mirror of
https://github.com/RPCSX/llvm.git
synced 2025-01-18 10:25:25 +00:00
5c1170ff97
I have an LTO snapshot (for which I don't have sources) that can't be read back by LLVM. It seems the writer emitted broken bitcode and this assertions aims at catching such cases. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@274819 91177308-0d34-0410-b5e6-96231b3b80d8
1006 lines
33 KiB
C++
1006 lines
33 KiB
C++
//===-- ValueEnumerator.cpp - Number values and types for bitcode writer --===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the ValueEnumerator class.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "ValueEnumerator.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/DebugInfoMetadata.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/IR/UseListOrder.h"
|
|
#include "llvm/IR/ValueSymbolTable.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <algorithm>
|
|
using namespace llvm;
|
|
|
|
namespace {
|
|
struct OrderMap {
|
|
DenseMap<const Value *, std::pair<unsigned, bool>> IDs;
|
|
unsigned LastGlobalConstantID;
|
|
unsigned LastGlobalValueID;
|
|
|
|
OrderMap() : LastGlobalConstantID(0), LastGlobalValueID(0) {}
|
|
|
|
bool isGlobalConstant(unsigned ID) const {
|
|
return ID <= LastGlobalConstantID;
|
|
}
|
|
bool isGlobalValue(unsigned ID) const {
|
|
return ID <= LastGlobalValueID && !isGlobalConstant(ID);
|
|
}
|
|
|
|
unsigned size() const { return IDs.size(); }
|
|
std::pair<unsigned, bool> &operator[](const Value *V) { return IDs[V]; }
|
|
std::pair<unsigned, bool> lookup(const Value *V) const {
|
|
return IDs.lookup(V);
|
|
}
|
|
void index(const Value *V) {
|
|
// Explicitly sequence get-size and insert-value operations to avoid UB.
|
|
unsigned ID = IDs.size() + 1;
|
|
IDs[V].first = ID;
|
|
}
|
|
};
|
|
}
|
|
|
|
static void orderValue(const Value *V, OrderMap &OM) {
|
|
if (OM.lookup(V).first)
|
|
return;
|
|
|
|
if (const Constant *C = dyn_cast<Constant>(V))
|
|
if (C->getNumOperands() && !isa<GlobalValue>(C))
|
|
for (const Value *Op : C->operands())
|
|
if (!isa<BasicBlock>(Op) && !isa<GlobalValue>(Op))
|
|
orderValue(Op, OM);
|
|
|
|
// Note: we cannot cache this lookup above, since inserting into the map
|
|
// changes the map's size, and thus affects the other IDs.
|
|
OM.index(V);
|
|
}
|
|
|
|
static OrderMap orderModule(const Module &M) {
|
|
// This needs to match the order used by ValueEnumerator::ValueEnumerator()
|
|
// and ValueEnumerator::incorporateFunction().
|
|
OrderMap OM;
|
|
|
|
// In the reader, initializers of GlobalValues are set *after* all the
|
|
// globals have been read. Rather than awkwardly modeling this behaviour
|
|
// directly in predictValueUseListOrderImpl(), just assign IDs to
|
|
// initializers of GlobalValues before GlobalValues themselves to model this
|
|
// implicitly.
|
|
for (const GlobalVariable &G : M.globals())
|
|
if (G.hasInitializer())
|
|
if (!isa<GlobalValue>(G.getInitializer()))
|
|
orderValue(G.getInitializer(), OM);
|
|
for (const GlobalAlias &A : M.aliases())
|
|
if (!isa<GlobalValue>(A.getAliasee()))
|
|
orderValue(A.getAliasee(), OM);
|
|
for (const GlobalIFunc &I : M.ifuncs())
|
|
if (!isa<GlobalValue>(I.getResolver()))
|
|
orderValue(I.getResolver(), OM);
|
|
for (const Function &F : M) {
|
|
for (const Use &U : F.operands())
|
|
if (!isa<GlobalValue>(U.get()))
|
|
orderValue(U.get(), OM);
|
|
}
|
|
OM.LastGlobalConstantID = OM.size();
|
|
|
|
// Initializers of GlobalValues are processed in
|
|
// BitcodeReader::ResolveGlobalAndAliasInits(). Match the order there rather
|
|
// than ValueEnumerator, and match the code in predictValueUseListOrderImpl()
|
|
// by giving IDs in reverse order.
|
|
//
|
|
// Since GlobalValues never reference each other directly (just through
|
|
// initializers), their relative IDs only matter for determining order of
|
|
// uses in their initializers.
|
|
for (const Function &F : M)
|
|
orderValue(&F, OM);
|
|
for (const GlobalAlias &A : M.aliases())
|
|
orderValue(&A, OM);
|
|
for (const GlobalIFunc &I : M.ifuncs())
|
|
orderValue(&I, OM);
|
|
for (const GlobalVariable &G : M.globals())
|
|
orderValue(&G, OM);
|
|
OM.LastGlobalValueID = OM.size();
|
|
|
|
for (const Function &F : M) {
|
|
if (F.isDeclaration())
|
|
continue;
|
|
// Here we need to match the union of ValueEnumerator::incorporateFunction()
|
|
// and WriteFunction(). Basic blocks are implicitly declared before
|
|
// anything else (by declaring their size).
