switch (Family) {
|
|
case 3:
|
|
*Type = INTEL_i386;
|
|
break;
|
|
case 4:
|
|
switch (Model) {
|
|
case 0: // Intel486 DX processors
|
|
case 1: // Intel486 DX processors
|
|
case 2: // Intel486 SX processors
|
|
case 3: // Intel487 processors, IntelDX2 OverDrive processors,
|
|
// IntelDX2 processors
|
|
case 4: // Intel486 SL processor
|
|
case 5: // IntelSX2 processors
|
|
case 7: // Write-Back Enhanced IntelDX2 processors
|
|
case 8: // IntelDX4 OverDrive processors, IntelDX4 processors
|
|
default:
|
|
*Type = INTEL_i486;
|
|
break;
|
|
}
|
|
break;
|
|
case 5:
|
|
switch (Model) {
|
|
case 1: // Pentium OverDrive processor for Pentium processor (60, 66),
|
|
// Pentium processors (60, 66)
|
|
case 2: // Pentium OverDrive processor for Pentium processor (75, 90,
|
|
// 100, 120, 133), Pentium processors (75, 90, 100, 120, 133,
|
|
// 150, 166, 200)
|
|
case 3: // Pentium OverDrive processors for Intel486 processor-based
|
|
// systems
|
|
*Type = INTEL_PENTIUM;
|
|
break;
|
|
case 4: // Pentium OverDrive processor with MMX technology for Pentium
|
|
// processor (75, 90, 100, 120, 133), Pentium processor with
|
|
// MMX technology (166, 200)
|
|
*Type = INTEL_PENTIUM;
|
|
*Subtype = INTEL_PENTIUM_MMX;
|
|
break;
|
|
default:
|
|
*Type = INTEL_PENTIUM;
|
|
break;
|
|
}
|
|
break;
|
|
case 6:
|
|
switch (Model) {
|
|
case 0x01: // Pentium Pro processor
|
|
*Type = INTEL_PENTIUM_PRO;
|
|
break;
|
|
case 0x03: // Intel Pentium II OverDrive processor, Pentium II processor,
|
|
// model 03
|
|
case 0x05: // Pentium II processor, model 05, Pentium II Xeon processor,
|
|
// model 05, and Intel Celeron processor, model 05
|
|
case 0x06: // Celeron processor, model 06
|
|
*Type = INTEL_PENTIUM_II;
|
|
break;
|
|
case 0x07: // Pentium III processor, model 07, and Pentium III Xeon
|
|
// processor, model 07
|
|
case 0x08: // Pentium III processor, model 08, Pentium III Xeon processor,
|
|
// model 08, and Celeron processor, model 08
|
|
case 0x0a: // Pentium III Xeon processor, model 0Ah
|
|
case 0x0b: // Pentium III processor, model 0Bh
|
|
*Type = INTEL_PENTIUM_III;
|
|
break;
|
|
case 0x09: // Intel Pentium M processor, Intel Celeron M processor model 09.
|
|
case 0x0d: // Intel Pentium M processor, Intel Celeron M processor, model
|
|
// 0Dh. All processors are manufactured using the 90 nm process.
|
|
case 0x15: // Intel EP80579 Integrated Processor and Intel EP80579
|
|
// Integrated Processor with Intel QuickAssist Technology
|
|
*Type = INTEL_PENTIUM_M;
|
|
break;
|
|
case 0x0e: // Intel Core Duo processor, Intel Core Solo processor, model
|
|
// 0Eh. All processors are manufactured using the 65 nm process.
|
|
*Type = INTEL_CORE_DUO;
|
|
break; // yonah
|
|
case 0x0f: // Intel Core 2 Duo processor, Intel Core 2 Duo mobile
|
|
// processor, Intel Core 2 Quad processor, Intel Core 2 Quad
|
|
// mobile processor, Intel Core 2 Extreme processor, Intel
|
|
// Pentium Dual-Core processor, Intel Xeon processor, model
|
|
// 0Fh. All processors are manufactured using the 65 nm process.
|
|
case 0x16: // Intel Celeron processor model 16h. All processors are
|
|
// manufactured using the 65 nm process
|
|
*Type = INTEL_CORE2; // "core2"
|
|
*Subtype = INTEL_CORE2_65;
|
|
break;
|
|
case 0x17: // Intel Core 2 Extreme processor, Intel Xeon processor, model
|
|
// 17h. All processors are manufactured using the 45 nm process.
|
|
//
|
|
// 45nm: Penryn , Wolfdale, Yorkfield (XE)
|
|
case 0x1d: // Intel Xeon processor MP. All processors are manufactured using
|
|
// the 45 nm process.
|
|
*Type = INTEL_CORE2; // "penryn"
|
|
*Subtype = INTEL_CORE2_45;
|
|
break;
|
|
case 0x1a: // Intel Core i7 processor and Intel Xeon processor. All
|
|
// processors are manufactured using the 45 nm process.
|
|
case 0x1e: // Intel(R) Core(TM) i7 CPU 870 @ 2.93GHz.
|
|
// As found in a Summer 2010 model iMac.
|
|
case 0x1f:
|
|
case 0x2e: // Nehalem EX
|
|
*Type = INTEL_COREI7; // "nehalem"
|
|
*Subtype = INTEL_COREI7_NEHALEM;
|
|
break;
|
|
case 0x25: // Intel Core i7, laptop version.
|
|
case 0x2c: // Intel Core i7 processor and Intel Xeon processor. All
|
|
// processors are manufactured using the 32 nm process.
|
|
case 0x2f: // Westmere EX
|
|
*Type = INTEL_COREI7; // "westmere"
|
|
*Subtype = INTEL_COREI7_WESTMERE;
|
|
break;
|
|
case 0x2a: // Intel Core i7 processor. All processors are manufactured
|
|
// using the 32 nm process.
