mirror of
https://github.com/RPCSX/llvm.git
synced 2025-01-10 22:46:20 +00:00
3445cc7801
Differential Revision: http://reviews.llvm.org/D18679 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@266699 91177308-0d34-0410-b5e6-96231b3b80d8
404 lines
14 KiB
C++
404 lines
14 KiB
C++
//===---- DemandedBits.cpp - Determine demanded bits ----------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This pass implements a demanded bits analysis. A demanded bit is one that
|
|
// contributes to a result; bits that are not demanded can be either zero or
|
|
// one without affecting control or data flow. For example in this sequence:
|
|
//
|
|
// %1 = add i32 %x, %y
|
|
// %2 = trunc i32 %1 to i16
|
|
//
|
|
// Only the lowest 16 bits of %1 are demanded; the rest are removed by the
|
|
// trunc.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Analysis/DemandedBits.h"
|
|
#include "llvm/ADT/DepthFirstIterator.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/StringExtras.h"
|
|
#include "llvm/Analysis/AssumptionCache.h"
|
|
#include "llvm/Analysis/ValueTracking.h"
|
|
#include "llvm/IR/BasicBlock.h"
|
|
#include "llvm/IR/CFG.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/Dominators.h"
|
|
#include "llvm/IR/InstIterator.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/IR/Operator.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "demanded-bits"
|
|
|
|
char DemandedBitsWrapperPass::ID = 0;
|
|
INITIALIZE_PASS_BEGIN(DemandedBitsWrapperPass, "demanded-bits",
|
|
"Demanded bits analysis", false, false)
|
|
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
|
|
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
|
|
INITIALIZE_PASS_END(DemandedBitsWrapperPass, "demanded-bits",
|
|
"Demanded bits analysis", false, false)
|
|
|
|
DemandedBitsWrapperPass::DemandedBitsWrapperPass() : FunctionPass(ID) {
|
|
initializeDemandedBitsWrapperPassPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
void DemandedBitsWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
|
|
AU.setPreservesCFG();
|
|
AU.addRequired<AssumptionCacheTracker>();
|
|
AU.addRequired<DominatorTreeWrapperPass>();
|
|
AU.setPreservesAll();
|
|
}
|
|
|
|
void DemandedBitsWrapperPass::print(raw_ostream &OS, const Module *M) const {
|
|
DB->print(OS);
|
|
}
|
|
|
|
static bool isAlwaysLive(Instruction *I) {
|
|
return isa<TerminatorInst>(I) || isa<DbgInfoIntrinsic>(I) ||
|
|
I->isEHPad() || I->mayHaveSideEffects();
|
|
}
|
|
|
|
void DemandedBits::determineLiveOperandBits(
|
|
const Instruction *UserI, const Instruction *I, unsigned OperandNo,
|
|
const APInt &AOut, APInt &AB, APInt &KnownZero, APInt &KnownOne,
|
|
APInt &KnownZero2, APInt &KnownOne2) {
|
|
unsigned BitWidth = AB.getBitWidth();
|
|
|
|
// We're called once per operand, but for some instructions, we need to
|
|
// compute known bits of both operands in order to determine the live bits of
|
|
// either (when both operands are instructions themselves). We don't,
|
|
// however, want to do this twice, so we cache the result in APInts that live
|
|
// in the caller. For the two-relevant-operands case, both operand values are
|
|
// provided here.
|
|
auto ComputeKnownBits =
|
|
[&](unsigned BitWidth, const Value *V1, const Value *V2) {
|
|
const DataLayout &DL = I->getModule()->getDataLayout();
|
|
KnownZero = APInt(BitWidth, 0);
|
|
KnownOne = APInt(BitWidth, 0);
|
|
computeKnownBits(const_cast<Value *>(V1), KnownZero, KnownOne, DL, 0,
|
|
&AC, UserI, &DT);
|
|
|
|
if (V2) {
|
|
KnownZero2 = APInt(BitWidth, 0);
|
|
KnownOne2 = APInt(BitWidth, 0);
|
|
computeKnownBits(const_cast<Value *>(V2), KnownZero2, KnownOne2, DL,
|
|
0, &AC, UserI, &DT);
|
|
}
|
|
};
|
|
|
|
switch (UserI->getOpcode()) {
|
|
default: break;
|
|
case Instruction::Call:
|
|
case Instruction::Invoke:
|
|
if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(UserI))
|
|
switch (II->getIntrinsicID()) {
|
|
default: break;
|
|
case Intrinsic::bswap:
|
|
// The alive bits of the input are the swapped alive bits of
|
|
// the output.