|
|
for (const BasicBlock &BB : F)
|
|
orderValue(&BB, OM);
|
|
for (const Argument &A : F.args())
|
|
orderValue(&A, OM);
|
|
for (const BasicBlock &BB : F)
|
|
for (const Instruction &I : BB)
|
|
for (const Value *Op : I.operands())
|
|
if ((isa<Constant>(*Op) && !isa<GlobalValue>(*Op)) ||
|
|
isa<InlineAsm>(*Op))
|
|
orderValue(Op, OM);
|
|
for (const BasicBlock &BB : F)
|
|
for (const Instruction &I : BB)
|
|
orderValue(&I, OM);
|
|
}
|
|
return OM;
|
|
}
|
|
|
|
static void predictValueUseListOrderImpl(const Value *V, const Function *F,
|
|
unsigned ID, const OrderMap &OM,
|
|
UseListOrderStack &Stack) {
|
|
// Predict use-list order for this one.
|
|
typedef std::pair<const Use *, unsigned> Entry;
|
|
SmallVector<Entry, 64> List;
|
|
for (const Use &U : V->uses())
|
|
// Check if this user will be serialized.
|
|
if (OM.lookup(U.getUser()).first)
|
|
List.push_back(std::make_pair(&U, List.size()));
|
|
|
|
if (List.size() < 2)
|
|
// We may have lost some users.
|
|
return;
|
|
|
|
bool IsGlobalValue = OM.isGlobalValue(ID);
|
|
std::sort(List.begin(), List.end(), [&](const Entry &L, const Entry &R) {
|
|
const Use *LU = L.first;
|
|
const Use *RU = R.first;
|
|
if (LU == RU)
|
|
return false;
|
|
|
|
auto LID = OM.lookup(LU->getUser()).first;
|
|
auto RID = OM.lookup(RU->getUser()).first;
|
|
|
|
// Global values are processed in reverse order.
|
|
//
|
|
// Moreover, initializers of GlobalValues are set *after* all the globals
|
|
// have been read (despite having earlier IDs). Rather than awkwardly
|
|
// modeling this behaviour here, orderModule() has assigned IDs to
|
|
// initializers of GlobalValues before GlobalValues themselves.
|
|
if (OM.isGlobalValue(LID) && OM.isGlobalValue(RID))
|
|
return LID < RID;
|
|
|
|
// If ID is 4, then expect: 7 6 5 1 2 3.
|
|
if (LID < RID) {
|
|
if (RID <= ID)
|
|
if (!IsGlobalValue) // GlobalValue uses don't get reversed.
|
|
return true;
|
|
return false;
|
|
}
|
|
if (RID < LID) {
|
|
if (LID <= ID)
|
|
if (!IsGlobalValue) // GlobalValue uses don't get reversed.
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
// LID and RID are equal, so we have different operands of the same user.
|
|
// Assume operands are added in order for all instructions.
|
|
if (LID <= ID)
|
|
if (!IsGlobalValue) // GlobalValue uses don't get reversed.
|
|
return LU->getOperandNo() < RU->getOperandNo();
|
|
return LU->getOperandNo() > RU->getOperandNo();
|
|
});
|
|
|
|
if (std::is_sorted(
|
|
List.begin(), List.end(),
|
|
[](const Entry &L, const Entry &R) { return L.second < R.second; }))
|
|
// Order is already correct.
|
|
return;
|
|
|
|
// Store the shuffle.
|
|
Stack.emplace_back(V, F, List.size());
|
|
assert(List.size() == Stack.back().Shuffle.size() && "Wrong size");
|
|
for (size_t I = 0, E = List.size(); I != E; ++I)
|
|
Stack.back().Shuffle[I] = List[I].second;
|
|
}
|
|
|
|
static void predictValueUseListOrder(const Value *V, const Function *F,
|
|
OrderMap &OM, UseListOrderStack &Stack) {
|
|
auto &IDPair = OM[V];
|
|
assert(IDPair.first && "Unmapped value");
|
|
if (IDPair.second)
|
|
// Already predicted.
|
|
return;
|
|
|
|
// Do the actual prediction.
|
|
IDPair.second = true;
|
|
if (!V->use_empty() && std::next(V->use_begin()) != V->use_end())
|
|
predictValueUseListOrderImpl(V, F, IDPair.first, OM, Stack);
|
|
|
|
// Recursive descent into constants.
|
|
if (const Constant *C = dyn_cast<Constant>(V))
|
|
if (C->getNumOperands()) // Visit GlobalValues.
|
|
for (const Value *Op : C->operands())
|
|
if (isa<Constant>(Op)) // Visit GlobalValues.
|
|
predictValueUseListOrder(Op, F, OM, Stack);
|
|
}
|
|
|
|
static UseListOrderStack predictUseListOrder(const Module &M) {
|
|
OrderMap OM = orderModule(M);
|
|
|
|
// Use-list orders need to be serialized after all the users have been added
|
|
// to a value, or else the shuffles will be incomplete. Store them per
|
|
// function in a stack.
|
|
//
|
|
// Aside from function order, the order of values doesn't matter much here.
|
|
UseListOrderStack Stack;
|
|
|
|
// We want to visit the functions backward now so we can list function-local
|
|
// constants in the last Function they're used in. Module-level constants
|
|
// have already been visited above.