|
|
case 0x2d:
|
|
*Type = INTEL_COREI7; //"sandybridge"
|
|
*Subtype = INTEL_COREI7_SANDYBRIDGE;
|
|
break;
|
|
case 0x3a:
|
|
case 0x3e: // Ivy Bridge EP
|
|
*Type = INTEL_COREI7; // "ivybridge"
|
|
*Subtype = INTEL_COREI7_IVYBRIDGE;
|
|
break;
|
|
|
|
// Haswell:
|
|
case 0x3c:
|
|
case 0x3f:
|
|
case 0x45:
|
|
case 0x46:
|
|
*Type = INTEL_COREI7; // "haswell"
|
|
*Subtype = INTEL_COREI7_HASWELL;
|
|
break;
|
|
|
|
// Broadwell:
|
|
case 0x3d:
|
|
case 0x47:
|
|
case 0x4f:
|
|
case 0x56:
|
|
*Type = INTEL_COREI7; // "broadwell"
|
|
*Subtype = INTEL_COREI7_BROADWELL;
|
|
break;
|
|
|
|
// Skylake:
|
|
case 0x4e:
|
|
*Type = INTEL_COREI7; // "skylake-avx512"
|
|
*Subtype = INTEL_COREI7_SKYLAKE_AVX512;
|
|
break;
|
|
case 0x5e:
|
|
*Type = INTEL_COREI7; // "skylake"
|
|
*Subtype = INTEL_COREI7_SKYLAKE;
|
|
break;
|
|
|
|
case 0x1c: // Most 45 nm Intel Atom processors
|
|
case 0x26: // 45 nm Atom Lincroft
|
|
case 0x27: // 32 nm Atom Medfield
|
|
case 0x35: // 32 nm Atom Midview
|
|
case 0x36: // 32 nm Atom Midview
|
|
*Type = INTEL_ATOM;
|
|
*Subtype = INTEL_ATOM_BONNELL;
|
|
break; // "bonnell"
|
|
|
|
// Atom Silvermont codes from the Intel software optimization guide.
|
|
case 0x37:
|
|
case 0x4a:
|
|
case 0x4d:
|
|
case 0x5a:
|
|
case 0x5d:
|
|
case 0x4c: // really airmont
|
|
*Type = INTEL_ATOM;
|
|
*Subtype = INTEL_ATOM_SILVERMONT;
|
|
break; // "silvermont"
|
|
|
|
case 0x57:
|
|
*Type = INTEL_XEONPHI; // knl
|
|
*Subtype = INTEL_KNIGHTS_LANDING;
|
|
break;
|
|
|
|
default: // Unknown family 6 CPU, try to guess.
|
|
if (Features & (1 << FEATURE_AVX512)) {
|
|
*Type = INTEL_XEONPHI; // knl
|
|
*Subtype = INTEL_KNIGHTS_LANDING;
|
|
break;
|
|
}
|
|
if (Features & (1 << FEATURE_ADX)) {
|
|
*Type = INTEL_COREI7;
|
|
*Subtype = INTEL_COREI7_BROADWELL;
|
|
break;
|
|
}
|
|
if (Features & (1 << FEATURE_AVX2)) {
|
|
*Type = INTEL_COREI7;
|
|
*Subtype = INTEL_COREI7_HASWELL;
|
|
break;
|
|
}
|
|
if (Features & (1 << FEATURE_AVX)) {
|
|
*Type = INTEL_COREI7;
|
|
*Subtype = INTEL_COREI7_SANDYBRIDGE;
|
|
break;
|
|
}
|
|
if (Features & (1 << FEATURE_SSE4_2)) {
|
|
if (Features & (1 << FEATURE_MOVBE)) {
|
|
*Type = INTEL_ATOM;
|
|
*Subtype = INTEL_ATOM_SILVERMONT;
|
|
} else {
|
|
*Type = INTEL_COREI7;
|
|
*Subtype = INTEL_COREI7_NEHALEM;
|
|
}
|
|
break;
|
|
}
|
|
if (Features & (1 << FEATURE_SSE4_1)) {
|
|
*Type = INTEL_CORE2; // "penryn"
|
|
*Subtype = INTEL_CORE2_45;
|
|
break;
|
|
}
|
|
if (Features & (1 << FEATURE_SSSE3)) {
|
|
if (Features & (1 << FEATURE_MOVBE)) {
|
|
*Type = INTEL_ATOM;
|
|
*Subtype = INTEL_ATOM_BONNELL; // "bonnell"
|
|
} else {
|
|
*Type = INTEL_CORE2; // "core2"
|
|
*Subtype = INTEL_CORE2_65;
|
|
}
|
|
break;
|
|
}
|
|
if (Features & (1 << FEATURE_EM64T)) {
|
|
*Type = INTEL_X86_64;
|
|
break; // x86-64
|
|
}
|
|
if (Features & (1 << FEATURE_SSE2)) {
|
|
*Type = INTEL_PENTIUM_M;
|
|
break;
|
|
}
|
|
if (Features & (1 << FEATURE_SSE)) {
|
|
*Type = INTEL_PENTIUM_III;
|
|
break;
|
|
}
|
|
if (Features & (1 << FEATURE_MMX)) {
|
|
*Type = INTEL_PENTIUM_II;
|
|
break;
|
|
}
|
|
*Type = INTEL_PENTIUM_PRO;
|
|
break;
|
|
}
|
|
break;
|
|
case 15: {
|
|
switch (Model) {
|
|
case 0: // Pentium 4 processor, Intel Xeon processor. All processors are
|
|
// model 00h and manufactured using the 0.18 micron process.
|
|
case 1: // Pentium 4 processor, Intel Xeon processor, Intel Xeon
|
|
// processor MP, and Intel Celeron processor. All processors are
|
|
// model 01h and manufactured using the 0.18 micron process.
|
|
case 2: // Pentium 4 processor, Mobile Intel Pentium 4 processor - M,
|
|
// Intel Xeon processor, Intel Xeon processor MP, Intel Celeron
|
|
// processor, and Mobile Intel Celeron processor. All processors
|
|
// are model 02h and manufactured using the 0.13 micron process.
|
|
*Type =
|
|
((Features & (1 << FEATURE_EM64T)) ? INTEL_X86_64 : INTEL_PENTIUM_IV);
|
|
break;
|
|
|
|
case 3: // Pentium 4 processor, Intel Xeon processor, Intel Celeron D
|
|
// processor. All processors are model 03h and manufactured using
|
|
// the 90 nm process.