|
|
AB = AOut.byteSwap();
|
|
break;
|
|
case Intrinsic::ctlz:
|
|
if (OperandNo == 0) {
|
|
// We need some output bits, so we need all bits of the
|
|
// input to the left of, and including, the leftmost bit
|
|
// known to be one.
|
|
ComputeKnownBits(BitWidth, I, nullptr);
|
|
AB = APInt::getHighBitsSet(BitWidth,
|
|
std::min(BitWidth, KnownOne.countLeadingZeros()+1));
|
|
}
|
|
break;
|
|
case Intrinsic::cttz:
|
|
if (OperandNo == 0) {
|
|
// We need some output bits, so we need all bits of the
|
|
// input to the right of, and including, the rightmost bit
|
|
// known to be one.
|
|
ComputeKnownBits(BitWidth, I, nullptr);
|
|
AB = APInt::getLowBitsSet(BitWidth,
|
|
std::min(BitWidth, KnownOne.countTrailingZeros()+1));
|
|
}
|
|
break;
|
|
}
|
|
break;
|
|
case Instruction::Add:
|
|
case Instruction::Sub:
|
|
case Instruction::Mul:
|
|
// Find the highest live output bit. We don't need any more input
|
|
// bits than that (adds, and thus subtracts, ripple only to the
|
|
// left).
|
|
AB = APInt::getLowBitsSet(BitWidth, AOut.getActiveBits());
|
|
break;
|
|
case Instruction::Shl:
|
|
if (OperandNo == 0)
|
|
if (ConstantInt *CI =
|
|
dyn_cast<ConstantInt>(UserI->getOperand(1))) {
|
|
uint64_t ShiftAmt = CI->getLimitedValue(BitWidth-1);
|
|
AB = AOut.lshr(ShiftAmt);
|
|
|
|
// If the shift is nuw/nsw, then the high bits are not dead
|
|
// (because we've promised that they *must* be zero).
|
|
const ShlOperator *S = cast<ShlOperator>(UserI);
|
|
if (S->hasNoSignedWrap())
|
|
AB |= APInt::getHighBitsSet(BitWidth, ShiftAmt+1);
|
|
else if (S->hasNoUnsignedWrap())
|
|
AB |= APInt::getHighBitsSet(BitWidth, ShiftAmt);
|
|
}
|
|
break;
|
|
case Instruction::LShr:
|
|
if (OperandNo == 0)
|
|
if (ConstantInt *CI =
|
|
dyn_cast<ConstantInt>(UserI->getOperand(1))) {
|
|
uint64_t ShiftAmt = CI->getLimitedValue(BitWidth-1);
|
|
AB = AOut.shl(ShiftAmt);
|
|
|
|
// If the shift is exact, then the low bits are not dead
|
|
// (they must be zero).
|
|
if (cast<LShrOperator>(UserI)->isExact())
|
|
AB |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
|
|
}
|
|
break;
|
|
case Instruction::AShr:
|
|
if (OperandNo == 0)
|
|
if (ConstantInt *CI =
|
|
dyn_cast<ConstantInt>(UserI->getOperand(1))) {
|
|
uint64_t ShiftAmt = CI->getLimitedValue(BitWidth-1);
|
|
AB = AOut.shl(ShiftAmt);
|
|
// Because the high input bit is replicated into the
|
|
// high-order bits of the result, if we need any of those
|
|
// bits, then we must keep the highest input bit.
|
|
if ((AOut & APInt::getHighBitsSet(BitWidth, ShiftAmt))
|
|
.getBoolValue())
|
|
AB.setBit(BitWidth-1);
|
|
|
|
// If the shift is exact, then the low bits are not dead
|
|
// (they must be zero).
|
|
if (cast<AShrOperator>(UserI)->isExact())
|
|
AB |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
|
|
}
|
|
break;
|
|
case Instruction::And:
|
|
AB = AOut;
|
|
|
|
// For bits that are known zero, the corresponding bits in the
|
|
// other operand are dead (unless they're both zero, in which
|
|
// case they can't both be dead, so just mark the LHS bits as
|
|
// dead).