|
|
for (auto I = M.rbegin(), E = M.rend(); I != E; ++I) {
|
|
const Function &F = *I;
|
|
if (F.isDeclaration())
|
|
continue;
|
|
for (const BasicBlock &BB : F)
|
|
predictValueUseListOrder(&BB, &F, OM, Stack);
|
|
for (const Argument &A : F.args())
|
|
predictValueUseListOrder(&A, &F, OM, Stack);
|
|
for (const BasicBlock &BB : F)
|
|
for (const Instruction &I : BB)
|
|
for (const Value *Op : I.operands())
|
|
if (isa<Constant>(*Op) || isa<InlineAsm>(*Op)) // Visit GlobalValues.
|
|
predictValueUseListOrder(Op, &F, OM, Stack);
|
|
for (const BasicBlock &BB : F)
|
|
for (const Instruction &I : BB)
|
|
predictValueUseListOrder(&I, &F, OM, Stack);
|
|
}
|
|
|
|
// Visit globals last, since the module-level use-list block will be seen
|
|
// before the function bodies are processed.
|
|
for (const GlobalVariable &G : M.globals())
|
|
predictValueUseListOrder(&G, nullptr, OM, Stack);
|
|
for (const Function &F : M)
|
|
predictValueUseListOrder(&F, nullptr, OM, Stack);
|
|
for (const GlobalAlias &A : M.aliases())
|
|
predictValueUseListOrder(&A, nullptr, OM, Stack);
|
|
for (const GlobalIFunc &I : M.ifuncs())
|
|
predictValueUseListOrder(&I, nullptr, OM, Stack);
|
|
for (const GlobalVariable &G : M.globals())
|
|
if (G.hasInitializer())
|
|
predictValueUseListOrder(G.getInitializer(), nullptr, OM, Stack);
|
|
for (const GlobalAlias &A : M.aliases())
|
|
predictValueUseListOrder(A.getAliasee(), nullptr, OM, Stack);
|
|
for (const GlobalIFunc &I : M.ifuncs())
|
|
predictValueUseListOrder(I.getResolver(), nullptr, OM, Stack);
|
|
for (const Function &F : M) {
|
|
for (const Use &U : F.operands())
|
|
predictValueUseListOrder(U.get(), nullptr, OM, Stack);
|
|
}
|
|
|
|
return Stack;
|
|
}
|
|
|
|
static bool isIntOrIntVectorValue(const std::pair<const Value*, unsigned> &V) {
|
|
return V.first->getType()->isIntOrIntVectorTy();
|
|
}
|
|
|
|
ValueEnumerator::ValueEnumerator(const Module &M,
|
|
bool ShouldPreserveUseListOrder)
|
|
: ShouldPreserveUseListOrder(ShouldPreserveUseListOrder) {
|
|
if (ShouldPreserveUseListOrder)
|
|
UseListOrders = predictUseListOrder(M);
|
|
|
|
// Enumerate the global variables.
|
|
for (const GlobalVariable &GV : M.globals())
|
|
EnumerateValue(&GV);
|
|
|
|
// Enumerate the functions.
|
|
for (const Function & F : M) {
|
|
EnumerateValue(&F);
|
|
EnumerateAttributes(F.getAttributes());
|
|
}
|
|
|
|
// Enumerate the aliases.
|
|
for (const GlobalAlias &GA : M.aliases())
|
|
EnumerateValue(&GA);
|
|
|
|
// Enumerate the ifuncs.
|
|
for (const GlobalIFunc &GIF : M.ifuncs())
|
|
EnumerateValue(&GIF);
|
|
|
|
// Remember what is the cutoff between globalvalue's and other constants.
|
|
unsigned FirstConstant = Values.size();
|
|
|
|
// Enumerate the global variable initializers.
|
|
for (const GlobalVariable &GV : M.globals())
|
|
if (GV.hasInitializer())
|
|
EnumerateValue(GV.getInitializer());
|
|
|
|
// Enumerate the aliasees.
|
|
for (const GlobalAlias &GA : M.aliases())
|
|
EnumerateValue(GA.getAliasee());
|
|
|
|
// Enumerate the ifunc resolvers.
|
|
for (const GlobalIFunc &GIF : M.ifuncs())
|
|
EnumerateValue(GIF.getResolver());
|
|
|
|
// Enumerate any optional Function data.
|
|
for (const Function &F : M)
|
|
for (const Use &U : F.operands())
|
|
EnumerateValue(U.get());
|
|
|
|
// Enumerate the metadata type.
|
|
//
|
|
// TODO: Move this to ValueEnumerator::EnumerateOperandType() once bitcode
|
|
// only encodes the metadata type when it's used as a value.
|
|
EnumerateType(Type::getMetadataTy(M.getContext()));
|
|
|
|
// Insert constants and metadata that are named at module level into the slot
|
|
// pool so that the module symbol table can refer to them...
|
|
EnumerateValueSymbolTable(M.getValueSymbolTable());
|
|
EnumerateNamedMetadata(M);
|
|
|
|
SmallVector<std::pair<unsigned, MDNode *>, 8> MDs;
|
|
for (const GlobalVariable &GV : M.globals()) {
|
|
MDs.clear();
|
|
GV.getAllMetadata(MDs);
|
|
for (const auto &I : MDs)
|
|
// FIXME: Pass GV to EnumerateMetadata and arrange for the bitcode writer
|
|
// to write metadata to the global variable's own metadata block
|
|
// (PR28134).
|
|
EnumerateMetadata(nullptr, I.second);
|
|
}
|
|
|
|
// Enumerate types used by function bodies and argument lists.