|
|
case 4: // Pentium 4 processor, Pentium 4 processor Extreme Edition,
|
|
// Pentium D processor, Intel Xeon processor, Intel Xeon
|
|
// processor MP, Intel Celeron D processor. All processors are
|
|
// model 04h and manufactured using the 90 nm process.
|
|
case 6: // Pentium 4 processor, Pentium D processor, Pentium processor
|
|
// Extreme Edition, Intel Xeon processor, Intel Xeon processor
|
|
// MP, Intel Celeron D processor. All processors are model 06h
|
|
// and manufactured using the 65 nm process.
|
|
*Type =
|
|
((Features & (1 << FEATURE_EM64T)) ? INTEL_NOCONA : INTEL_PRESCOTT);
|
|
break;
|
|
|
|
default:
|
|
*Type =
|
|
((Features & (1 << FEATURE_EM64T)) ? INTEL_X86_64 : INTEL_PENTIUM_IV);
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
default:
|
|
break; /*"generic"*/
|
|
}
|
|
}
|
|
|
|
static void getAMDProcessorTypeAndSubtype(unsigned int Family,
|
|
unsigned int Model,
|
|
unsigned int Features,
|
|
unsigned *Type,
|
|
unsigned *Subtype) {
|
|
// FIXME: this poorly matches the generated SubtargetFeatureKV table. There
|
|
// appears to be no way to generate the wide variety of AMD-specific targets
|
|
// from the information returned from CPUID.
|
|
switch (Family) {
|
|
case 4:
|
|
*Type = AMD_i486;
|
|
break;
|
|
case 5:
|
|
*Type = AMDPENTIUM;
|
|
switch (Model) {
|
|
case 6:
|
|
case 7:
|
|
*Subtype = AMDPENTIUM_K6;
|
|
break; // "k6"
|
|
case 8:
|
|
*Subtype = AMDPENTIUM_K62;
|
|
break; // "k6-2"
|
|
case 9:
|
|
case 13:
|
|
*Subtype = AMDPENTIUM_K63;
|
|
break; // "k6-3"
|
|
case 10:
|
|
*Subtype = AMDPENTIUM_GEODE;
|
|
break; // "geode"
|
|
}
|
|
break;
|
|
case 6:
|
|
*Type = AMDATHLON;
|
|
switch (Model) {
|
|
case 4:
|
|
*Subtype = AMDATHLON_TBIRD;
|
|
break; // "athlon-tbird"
|
|
case 6:
|
|
case 7:
|
|
case 8:
|
|
*Subtype = AMDATHLON_MP;
|
|
break; // "athlon-mp"
|
|
case 10:
|
|
*Subtype = AMDATHLON_XP;
|
|
break; // "athlon-xp"
|
|
}
|
|
break;
|
|
case 15:
|
|
*Type = AMDATHLON;
|
|
if (Features & (1 << FEATURE_SSE3)) {
|
|
*Subtype = AMDATHLON_K8SSE3;
|
|
break; // "k8-sse3"
|
|
}
|
|
switch (Model) {
|
|
case 1:
|
|
*Subtype = AMDATHLON_OPTERON;
|
|
break; // "opteron"
|
|
case 5:
|
|
*Subtype = AMDATHLON_FX;
|
|
break; // "athlon-fx"; also opteron
|
|
default:
|
|
*Subtype = AMDATHLON_64;
|
|
break; // "athlon64"
|
|
}
|
|
break;
|
|
case 16:
|
|
*Type = AMDFAM10H; // "amdfam10"
|
|
switch (Model) {
|
|
case 2:
|
|
*Subtype = AMDFAM10H_BARCELONA;
|
|
break;
|
|
case 4:
|
|
*Subtype = AMDFAM10H_SHANGHAI;
|
|
break;
|
|
case 8:
|
|
*Subtype = AMDFAM10H_ISTANBUL;
|
|
break;
|
|
}
|
|
break;
|
|
case 20:
|
|
*Type = AMDFAM14H;
|
|
*Subtype = AMD_BTVER1;
|
|
break; // "btver1";
|
|
case 21:
|
|
*Type = AMDFAM15H;
|
|
if (!(Features &
|
|
(1 << FEATURE_AVX))) { // If no AVX support, provide a sane fallback.
|
|
*Subtype = AMD_BTVER1;
|
|
break; // "btver1"
|
|
}
|
|
if (Model >= 0x50 && Model <= 0x6f) {
|
|
*Subtype = AMDFAM15H_BDVER4;
|
|
break; // "bdver4"; 50h-6Fh: Excavator
|
|
}
|
|
if (Model >= 0x30 && Model <= 0x3f) {
|
|
*Subtype = AMDFAM15H_BDVER3;
|
|
break; // "bdver3"; 30h-3Fh: Steamroller
|
|
}
|
|
if (Model >= 0x10 && Model <= 0x1f) {
|
|
*Subtype = AMDFAM15H_BDVER2;
|
|
break; // "bdver2"; 10h-1Fh: Piledriver
|
|
}
|
|
if (Model <= 0x0f) {
|
|
*Subtype = AMDFAM15H_BDVER1;
|
|
break; // "bdver1"; 00h-0Fh: Bulldozer
|
|
}
|
|
break;
|
|
case 22:
|
|
*Type = AMDFAM16H;
|
|
if (!(Features &
|
|
(1 << FEATURE_AVX))) { // If no AVX support provide a sane fallback.
|
|
*Subtype = AMD_BTVER1;
|
|
break; // "btver1";
|
|
}
|
|
*Subtype = AMD_BTVER2;
|
|
break; // "btver2"
|
|
default:
|
|
break; // "generic"
|
|
}
|
|
}
|
|
|
|
static unsigned getAvailableFeatures(unsigned int ECX, unsigned int EDX,
|
|
unsigned MaxLeaf) {
|
|
unsigned Features = 0;
|
|
unsigned int EAX, EBX;
|
|
Features |= (((EDX >> 23) & 1) << FEATURE_MMX);
|
|
Features |= (((EDX >> 25) & 1) << FEATURE_SSE);
|
|
Features |= (((EDX >> 26) & 1) << FEATURE_SSE2);
|
|
Features |= (((ECX >> 0) & 1) << FEATURE_SSE3);
|
|
Features |= (((ECX >> 9) & 1) << FEATURE_SSSE3);
|
|
Features |= (((ECX >> 19) & 1) << FEATURE_SSE4_1);
|
|
Features |= (((ECX >> 20) & 1) << FEATURE_SSE4_2);
|
|
Features |= (((ECX >> 22) & 1) << FEATURE_MOVBE);
|
|
|
|
// If CPUID indicates support for XSAVE, XRESTORE and AVX, and XGETBV
|
|
// indicates that the AVX registers will be saved and restored on context
|
|
// switch, then we have full AVX support.