|
|
if (OperandNo == 0) {
|
|
ComputeKnownBits(BitWidth, I, UserI->getOperand(1));
|
|
AB &= ~KnownZero2;
|
|
} else {
|
|
if (!isa<Instruction>(UserI->getOperand(0)))
|
|
ComputeKnownBits(BitWidth, UserI->getOperand(0), I);
|
|
AB &= ~(KnownZero & ~KnownZero2);
|
|
}
|
|
break;
|
|
case Instruction::Or:
|
|
AB = AOut;
|
|
|
|
// For bits that are known one, the corresponding bits in the
|
|
// other operand are dead (unless they're both one, in which
|
|
// case they can't both be dead, so just mark the LHS bits as
|
|
// dead).
|
|
if (OperandNo == 0) {
|
|
ComputeKnownBits(BitWidth, I, UserI->getOperand(1));
|
|
AB &= ~KnownOne2;
|
|
} else {
|
|
if (!isa<Instruction>(UserI->getOperand(0)))
|
|
ComputeKnownBits(BitWidth, UserI->getOperand(0), I);
|
|
AB &= ~(KnownOne & ~KnownOne2);
|
|
}
|
|
break;
|
|
case Instruction::Xor:
|
|
case Instruction::PHI:
|
|
AB = AOut;
|
|
break;
|
|
case Instruction::Trunc:
|
|
AB = AOut.zext(BitWidth);
|
|
break;
|
|
case Instruction::ZExt:
|
|
AB = AOut.trunc(BitWidth);
|
|
break;
|
|
case Instruction::SExt:
|
|
AB = AOut.trunc(BitWidth);
|
|
// Because the high input bit is replicated into the
|
|
// high-order bits of the result, if we need any of those
|
|
// bits, then we must keep the highest input bit.
|
|
if ((AOut & APInt::getHighBitsSet(AOut.getBitWidth(),
|
|
AOut.getBitWidth() - BitWidth))
|
|
.getBoolValue())
|
|
AB.setBit(BitWidth-1);
|
|
break;
|
|
case Instruction::Select:
|
|
if (OperandNo != 0)
|
|
AB = AOut;
|
|
break;
|
|
}
|
|
}
|
|
|
|
bool DemandedBitsWrapperPass::runOnFunction(Function &F) {
|
|
auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
|
|
auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
|
|
DB.emplace(F, AC, DT);
|
|
return false;
|
|
}
|
|
|
|
void DemandedBitsWrapperPass::releaseMemory() {
|
|
DB.reset();
|
|
}
|
|
|
|
void DemandedBits::performAnalysis() {
|
|
if (Analyzed)
|
|
// Analysis already completed for this function.
|
|
return;
|
|
Analyzed = true;
|
|
|
|
Visited.clear();
|
|
AliveBits.clear();
|
|
|
|
SmallVector<Instruction*, 128> Worklist;
|
|
|
|
// Collect the set of "root" instructions that are known live.
|
|
for (Instruction &I : instructions(F)) {
|
|
if (!isAlwaysLive(&I))
|
|
continue;
|
|
|
|
DEBUG(dbgs() << "DemandedBits: Root: " << I << "\n");
|
|
// For integer-valued instructions, set up an initial empty set of alive
|
|
// bits and add the instruction to the work list. For other instructions
|
|
// add their operands to the work list (for integer values operands, mark
|
|
// all bits as live).
|
|
if (IntegerType *IT = dyn_cast<IntegerType>(I.getType())) {
|
|
if (!AliveBits.count(&I)) {
|
|
AliveBits[&I] = APInt(IT->getBitWidth(), 0);
|
|
Worklist.push_back(&I);
|
|
}
|
|
|
|
continue;
|
|
}
|
|
|
|
// Non-integer-typed instructions...
|
|
for (Use &OI : I.operands()) {
|
|
if (Instruction *J = dyn_cast<Instruction>(OI)) {
|
|
if (IntegerType *IT = dyn_cast<IntegerType>(J->getType()))
|
|
AliveBits[J] = APInt::getAllOnesValue(IT->getBitWidth());
|
|
Worklist.push_back(J);
|
|
}
|
|
}
|
|
// To save memory, we don't add I to the Visited set here. Instead, we
|
|
// check isAlwaysLive on every instruction when searching for dead
|
|
// instructions later (we need to check isAlwaysLive for the
|
|
// integer-typed instructions anyway).
|
|
}
|
|
|
|
// Propagate liveness backwards to operands.