|
|
for (const Function &F : M) {
|
|
for (const Argument &A : F.args())
|
|
EnumerateType(A.getType());
|
|
|
|
// Enumerate metadata attached to this function.
|
|
MDs.clear();
|
|
F.getAllMetadata(MDs);
|
|
for (const auto &I : MDs)
|
|
EnumerateMetadata(F.isDeclaration() ? nullptr : &F, I.second);
|
|
|
|
for (const BasicBlock &BB : F)
|
|
for (const Instruction &I : BB) {
|
|
for (const Use &Op : I.operands()) {
|
|
auto *MD = dyn_cast<MetadataAsValue>(&Op);
|
|
if (!MD) {
|
|
EnumerateOperandType(Op);
|
|
continue;
|
|
}
|
|
|
|
// Local metadata is enumerated during function-incorporation.
|
|
if (isa<LocalAsMetadata>(MD->getMetadata()))
|
|
continue;
|
|
|
|
EnumerateMetadata(&F, MD->getMetadata());
|
|
}
|
|
EnumerateType(I.getType());
|
|
if (const CallInst *CI = dyn_cast<CallInst>(&I))
|
|
EnumerateAttributes(CI->getAttributes());
|
|
else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I))
|
|
EnumerateAttributes(II->getAttributes());
|
|
|
|
// Enumerate metadata attached with this instruction.
|
|
MDs.clear();
|
|
I.getAllMetadataOtherThanDebugLoc(MDs);
|
|
for (unsigned i = 0, e = MDs.size(); i != e; ++i)
|
|
EnumerateMetadata(&F, MDs[i].second);
|
|
|
|
// Don't enumerate the location directly -- it has a special record
|
|
// type -- but enumerate its operands.
|
|
if (DILocation *L = I.getDebugLoc())
|
|
for (const Metadata *Op : L->operands())
|
|
EnumerateMetadata(&F, Op);
|
|
}
|
|
}
|
|
|
|
// Optimize constant ordering.
|
|
OptimizeConstants(FirstConstant, Values.size());
|
|
|
|
// Organize metadata ordering.
|
|
organizeMetadata();
|
|
}
|
|
|
|
unsigned ValueEnumerator::getInstructionID(const Instruction *Inst) const {
|
|
InstructionMapType::const_iterator I = InstructionMap.find(Inst);
|
|
assert(I != InstructionMap.end() && "Instruction is not mapped!");
|
|
return I->second;
|
|
}
|
|
|
|
unsigned ValueEnumerator::getComdatID(const Comdat *C) const {
|
|
unsigned ComdatID = Comdats.idFor(C);
|
|
assert(ComdatID && "Comdat not found!");
|
|
return ComdatID;
|
|
}
|
|
|
|
void ValueEnumerator::setInstructionID(const Instruction *I) {
|
|
InstructionMap[I] = InstructionCount++;
|
|
}
|
|
|
|
unsigned ValueEnumerator::getValueID(const Value *V) const {
|
|
if (auto *MD = dyn_cast<MetadataAsValue>(V))
|
|
return getMetadataID(MD->getMetadata());
|
|
|
|
ValueMapType::const_iterator I = ValueMap.find(V);
|
|
assert(I != ValueMap.end() && "Value not in slotcalculator!");
|
|
return I->second-1;
|
|
}
|
|
|
|
LLVM_DUMP_METHOD void ValueEnumerator::dump() const {
|
|
print(dbgs(), ValueMap, "Default");
|
|
dbgs() << '\n';
|
|
print(dbgs(), MetadataMap, "MetaData");
|
|
dbgs() << '\n';
|
|
}
|
|
|
|
void ValueEnumerator::print(raw_ostream &OS, const ValueMapType &Map,
|
|
const char *Name) const {
|
|
|
|
OS << "Map Name: " << Name << "\n";
|
|
OS << "Size: " << Map.size() << "\n";
|
|
for (ValueMapType::const_iterator I = Map.begin(),
|
|
E = Map.end(); I != E; ++I) {
|
|
|
|
const Value *V = I->first;
|
|
if (V->hasName())
|
|
OS << "Value: " << V->getName();
|
|
else
|
|
OS << "Value: [null]\n";
|
|
V->dump();
|
|
|
|
OS << " Uses(" << std::distance(V->use_begin(),V->use_end()) << "):";
|
|
for (const Use &U : V->uses()) {
|
|
if (&U != &*V->use_begin())
|
|
OS << ",";
|
|
if(U->hasName())
|
|
OS << " " << U->getName();
|
|
else
|
|
OS << " [null]";
|
|
|
|
}
|
|
OS << "\n\n";
|
|
}
|
|
}
|
|
|
|
void ValueEnumerator::print(raw_ostream &OS, const MetadataMapType &Map,
|
|
const char *Name) const {
|
|
|
|
OS << "Map Name: " << Name << "\n";
|
|
OS << "Size: " << Map.size() << "\n";
|
|
for (auto I = Map.begin(), E = Map.end(); I != E; ++I) {
|
|
const Metadata *MD = I->first;
|
|
OS << "Metadata: slot = " << I->second.ID << "\n";
|
|
OS << "Metadata: function = " << I->second.F << "\n";
|
|
MD->print(OS);
|
|
OS << "\n";
|
|
}
|
|
}
|
|
|
|
/// OptimizeConstants - Reorder constant pool for denser encoding.