|
|
const unsigned AVXBits = (1 << 27) | (1 << 28);
|
|
bool HasAVX = ((ECX & AVXBits) == AVXBits) && !getX86XCR0(&EAX, &EDX) &&
|
|
((EAX & 0x6) == 0x6);
|
|
bool HasAVX512Save = HasAVX && ((EAX & 0xe0) == 0xe0);
|
|
bool HasLeaf7 =
|
|
MaxLeaf >= 0x7 && !getX86CpuIDAndInfoEx(0x7, 0x0, &EAX, &EBX, &ECX, &EDX);
|
|
bool HasADX = HasLeaf7 && ((EBX >> 19) & 1);
|
|
bool HasAVX2 = HasAVX && HasLeaf7 && (EBX & 0x20);
|
|
bool HasAVX512 = HasLeaf7 && HasAVX512Save && ((EBX >> 16) & 1);
|
|
Features |= (HasAVX << FEATURE_AVX);
|
|
Features |= (HasAVX2 << FEATURE_AVX2);
|
|
Features |= (HasAVX512 << FEATURE_AVX512);
|
|
Features |= (HasAVX512Save << FEATURE_AVX512SAVE);
|
|
Features |= (HasADX << FEATURE_ADX);
|
|
|
|
getX86CpuIDAndInfo(0x80000001, &EAX, &EBX, &ECX, &EDX);
|
|
Features |= (((EDX >> 29) & 0x1) << FEATURE_EM64T);
|
|
return Features;
|
|
}
|
|
|
|
StringRef sys::getHostCPUName() {
|
|
unsigned EAX = 0, EBX = 0, ECX = 0, EDX = 0;
|
|
unsigned MaxLeaf, Vendor;
|
|
|
|
#if defined(__GNUC__) || defined(__clang__)
|
|
//FIXME: include cpuid.h from clang or copy __get_cpuid_max here
|
|
// and simplify it to not invoke __cpuid (like cpu_model.c in
|
|
// compiler-rt/lib/builtins/cpu_model.c?
|
|
if(!__get_cpuid_max(0, &Vendor))
|
|
return "generic";
|
|
#endif
|
|
if (getX86CpuIDAndInfo(0, &MaxLeaf, &Vendor, &ECX, &EDX))
|
|
return "generic";
|
|
if (getX86CpuIDAndInfo(0x1, &EAX, &EBX, &ECX, &EDX))
|
|
return "generic";
|
|
|
|
unsigned Brand_id = EBX & 0xff;
|
|
unsigned Family = 0, Model = 0;
|
|
unsigned Features = 0;
|
|
detectX86FamilyModel(EAX, &Family, &Model);
|
|
Features = getAvailableFeatures(ECX, EDX, MaxLeaf);
|
|
|
|
unsigned Type;
|
|
unsigned Subtype;
|
|
|
|
if (Vendor == SIG_INTEL) {
|
|
getIntelProcessorTypeAndSubtype(Family, Model, Brand_id, Features, &Type,
|
|
&Subtype);
|
|
switch (Type) {
|
|
case INTEL_i386:
|
|
return "i386";
|
|
case INTEL_i486:
|
|
return "i486";
|
|
case INTEL_PENTIUM:
|
|
if (Subtype == INTEL_PENTIUM_MMX)
|
|
return "pentium-mmx";
|
|
return "pentium";
|
|
case INTEL_PENTIUM_PRO:
|
|
return "pentiumpro";
|
|
case INTEL_PENTIUM_II:
|
|
return "pentium2";
|
|
case INTEL_PENTIUM_III:
|
|
return "pentium3";
|
|
case INTEL_PENTIUM_IV:
|
|
return "pentium4";
|
|
case INTEL_PENTIUM_M:
|
|
return "pentium-m";
|
|
case INTEL_CORE_DUO:
|
|
return "yonah";
|
|
case INTEL_CORE2:
|
|
switch (Subtype) {
|
|
case INTEL_CORE2_65:
|
|
return "core2";
|
|
case INTEL_CORE2_45:
|
|
return "penryn";
|
|
default:
|
|
return "core2";
|
|
}
|
|
case INTEL_COREI7:
|
|
switch (Subtype) {
|
|
case INTEL_COREI7_NEHALEM:
|
|
return "nehalem";
|
|
case INTEL_COREI7_WESTMERE:
|
|
return "westmere";
|
|
case INTEL_COREI7_SANDYBRIDGE:
|
|
return "sandybridge";
|
|
case INTEL_COREI7_IVYBRIDGE:
|
|
return "ivybridge";
|
|
case INTEL_COREI7_HASWELL:
|
|
return "haswell";
|
|
case INTEL_COREI7_BROADWELL:
|
|
return "broadwell";
|
|
case INTEL_COREI7_SKYLAKE:
|
|
return "skylake";
|
|
case INTEL_COREI7_SKYLAKE_AVX512:
|
|
return "skylake-avx512";
|
|
default:
|
|
return "corei7";
|
|
}
|
|
case INTEL_ATOM:
|
|
switch (Subtype) {
|
|
case INTEL_ATOM_BONNELL:
|
|
return "bonnell";
|
|
case INTEL_ATOM_SILVERMONT:
|
|
return "silvermont";
|
|
default:
|
|
return "atom";
|
|
}
|
|
case INTEL_XEONPHI:
|
|
return "knl"; /*update for more variants added*/
|
|
case INTEL_X86_64:
|
|
return "x86-64";
|
|
case INTEL_NOCONA:
|
|
return "nocona";
|
|
case INTEL_PRESCOTT:
|
|
return "prescott";
|
|
default:
|
|
return "generic";
|
|
}
|
|
} else if (Vendor == SIG_AMD) {
|
|
getAMDProcessorTypeAndSubtype(Family, Model, Features, &Type, &Subtype);