|
|
while (!Worklist.empty()) {
|
|
Instruction *UserI = Worklist.pop_back_val();
|
|
|
|
DEBUG(dbgs() << "DemandedBits: Visiting: " << *UserI);
|
|
APInt AOut;
|
|
if (UserI->getType()->isIntegerTy()) {
|
|
AOut = AliveBits[UserI];
|
|
DEBUG(dbgs() << " Alive Out: " << AOut);
|
|
}
|
|
DEBUG(dbgs() << "\n");
|
|
|
|
if (!UserI->getType()->isIntegerTy())
|
|
Visited.insert(UserI);
|
|
|
|
APInt KnownZero, KnownOne, KnownZero2, KnownOne2;
|
|
// Compute the set of alive bits for each operand. These are anded into the
|
|
// existing set, if any, and if that changes the set of alive bits, the
|
|
// operand is added to the work-list.
|
|
for (Use &OI : UserI->operands()) {
|
|
if (Instruction *I = dyn_cast<Instruction>(OI)) {
|
|
if (IntegerType *IT = dyn_cast<IntegerType>(I->getType())) {
|
|
unsigned BitWidth = IT->getBitWidth();
|
|
APInt AB = APInt::getAllOnesValue(BitWidth);
|
|
if (UserI->getType()->isIntegerTy() && !AOut &&
|
|
!isAlwaysLive(UserI)) {
|
|
AB = APInt(BitWidth, 0);
|
|
} else {
|
|
// If all bits of the output are dead, then all bits of the input
|
|
// Bits of each operand that are used to compute alive bits of the
|
|
// output are alive, all others are dead.
|
|
determineLiveOperandBits(UserI, I, OI.getOperandNo(), AOut, AB,
|
|
KnownZero, KnownOne,
|
|
KnownZero2, KnownOne2);
|
|
}
|
|
|
|
// If we've added to the set of alive bits (or the operand has not
|
|
// been previously visited), then re-queue the operand to be visited
|
|
// again.
|
|
APInt ABPrev(BitWidth, 0);
|
|
auto ABI = AliveBits.find(I);
|
|
if (ABI != AliveBits.end())
|
|
ABPrev = ABI->second;
|
|
|
|
APInt ABNew = AB | ABPrev;
|
|
if (ABNew != ABPrev || ABI == AliveBits.end()) {
|
|
AliveBits[I] = std::move(ABNew);
|
|
Worklist.push_back(I);
|
|
}
|
|
} else if (!Visited.count(I)) {
|
|
Worklist.push_back(I);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
APInt DemandedBits::getDemandedBits(Instruction *I) {
|
|
performAnalysis();
|
|
|
|
const DataLayout &DL = I->getParent()->getModule()->getDataLayout();
|
|
if (AliveBits.count(I))
|
|
return AliveBits[I];
|
|
return APInt::getAllOnesValue(DL.getTypeSizeInBits(I->getType()));
|
|
}
|
|
|
|
bool DemandedBits::isInstructionDead(Instruction *I) {
|
|
performAnalysis();
|
|
|
|
return !Visited.count(I) && AliveBits.find(I) == AliveBits.end() &&
|
|
!isAlwaysLive(I);
|
|
}
|
|
|
|
void DemandedBits::print(raw_ostream &OS) {
|
|
performAnalysis();
|
|
for (auto &KV : AliveBits) {
|
|
OS << "DemandedBits: 0x" << utohexstr(KV.second.getLimitedValue()) << " for "
|
|
<< *KV.first << "\n";
|
|
}
|
|
}
|
|
|
|
FunctionPass *llvm::createDemandedBitsWrapperPass() {
|
|
return new DemandedBitsWrapperPass();
|
|
}
|
|
|
|
char DemandedBitsAnalysis::PassID;
|
|
|
|
DemandedBits DemandedBitsAnalysis::run(Function &F,
|
|
AnalysisManager<Function> &AM) {
|
|
auto &AC = AM.getResult<AssumptionAnalysis>(F);
|
|
auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
|
|
return DemandedBits(F, AC, DT);
|
|
}
|
|
|
|
PreservedAnalyses DemandedBitsPrinterPass::run(Function &F,
|
|
FunctionAnalysisManager &AM) {
|
|
AM.getResult<DemandedBitsAnalysis>(F).print(OS);
|
|
return PreservedAnalyses::all();
|
|
}
|