|
|
void ValueEnumerator::OptimizeConstants(unsigned CstStart, unsigned CstEnd) {
|
|
if (CstStart == CstEnd || CstStart+1 == CstEnd) return;
|
|
|
|
if (ShouldPreserveUseListOrder)
|
|
// Optimizing constants makes the use-list order difficult to predict.
|
|
// Disable it for now when trying to preserve the order.
|
|
return;
|
|
|
|
std::stable_sort(Values.begin() + CstStart, Values.begin() + CstEnd,
|
|
[this](const std::pair<const Value *, unsigned> &LHS,
|
|
const std::pair<const Value *, unsigned> &RHS) {
|
|
// Sort by plane.
|
|
if (LHS.first->getType() != RHS.first->getType())
|
|
return getTypeID(LHS.first->getType()) < getTypeID(RHS.first->getType());
|
|
// Then by frequency.
|
|
return LHS.second > RHS.second;
|
|
});
|
|
|
|
// Ensure that integer and vector of integer constants are at the start of the
|
|
// constant pool. This is important so that GEP structure indices come before
|
|
// gep constant exprs.
|
|
std::stable_partition(Values.begin() + CstStart, Values.begin() + CstEnd,
|
|
isIntOrIntVectorValue);
|
|
|
|
// Rebuild the modified portion of ValueMap.
|
|
for (; CstStart != CstEnd; ++CstStart)
|
|
ValueMap[Values[CstStart].first] = CstStart+1;
|
|
}
|
|
|
|
|
|
/// EnumerateValueSymbolTable - Insert all of the values in the specified symbol
|
|
/// table into the values table.
|
|
void ValueEnumerator::EnumerateValueSymbolTable(const ValueSymbolTable &VST) {
|
|
for (ValueSymbolTable::const_iterator VI = VST.begin(), VE = VST.end();
|
|
VI != VE; ++VI)
|
|
EnumerateValue(VI->getValue());
|
|
}
|
|
|
|
/// Insert all of the values referenced by named metadata in the specified
|
|
/// module.
|
|
void ValueEnumerator::EnumerateNamedMetadata(const Module &M) {
|
|
for (const auto &I : M.named_metadata())
|
|
EnumerateNamedMDNode(&I);
|
|
}
|
|
|
|
void ValueEnumerator::EnumerateNamedMDNode(const NamedMDNode *MD) {
|
|
for (unsigned i = 0, e = MD->getNumOperands(); i != e; ++i)
|
|
EnumerateMetadata(nullptr, MD->getOperand(i));
|
|
}
|
|
|
|
unsigned ValueEnumerator::getMetadataFunctionID(const Function *F) const {
|
|
return F ? getValueID(F) + 1 : 0;
|
|
}
|
|
|
|
void ValueEnumerator::EnumerateMetadata(const Function *F, const Metadata *MD) {
|
|
EnumerateMetadata(getMetadataFunctionID(F), MD);
|
|
}
|
|
|
|
void ValueEnumerator::EnumerateFunctionLocalMetadata(
|
|
const Function &F, const LocalAsMetadata *Local) {
|
|
EnumerateFunctionLocalMetadata(getMetadataFunctionID(&F), Local);
|
|
}
|
|
|
|
void ValueEnumerator::dropFunctionFromMetadata(
|
|
MetadataMapType::value_type &FirstMD) {
|
|
SmallVector<const MDNode *, 64> Worklist;
|
|
auto push = [this, &Worklist](MetadataMapType::value_type &MD) {
|
|
auto &Entry = MD.second;
|
|
|
|
// Nothing to do if this metadata isn't tagged.
|
|
if (!Entry.F)
|
|
return;
|
|
|
|
// Drop the function tag.
|
|
Entry.F = 0;
|
|
|
|
// If this is has an ID and is an MDNode, then its operands have entries as
|
|
// well. We need to drop the function from them too.
|
|
if (Entry.ID)
|
|
if (auto *N = dyn_cast<MDNode>(MD.first))
|
|
Worklist.push_back(N);
|
|
};
|
|
push(FirstMD);
|
|
while (!Worklist.empty())
|
|
for (const Metadata *Op : Worklist.pop_back_val()->operands()) {
|
|
if (!Op)
|
|
continue;
|
|
auto MD = MetadataMap.find(Op);
|
|
if (MD != MetadataMap.end())
|
|
push(*MD);
|
|
}
|
|
}
|
|
|
|
void ValueEnumerator::EnumerateMetadata(unsigned F, const Metadata *MD) {
|
|
// It's vital for reader efficiency that uniqued subgraphs are done in
|
|
// post-order; it's expensive when their operands have forward references.
|
|
// If a distinct node is referenced from a uniqued node, it'll be delayed
|
|
// until the uniqued subgraph has been completely traversed.
|
|
SmallVector<const MDNode *, 32> DelayedDistinctNodes;
|
|
|
|
// Start by enumerating MD, and then work through its transitive operands in
|
|
// post-order. This requires a depth-first search.
|
|
SmallVector<std::pair<const MDNode *, MDNode::op_iterator>, 32> Worklist;
|
|
if (const MDNode *N = enumerateMetadataImpl(F, MD))
|
|
Worklist.push_back(std::make_pair(N, N->op_begin()));
|
|
|
|
while (!Worklist.empty()) {
|
|
const MDNode *N = Worklist.back().first;
|
|
|
|
// Enumerate operands until we hit a new node. We need to traverse these
|
|
// nodes' operands before visiting the rest of N's operands.