|
|
switch (Type) {
|
|
case AMD_i486:
|
|
return "i486";
|
|
case AMDPENTIUM:
|
|
switch (Subtype) {
|
|
case AMDPENTIUM_K6:
|
|
return "k6";
|
|
case AMDPENTIUM_K62:
|
|
return "k6-2";
|
|
case AMDPENTIUM_K63:
|
|
return "k6-3";
|
|
case AMDPENTIUM_GEODE:
|
|
return "geode";
|
|
default:
|
|
return "pentium";
|
|
}
|
|
case AMDATHLON:
|
|
switch (Subtype) {
|
|
case AMDATHLON_TBIRD:
|
|
return "athlon-tbird";
|
|
case AMDATHLON_MP:
|
|
return "athlon-mp";
|
|
case AMDATHLON_XP:
|
|
return "athlon-xp";
|
|
case AMDATHLON_K8SSE3:
|
|
return "k8-sse3";
|
|
case AMDATHLON_OPTERON:
|
|
return "opteron";
|
|
case AMDATHLON_FX:
|
|
return "athlon-fx";
|
|
case AMDATHLON_64:
|
|
return "athlon64";
|
|
default:
|
|
return "athlon";
|
|
}
|
|
case AMDFAM10H:
|
|
if(Subtype == AMDFAM10H_BARCELONA)
|
|
return "barcelona";
|
|
return "amdfam10";
|
|
case AMDFAM14H:
|
|
return "btver1";
|
|
case AMDFAM15H:
|
|
switch (Subtype) {
|
|
case AMDFAM15H_BDVER1:
|
|
return "bdver1";
|
|
case AMDFAM15H_BDVER2:
|
|
return "bdver2";
|
|
case AMDFAM15H_BDVER3:
|
|
return "bdver3";
|
|
case AMDFAM15H_BDVER4:
|
|
return "bdver4";
|
|
case AMD_BTVER1:
|
|
return "btver1";
|
|
default:
|
|
return "amdfam15";
|
|
}
|
|
case AMDFAM16H:
|
|
switch (Subtype) {
|
|
case AMD_BTVER1:
|
|
return "btver1";
|
|
case AMD_BTVER2:
|
|
return "btver2";
|
|
default:
|
|
return "amdfam16";
|
|
}
|
|
default:
|
|
return "generic";
|
|
}
|
|
}
|
|
return "generic";
|
|
}
|
|
|
|
#elif defined(__APPLE__) && (defined(__ppc__) || defined(__powerpc__))
|
|
StringRef sys::getHostCPUName() {
|
|
host_basic_info_data_t hostInfo;
|
|
mach_msg_type_number_t infoCount;
|
|
|
|
infoCount = HOST_BASIC_INFO_COUNT;
|
|
host_info(mach_host_self(), HOST_BASIC_INFO, (host_info_t)&hostInfo,
|
|
&infoCount);
|
|
|
|
if (hostInfo.cpu_type != CPU_TYPE_POWERPC)
|
|
return "generic";
|
|
|
|
switch (hostInfo.cpu_subtype) {
|
|
case CPU_SUBTYPE_POWERPC_601:
|
|
return "601";
|
|
case CPU_SUBTYPE_POWERPC_602:
|
|
return "602";
|
|
case CPU_SUBTYPE_POWERPC_603:
|
|
return "603";
|
|
case CPU_SUBTYPE_POWERPC_603e:
|
|
return "603e";
|
|
case CPU_SUBTYPE_POWERPC_603ev:
|
|
return "603ev";
|
|
case CPU_SUBTYPE_POWERPC_604:
|
|
return "604";
|
|
case CPU_SUBTYPE_POWERPC_604e:
|
|
return "604e";
|
|
case CPU_SUBTYPE_POWERPC_620:
|
|
return "620";
|
|
case CPU_SUBTYPE_POWERPC_750:
|
|
return "750";
|
|
case CPU_SUBTYPE_POWERPC_7400:
|
|
return "7400";
|
|
case CPU_SUBTYPE_POWERPC_7450:
|
|
return "7450";
|
|
case CPU_SUBTYPE_POWERPC_970:
|
|
return "970";
|
|
default:;
|
|
}
|
|
|
|
return "generic";
|
|
}
|
|
#elif defined(__linux__) && (defined(__ppc__) || defined(__powerpc__))
|
|
StringRef sys::getHostCPUName() {
|
|
// Access to the Processor Version Register (PVR) on PowerPC is privileged,
|
|
// and so we must use an operating-system interface to determine the current
|
|
// processor type. On Linux, this is exposed through the /proc/cpuinfo file.
|
|
const char *generic = "generic";
|
|
|
|
// The cpu line is second (after the 'processor: 0' line), so if this
|
|
// buffer is too small then something has changed (or is wrong).
|
|
char buffer[1024];
|
|
ssize_t CPUInfoSize = readCpuInfo(buffer, sizeof(buffer));
|
|
if (CPUInfoSize == -1)
|
|
return generic;
|
|
|
|
const char *CPUInfoStart = buffer;
|
|
const char *CPUInfoEnd = buffer + CPUInfoSize;
|
|
|
|
const char *CIP = CPUInfoStart;
|
|
|
|
const char *CPUStart = 0;
|
|
size_t CPULen = 0;
|
|
|
|
// We need to find the first line which starts with cpu, spaces, and a colon.
|
|
// After the colon, there may be some additional spaces and then the cpu type.