|
|
MDNode::op_iterator I = std::find_if(
|
|
Worklist.back().second, N->op_end(),
|
|
[&](const Metadata *MD) { return enumerateMetadataImpl(F, MD); });
|
|
if (I != N->op_end()) {
|
|
auto *Op = cast<MDNode>(*I);
|
|
Worklist.back().second = ++I;
|
|
|
|
// Delay traversing Op if it's a distinct node and N is uniqued.
|
|
if (Op->isDistinct() && !N->isDistinct())
|
|
DelayedDistinctNodes.push_back(Op);
|
|
else
|
|
Worklist.push_back(std::make_pair(Op, Op->op_begin()));
|
|
continue;
|
|
}
|
|
|
|
// All the operands have been visited. Now assign an ID.
|
|
Worklist.pop_back();
|
|
MDs.push_back(N);
|
|
MetadataMap[N].ID = MDs.size();
|
|
|
|
// Flush out any delayed distinct nodes; these are all the distinct nodes
|
|
// that are leaves in last uniqued subgraph.
|
|
if (Worklist.empty() || Worklist.back().first->isDistinct()) {
|
|
for (const MDNode *N : DelayedDistinctNodes)
|
|
Worklist.push_back(std::make_pair(N, N->op_begin()));
|
|
DelayedDistinctNodes.clear();
|
|
}
|
|
}
|
|
}
|
|
|
|
const MDNode *ValueEnumerator::enumerateMetadataImpl(unsigned F, const Metadata *MD) {
|
|
if (!MD)
|
|
return nullptr;
|
|
|
|
assert(
|
|
(isa<MDNode>(MD) || isa<MDString>(MD) || isa<ConstantAsMetadata>(MD)) &&
|
|
"Invalid metadata kind");
|
|
|
|
auto Insertion = MetadataMap.insert(std::make_pair(MD, MDIndex(F)));
|
|
MDIndex &Entry = Insertion.first->second;
|
|
if (!Insertion.second) {
|
|
// Already mapped. If F doesn't match the function tag, drop it.
|
|
if (Entry.hasDifferentFunction(F))
|
|
dropFunctionFromMetadata(*Insertion.first);
|
|
return nullptr;
|
|
}
|
|
|
|
// Don't assign IDs to metadata nodes.
|
|
if (auto *N = dyn_cast<MDNode>(MD))
|
|
return N;
|
|
|
|
// Save the metadata.
|
|
MDs.push_back(MD);
|
|
Entry.ID = MDs.size();
|
|
|
|
// Enumerate the constant, if any.
|
|
if (auto *C = dyn_cast<ConstantAsMetadata>(MD))
|
|
EnumerateValue(C->getValue());
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
/// EnumerateFunctionLocalMetadataa - Incorporate function-local metadata
|
|
/// information reachable from the metadata.
|
|
void ValueEnumerator::EnumerateFunctionLocalMetadata(
|
|
unsigned F, const LocalAsMetadata *Local) {
|
|
assert(F && "Expected a function");
|
|
|
|
// Check to see if it's already in!
|
|
MDIndex &Index = MetadataMap[Local];
|
|
if (Index.ID) {
|
|
assert(Index.F == F && "Expected the same function");
|
|
return;
|
|
}
|
|
|
|
MDs.push_back(Local);
|
|
Index.F = F;
|
|
Index.ID = MDs.size();
|
|
|
|
EnumerateValue(Local->getValue());
|
|
}
|
|
|
|
static unsigned getMetadataTypeOrder(const Metadata *MD) {
|
|
// Strings are emitted in bulk and must come first.
|
|
if (isa<MDString>(MD))
|
|
return 0;
|
|
|
|
// ConstantAsMetadata doesn't reference anything. We may as well shuffle it
|
|
// to the front since we can detect it.
|
|
auto *N = dyn_cast<MDNode>(MD);
|
|
if (!N)
|
|
return 1;
|
|
|
|
// The reader is fast forward references for distinct node operands, but slow
|
|
// when uniqued operands are unresolved.
|
|
return N->isDistinct() ? 2 : 3;
|
|
}
|
|
|
|
void ValueEnumerator::organizeMetadata() {
|
|
assert(MetadataMap.size() == MDs.size() &&
|
|
"Metadata map and vector out of sync");
|
|
|
|
if (MDs.empty())
|
|
return;
|
|
|
|
// Copy out the index information from MetadataMap in order to choose a new
|
|
// order.
|
|
SmallVector<MDIndex, 64> Order;
|
|
Order.reserve(MetadataMap.size());
|
|
for (const Metadata *MD : MDs)
|
|
Order.push_back(MetadataMap.lookup(MD));
|
|
|
|
// Partition:
|
|
// - by function, then
|
|
// - by isa<MDString>
|
|
// and then sort by the original/current ID. Since the IDs are guaranteed to
|
|
// be unique, the result of std::sort will be deterministic. There's no need
|
|
// for std::stable_sort.
|
|
std::sort(Order.begin(), Order.end(), [this](MDIndex LHS, MDIndex RHS) {
|
|
return std::make_tuple(LHS.F, getMetadataTypeOrder(LHS.get(MDs)), LHS.ID) <
|
|
std::make_tuple(RHS.F, getMetadataTypeOrder(RHS.get(MDs)), RHS.ID);
|
|
});
|
|
|
|
// Rebuild MDs, index the metadata ranges for each function in FunctionMDs,
|
|
// and fix up MetadataMap.