|
|
while (CIP < CPUInfoEnd && CPUStart == 0) {
|
|
if (CIP < CPUInfoEnd && *CIP == '\n')
|
|
++CIP;
|
|
|
|
if (CIP < CPUInfoEnd && *CIP == 'c') {
|
|
++CIP;
|
|
if (CIP < CPUInfoEnd && *CIP == 'p') {
|
|
++CIP;
|
|
if (CIP < CPUInfoEnd && *CIP == 'u') {
|
|
++CIP;
|
|
while (CIP < CPUInfoEnd && (*CIP == ' ' || *CIP == '\t'))
|
|
++CIP;
|
|
|
|
if (CIP < CPUInfoEnd && *CIP == ':') {
|
|
++CIP;
|
|
while (CIP < CPUInfoEnd && (*CIP == ' ' || *CIP == '\t'))
|
|
++CIP;
|
|
|
|
if (CIP < CPUInfoEnd) {
|
|
CPUStart = CIP;
|
|
while (CIP < CPUInfoEnd && (*CIP != ' ' && *CIP != '\t' &&
|
|
*CIP != ',' && *CIP != '\n'))
|
|
++CIP;
|
|
CPULen = CIP - CPUStart;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (CPUStart == 0)
|
|
while (CIP < CPUInfoEnd && *CIP != '\n')
|
|
++CIP;
|
|
}
|
|
|
|
if (CPUStart == 0)
|
|
return generic;
|
|
|
|
return StringSwitch<const char *>(StringRef(CPUStart, CPULen))
|
|
.Case("604e", "604e")
|
|
.Case("604", "604")
|
|
.Case("7400", "7400")
|
|
.Case("7410", "7400")
|
|
.Case("7447", "7400")
|
|
.Case("7455", "7450")
|
|
.Case("G4", "g4")
|
|
.Case("POWER4", "970")
|
|
.Case("PPC970FX", "970")
|
|
.Case("PPC970MP", "970")
|
|
.Case("G5", "g5")
|
|
.Case("POWER5", "g5")
|
|
.Case("A2", "a2")
|
|
.Case("POWER6", "pwr6")
|
|
.Case("POWER7", "pwr7")
|
|
.Case("POWER8", "pwr8")
|
|
.Case("POWER8E", "pwr8")
|
|
.Case("POWER9", "pwr9")
|
|
.Default(generic);
|
|
}
|
|
#elif defined(__linux__) && defined(__arm__)
|
|
StringRef sys::getHostCPUName() {
|
|
// The cpuid register on arm is not accessible from user space. On Linux,
|
|
// it is exposed through the /proc/cpuinfo file.
|
|
|
|
// Read 1024 bytes from /proc/cpuinfo, which should contain the CPU part line
|
|
// in all cases.
|
|
char buffer[1024];
|
|
ssize_t CPUInfoSize = readCpuInfo(buffer, sizeof(buffer));
|
|
if (CPUInfoSize == -1)
|
|
return "generic";
|
|
|
|
StringRef Str(buffer, CPUInfoSize);
|
|
|
|
SmallVector<StringRef, 32> Lines;
|
|
Str.split(Lines, "\n");
|
|
|
|
// Look for the CPU implementer line.
|
|
StringRef Implementer;
|
|
for (unsigned I = 0, E = Lines.size(); I != E; ++I)
|
|
if (Lines[I].startswith("CPU implementer"))
|
|
Implementer = Lines[I].substr(15).ltrim("\t :");
|
|
|
|
if (Implementer == "0x41") // ARM Ltd.
|
|
// Look for the CPU part line.
|
|
for (unsigned I = 0, E = Lines.size(); I != E; ++I)
|
|
if (Lines[I].startswith("CPU part"))
|
|
// The CPU part is a 3 digit hexadecimal number with a 0x prefix. The
|
|
// values correspond to the "Part number" in the CP15/c0 register. The
|
|
// contents are specified in the various processor manuals.
|
|
return StringSwitch<const char *>(Lines[I].substr(8).ltrim("\t :"))
|
|
.Case("0x926", "arm926ej-s")
|
|
.Case("0xb02", "mpcore")
|
|
.Case("0xb36", "arm1136j-s")
|
|
.Case("0xb56", "arm1156t2-s")
|
|
.Case("0xb76", "arm1176jz-s")
|
|
.Case("0xc08", "cortex-a8")
|
|
.Case("0xc09", "cortex-a9")
|
|
.Case("0xc0f", "cortex-a15")
|
|
.Case("0xc20", "cortex-m0")
|
|
.Case("0xc23", "cortex-m3")
|
|
.Case("0xc24", "cortex-m4")
|
|
.Default("generic");
|
|
|
|
if (Implementer == "0x51") // Qualcomm Technologies, Inc.
|
|
// Look for the CPU part line.
|
|
for (unsigned I = 0, E = Lines.size(); I != E; ++I)
|
|
if (Lines[I].startswith("CPU part"))
|
|
// The CPU part is a 3 digit hexadecimal number with a 0x prefix. The
|
|
// values correspond to the "Part number" in the CP15/c0 register. The
|
|
// contents are specified in the various processor manuals.
|
|
return StringSwitch<const char *>(Lines[I].substr(8).ltrim("\t :"))
|
|
.Case("0x06f", "krait") // APQ8064
|
|
.Default("generic");
|
|
|
|
return "generic";
|
|
}
|
|
#elif defined(__linux__) && defined(__s390x__)
|
|
StringRef sys::getHostCPUName() {
|
|
// STIDP is a privileged operation, so use /proc/cpuinfo instead.
|
|
|
|
// The "processor 0:" line comes after a fair amount of other information,
|
|
// including a cache breakdown, but this should be plenty.
|
|
char buffer[2048];
|
|
ssize_t CPUInfoSize = readCpuInfo(buffer, sizeof(buffer));
|
|
if (CPUInfoSize == -1)
|
|
return "generic";
|
|
|
|
StringRef Str(buffer, CPUInfoSize);
|
|
SmallVector<StringRef, 32> Lines;
|
|
Str.split(Lines, "\n");
|
|
|
|
// Look for the CPU features.
|
|
SmallVector<StringRef, 32> CPUFeatures;
|
|
for (unsigned I = 0, E = Lines.size(); I != E; ++I)
|
|
if (Lines[I].startswith("features")) {
|
|
size_t Pos = Lines[I].find(":");
|
|
if (Pos != StringRef::npos) {
|
|
Lines[I].drop_front(Pos + 1).split(CPUFeatures, ' ');
|
|
break;
|
|
}
|
|
}
|
|
|
|
// We need to check for the presence of vector support independently of
|
|
// the machine type, since we may only use the vector register set when
|
|
// supported by the kernel (and hypervisor).
|
|
bool HaveVectorSupport = false;
|
|
for (unsigned I = 0, E = CPUFeatures.size(); I != E; ++I) {
|
|
if (CPUFeatures[I] == "vx")
|
|
HaveVectorSupport = true;
|
|
}
|
|
|
|
// Now check the processor machine type.