|
|
std::vector<const Metadata *> OldMDs = std::move(MDs);
|
|
MDs.reserve(OldMDs.size());
|
|
for (unsigned I = 0, E = Order.size(); I != E && !Order[I].F; ++I) {
|
|
auto *MD = Order[I].get(OldMDs);
|
|
MDs.push_back(MD);
|
|
MetadataMap[MD].ID = I + 1;
|
|
if (isa<MDString>(MD))
|
|
++NumMDStrings;
|
|
}
|
|
|
|
// Return early if there's nothing for the functions.
|
|
if (MDs.size() == Order.size())
|
|
return;
|
|
|
|
// Build the function metadata ranges.
|
|
MDRange R;
|
|
FunctionMDs.reserve(OldMDs.size());
|
|
unsigned PrevF = 0;
|
|
for (unsigned I = MDs.size(), E = Order.size(), ID = MDs.size(); I != E;
|
|
++I) {
|
|
unsigned F = Order[I].F;
|
|
if (!PrevF) {
|
|
PrevF = F;
|
|
} else if (PrevF != F) {
|
|
R.Last = FunctionMDs.size();
|
|
std::swap(R, FunctionMDInfo[PrevF]);
|
|
R.First = FunctionMDs.size();
|
|
|
|
ID = MDs.size();
|
|
PrevF = F;
|
|
}
|
|
|
|
auto *MD = Order[I].get(OldMDs);
|
|
FunctionMDs.push_back(MD);
|
|
MetadataMap[MD].ID = ++ID;
|
|
if (isa<MDString>(MD))
|
|
++R.NumStrings;
|
|
}
|
|
R.Last = FunctionMDs.size();
|
|
FunctionMDInfo[PrevF] = R;
|
|
}
|
|
|
|
void ValueEnumerator::incorporateFunctionMetadata(const Function &F) {
|
|
NumModuleMDs = MDs.size();
|
|
|
|
auto R = FunctionMDInfo.lookup(getValueID(&F) + 1);
|
|
NumMDStrings = R.NumStrings;
|
|
MDs.insert(MDs.end(), FunctionMDs.begin() + R.First,
|
|
FunctionMDs.begin() + R.Last);
|
|
}
|
|
|
|
void ValueEnumerator::EnumerateValue(const Value *V) {
|
|
assert(!V->getType()->isVoidTy() && "Can't insert void values!");
|
|
assert(!isa<MetadataAsValue>(V) && "EnumerateValue doesn't handle Metadata!");
|
|
|
|
// Check to see if it's already in!
|
|
unsigned &ValueID = ValueMap[V];
|
|
if (ValueID) {
|
|
// Increment use count.
|
|
Values[ValueID-1].second++;
|
|
return;
|
|
}
|
|
|
|
if (auto *GO = dyn_cast<GlobalObject>(V))
|
|
if (const Comdat *C = GO->getComdat())
|
|
Comdats.insert(C);
|
|
|
|
// Enumerate the type of this value.
|
|
EnumerateType(V->getType());
|
|
|
|
if (const Constant *C = dyn_cast<Constant>(V)) {
|
|
if (isa<GlobalValue>(C)) {
|
|
// Initializers for globals are handled explicitly elsewhere.
|
|
} else if (C->getNumOperands()) {
|
|
// If a constant has operands, enumerate them. This makes sure that if a
|
|
// constant has uses (for example an array of const ints), that they are
|
|
// inserted also.
|
|
|
|
// We prefer to enumerate them with values before we enumerate the user
|
|
// itself. This makes it more likely that we can avoid forward references
|
|
// in the reader. We know that there can be no cycles in the constants
|
|
// graph that don't go through a global variable.
|
|
for (User::const_op_iterator I = C->op_begin(), E = C->op_end();
|
|
I != E; ++I)
|
|
if (!isa<BasicBlock>(*I)) // Don't enumerate BB operand to BlockAddress.
|
|
EnumerateValue(*I);
|
|
|
|
// Finally, add the value. Doing this could make the ValueID reference be
|
|
// dangling, don't reuse it.
|
|
Values.push_back(std::make_pair(V, 1U));
|
|
ValueMap[V] = Values.size();
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Add the value.
|
|
Values.push_back(std::make_pair(V, 1U));
|
|
ValueID = Values.size();
|
|
}
|
|
|
|
|
|
void ValueEnumerator::EnumerateType(Type *Ty) {
|
|
unsigned *TypeID = &TypeMap[Ty];
|
|
|
|
// We've already seen this type.
|
|
if (*TypeID)
|
|
return;
|
|
|
|
// If it is a non-anonymous struct, mark the type as being visited so that we
|
|
// don't recursively visit it. This is safe because we allow forward
|
|
// references of these in the bitcode reader.
|
|
if (StructType *STy = dyn_cast<StructType>(Ty))
|
|
if (!STy->isLiteral())
|
|
*TypeID = ~0U;
|
|
|
|
// Enumerate all of the subtypes before we enumerate this type. This ensures
|
|
// that the type will be enumerated in an order that can be directly built.
|
|
for (Type *SubTy : Ty->subtypes())
|
|
EnumerateType(SubTy);
|
|
|
|
// Refresh the TypeID pointer in case the table rehashed.
|
|
TypeID = &TypeMap[Ty];
|
|
|
|
// Check to see if we got the pointer another way. This can happen when
|
|
// enumerating recursive types that hit the base case deeper than they start.