|
|
for (unsigned I = 0, E = Lines.size(); I != E; ++I) {
|
|
if (Lines[I].startswith("processor ")) {
|
|
size_t Pos = Lines[I].find("machine = ");
|
|
if (Pos != StringRef::npos) {
|
|
Pos += sizeof("machine = ") - 1;
|
|
unsigned int Id;
|
|
if (!Lines[I].drop_front(Pos).getAsInteger(10, Id)) {
|
|
if (Id >= 2964 && HaveVectorSupport)
|
|
return "z13";
|
|
if (Id >= 2827)
|
|
return "zEC12";
|
|
if (Id >= 2817)
|
|
return "z196";
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
return "generic";
|
|
}
|
|
#else
|
|
StringRef sys::getHostCPUName() { return "generic"; }
|
|
#endif
|
|
|
|
#if defined(__i386__) || defined(_M_IX86) || \
|
|
defined(__x86_64__) || defined(_M_X64)
|
|
bool sys::getHostCPUFeatures(StringMap<bool> &Features) {
|
|
unsigned EAX = 0, EBX = 0, ECX = 0, EDX = 0;
|
|
unsigned MaxLevel;
|
|
union {
|
|
unsigned u[3];
|
|
char c[12];
|
|
} text;
|
|
|
|
if (getX86CpuIDAndInfo(0, &MaxLevel, text.u + 0, text.u + 2, text.u + 1) ||
|
|
MaxLevel < 1)
|
|
return false;
|
|
|
|
getX86CpuIDAndInfo(1, &EAX, &EBX, &ECX, &EDX);
|
|
|
|
Features["cmov"] = (EDX >> 15) & 1;
|
|
Features["mmx"] = (EDX >> 23) & 1;
|
|
Features["sse"] = (EDX >> 25) & 1;
|
|
Features["sse2"] = (EDX >> 26) & 1;
|
|
Features["sse3"] = (ECX >> 0) & 1;
|
|
Features["ssse3"] = (ECX >> 9) & 1;
|
|
Features["sse4.1"] = (ECX >> 19) & 1;
|
|
Features["sse4.2"] = (ECX >> 20) & 1;
|
|
|
|
Features["pclmul"] = (ECX >> 1) & 1;
|
|
Features["cx16"] = (ECX >> 13) & 1;
|
|
Features["movbe"] = (ECX >> 22) & 1;
|
|
Features["popcnt"] = (ECX >> 23) & 1;
|
|
Features["aes"] = (ECX >> 25) & 1;
|
|
Features["rdrnd"] = (ECX >> 30) & 1;
|
|
|
|
// If CPUID indicates support for XSAVE, XRESTORE and AVX, and XGETBV
|
|
// indicates that the AVX registers will be saved and restored on context
|
|
// switch, then we have full AVX support.
|
|
bool HasAVXSave = ((ECX >> 27) & 1) && ((ECX >> 28) & 1) &&
|
|
!getX86XCR0(&EAX, &EDX) && ((EAX & 0x6) == 0x6);
|
|
Features["avx"] = HasAVXSave;
|
|
Features["fma"] = HasAVXSave && (ECX >> 12) & 1;
|
|
Features["f16c"] = HasAVXSave && (ECX >> 29) & 1;
|
|
|
|
// Only enable XSAVE if OS has enabled support for saving YMM state.
|
|
Features["xsave"] = HasAVXSave && (ECX >> 26) & 1;
|
|
|
|
// AVX512 requires additional context to be saved by the OS.
|
|
bool HasAVX512Save = HasAVXSave && ((EAX & 0xe0) == 0xe0);
|
|
|
|
unsigned MaxExtLevel;
|
|
getX86CpuIDAndInfo(0x80000000, &MaxExtLevel, &EBX, &ECX, &EDX);
|
|
|
|
bool HasExtLeaf1 = MaxExtLevel >= 0x80000001 &&
|
|
!getX86CpuIDAndInfo(0x80000001, &EAX, &EBX, &ECX, &EDX);
|
|
Features["lzcnt"] = HasExtLeaf1 && ((ECX >> 5) & 1);
|
|
Features["sse4a"] = HasExtLeaf1 && ((ECX >> 6) & 1);
|
|
Features["prfchw"] = HasExtLeaf1 && ((ECX >> 8) & 1);
|
|
Features["xop"] = HasExtLeaf1 && ((ECX >> 11) & 1) && HasAVXSave;
|
|
Features["fma4"] = HasExtLeaf1 && ((ECX >> 16) & 1) && HasAVXSave;
|
|
Features["tbm"] = HasExtLeaf1 && ((ECX >> 21) & 1);
|
|
Features["mwaitx"] = HasExtLeaf1 && ((ECX >> 29) & 1);
|
|
|
|
bool HasLeaf7 =
|
|
MaxLevel >= 7 && !getX86CpuIDAndInfoEx(0x7, 0x0, &EAX, &EBX, &ECX, &EDX);
|
|
|
|
// AVX2 is only supported if we have the OS save support from AVX.
|
|
Features["avx2"] = HasAVXSave && HasLeaf7 && ((EBX >> 5) & 1);
|
|
|
|
Features["fsgsbase"] = HasLeaf7 && ((EBX >> 0) & 1);
|
|
Features["sgx"] = HasLeaf7 && ((EBX >> 2) & 1);
|
|
Features["bmi"] = HasLeaf7 && ((EBX >> 3) & 1);
|
|
Features["hle"] = HasLeaf7 && ((EBX >> 4) & 1);
|
|
Features["bmi2"] = HasLeaf7 && ((EBX >> 8) & 1);
|
|
Features["invpcid"] = HasLeaf7 && ((EBX >> 10) & 1);
|
|
Features["rtm"] = HasLeaf7 && ((EBX >> 11) & 1);
|
|
Features["rdseed"] = HasLeaf7 && ((EBX >> 18) & 1);
|
|
Features["adx"] = HasLeaf7 && ((EBX >> 19) & 1);
|
|
Features["smap"] = HasLeaf7 && ((EBX >> 20) & 1);
|
|
Features["pcommit"] = HasLeaf7 && ((EBX >> 22) & 1);
|
|
Features["clflushopt"] = HasLeaf7 && ((EBX >> 23) & 1);
|
|
Features["clwb"] = HasLeaf7 && ((EBX >> 24) & 1);
|
|
Features["sha"] = HasLeaf7 && ((EBX >> 29) & 1);
|
|
|
|
// AVX512 is only supported if the OS supports the context save for it.
|
|
Features["avx512f"] = HasLeaf7 && ((EBX >> 16) & 1) && HasAVX512Save;
|
|
Features["avx512dq"] = HasLeaf7 && ((EBX >> 17) & 1) && HasAVX512Save;
|
|
Features["avx512ifma"] = HasLeaf7 && ((EBX >> 21) & 1) && HasAVX512Save;
|
|
Features["avx512pf"] = HasLeaf7 && ((EBX >> 26) & 1) && HasAVX512Save;
|
|
Features["avx512er"] = HasLeaf7 && ((EBX >> 27) & 1) && HasAVX512Save;
|
|
Features["avx512cd"] = HasLeaf7 && ((EBX >> 28) & 1) && HasAVX512Save;
|
|
Features["avx512bw"] = HasLeaf7 && ((EBX >> 30) & 1) && HasAVX512Save;
|
|
Features["avx512vl"] = HasLeaf7 && ((EBX >> 31) & 1) && HasAVX512Save;
|
|
|
|
Features["prefetchwt1"] = HasLeaf7 && (ECX & 1);
|
|
Features["avx512vbmi"] = HasLeaf7 && ((ECX >> 1) & 1) && HasAVX512Save;
|
|
// Enable protection keys
|
|
Features["pku"] = HasLeaf7 && ((ECX >> 4) & 1);
|
|
|
|
bool HasLeafD = MaxLevel >= 0xd &&
|
|
!getX86CpuIDAndInfoEx(0xd, 0x1, &EAX, &EBX, &ECX, &EDX);
|
|
|
|
// Only enable XSAVE if OS has enabled support for saving YMM state.
|
|
Features["xsaveopt"] = HasAVXSave && HasLeafD && ((EAX >> 0) & 1);
|
|
Features["xsavec"] = HasAVXSave && HasLeafD && ((EAX >> 1) & 1);
|
|
Features["xsaves"] = HasAVXSave && HasLeafD && ((EAX >> 3) & 1);
|
|
|
|
return true;
|
|
}
|
|
#elif defined(__linux__) && (defined(__arm__) || defined(__aarch64__))
|
|
bool sys::getHostCPUFeatures(StringMap<bool> &Features) {
|
|
// Read 1024 bytes from /proc/cpuinfo, which should contain the Features line
|
|
// in all cases.
|
|
char buffer[1024];
|
|
ssize_t CPUInfoSize = readCpuInfo(buffer, sizeof(buffer));
|
|
if (CPUInfoSize == -1)
|
|
return false;
|
|
|
|
StringRef Str(buffer, CPUInfoSize);
|
|
|
|
SmallVector<StringRef, 32> Lines;
|
|
Str.split(Lines, "\n");
|
|
|
|
SmallVector<StringRef, 32> CPUFeatures;
|
|
|
|
// Look for the CPU features.
|
|
for (unsigned I = 0, E = Lines.size(); I != E; ++I)
|
|
if (Lines[I].startswith("Features")) {
|
|
Lines[I].split(CPUFeatures, ' ');
|
|
break;
|
|
}
|
|
|
|
#if defined(__aarch64__)
|
|
// Keep track of which crypto features we have seen
|
|
enum { CAP_AES = 0x1, CAP_PMULL = 0x2, CAP_SHA1 = 0x4, CAP_SHA2 = 0x8 };
|
|
uint32_t crypto = 0;
|
|
#endif
|
|
|
|
for (unsigned I = 0, E = CPUFeatures.size(); I != E; ++I) {
|
|
StringRef LLVMFeatureStr = StringSwitch<StringRef>(CPUFeatures[I])
|
|
#if defined(__aarch64__)
|
|
.Case("asimd", "neon")
|
|
.Case("fp", "fp-armv8")
|
|
.Case("crc32", "crc")
|
|
#else
|
|
.Case("half", "fp16")
|
|
.Case("neon", "neon")
|
|
.Case("vfpv3", "vfp3")
|
|
.Case("vfpv3d16", "d16")
|
|
.Case("vfpv4", "vfp4")
|
|
.Case("idiva", "hwdiv-arm")
|
|
.Case("idivt", "hwdiv")
|
|
#endif
|
|
.Default("");
|
|
|
|
#if defined(__aarch64__)
|
|
// We need to check crypto separately since we need all of the crypto
|
|
// extensions to enable the subtarget feature
|
|
if (CPUFeatures[I] == "aes")
|
|
crypto |= CAP_AES;
|
|
else if (CPUFeatures[I] == "pmull")
|
|
crypto |= CAP_PMULL;
|
|
else if (CPUFeatures[I] == "sha1")
|
|
crypto |= CAP_SHA1;
|
|
else if (CPUFeatures[I] == "sha2")
|
|
crypto |= CAP_SHA2;
|
|
#endif
|
|
|
|
if (LLVMFeatureStr != "")
|
|
Features[LLVMFeatureStr] = true;
|
|
}
|
|
|
|
#if defined(__aarch64__)
|
|
// If we have all crypto bits we can add the feature
|
|
if (crypto == (CAP_AES | CAP_PMULL | CAP_SHA1 | CAP_SHA2))
|
|
Features["crypto"] = true;
|
|
#endif
|
|
|
|
return true;
|
|
}
|
|
#else
|
|
bool sys::getHostCPUFeatures(StringMap<bool> &Features) { return false; }
|
|
#endif
|
|
|
|
std::string sys::getProcessTriple() {
|
|
Triple PT(Triple::normalize(LLVM_HOST_TRIPLE));
|
|
|
|
if (sizeof(void *) == 8 && PT.isArch32Bit())
|
|
PT = PT.get64BitArchVariant();
|
|
if (sizeof(void *) == 4 && PT.isArch64Bit())
|
|
PT = PT.get32BitArchVariant();
|
|
|
|
return PT.str();
|
|
}
|