|
|
//
|
|
// If this is actually a struct that we are treating as forward ref'able,
|
|
// then emit the definition now that all of its contents are available.
|
|
if (*TypeID && *TypeID != ~0U)
|
|
return;
|
|
|
|
// Add this type now that its contents are all happily enumerated.
|
|
Types.push_back(Ty);
|
|
|
|
*TypeID = Types.size();
|
|
}
|
|
|
|
// Enumerate the types for the specified value. If the value is a constant,
|
|
// walk through it, enumerating the types of the constant.
|
|
void ValueEnumerator::EnumerateOperandType(const Value *V) {
|
|
EnumerateType(V->getType());
|
|
|
|
assert(!isa<MetadataAsValue>(V) && "Unexpected metadata operand");
|
|
|
|
const Constant *C = dyn_cast<Constant>(V);
|
|
if (!C)
|
|
return;
|
|
|
|
// If this constant is already enumerated, ignore it, we know its type must
|
|
// be enumerated.
|
|
if (ValueMap.count(C))
|
|
return;
|
|
|
|
// This constant may have operands, make sure to enumerate the types in
|
|
// them.
|
|
for (const Value *Op : C->operands()) {
|
|
// Don't enumerate basic blocks here, this happens as operands to
|
|
// blockaddress.
|
|
if (isa<BasicBlock>(Op))
|
|
continue;
|
|
|
|
EnumerateOperandType(Op);
|
|
}
|
|
}
|
|
|
|
void ValueEnumerator::EnumerateAttributes(AttributeSet PAL) {
|
|
if (PAL.isEmpty()) return; // null is always 0.
|
|
|
|
// Do a lookup.
|
|
unsigned &Entry = AttributeMap[PAL];
|
|
if (Entry == 0) {
|
|
// Never saw this before, add it.
|
|
Attribute.push_back(PAL);
|
|
Entry = Attribute.size();
|
|
}
|
|
|
|
// Do lookups for all attribute groups.
|
|
for (unsigned i = 0, e = PAL.getNumSlots(); i != e; ++i) {
|
|
AttributeSet AS = PAL.getSlotAttributes(i);
|
|
unsigned &Entry = AttributeGroupMap[AS];
|
|
if (Entry == 0) {
|
|
AttributeGroups.push_back(AS);
|
|
Entry = AttributeGroups.size();
|
|
}
|
|
}
|
|
}
|
|
|
|
void ValueEnumerator::incorporateFunction(const Function &F) {
|
|
InstructionCount = 0;
|
|
NumModuleValues = Values.size();
|
|
|
|
// Add global metadata to the function block. This doesn't include
|
|
// LocalAsMetadata.
|
|
incorporateFunctionMetadata(F);
|
|
|
|
// Adding function arguments to the value table.
|
|
for (const auto &I : F.args())
|
|
EnumerateValue(&I);
|
|
|
|
FirstFuncConstantID = Values.size();
|
|
|
|
// Add all function-level constants to the value table.
|
|
for (const BasicBlock &BB : F) {
|
|
for (const Instruction &I : BB)
|
|
for (const Use &OI : I.operands()) {
|
|
if ((isa<Constant>(OI) && !isa<GlobalValue>(OI)) || isa<InlineAsm>(OI))
|
|
EnumerateValue(OI);
|
|
}
|
|
BasicBlocks.push_back(&BB);
|
|
ValueMap[&BB] = BasicBlocks.size();
|
|
}
|
|
|
|
// Optimize the constant layout.
|
|
OptimizeConstants(FirstFuncConstantID, Values.size());
|
|
|
|
// Add the function's parameter attributes so they are available for use in
|
|
// the function's instruction.
|
|
EnumerateAttributes(F.getAttributes());
|
|
|
|
FirstInstID = Values.size();
|
|
|
|
SmallVector<LocalAsMetadata *, 8> FnLocalMDVector;
|
|
// Add all of the instructions.
|
|
for (const BasicBlock &BB : F) {
|
|
for (const Instruction &I : BB) {
|
|
for (const Use &OI : I.operands()) {
|
|
if (auto *MD = dyn_cast<MetadataAsValue>(&OI))
|
|
if (auto *Local = dyn_cast<LocalAsMetadata>(MD->getMetadata()))
|
|
// Enumerate metadata after the instructions they might refer to.
|
|
FnLocalMDVector.push_back(Local);
|
|
}
|
|
|
|
if (!I.getType()->isVoidTy())
|
|
EnumerateValue(&I);
|
|
}
|
|
}
|
|
|
|
// Add all of the function-local metadata.
|
|
for (unsigned i = 0, e = FnLocalMDVector.size(); i != e; ++i) {
|
|
// At this point, every local values have been incorporated, we shouldn't
|
|
// have a metadata operand that references a value that hasn't been seen.
|
|
assert(ValueMap.count(FnLocalMDVector[i]->getValue()) &&
|
|
"Missing value for metadata operand");
|
|
EnumerateFunctionLocalMetadata(F, FnLocalMDVector[i]);
|
|
}
|
|
}
|
|
|
|
void ValueEnumerator::purgeFunction() {
|
|
/// Remove purged values from the ValueMap.
|
|
for (unsigned i = NumModuleValues, e = Values.size(); i != e; ++i)
|
|
ValueMap.erase(Values[i].first);
|
|
for (unsigned i = NumModuleMDs, e = MDs.size(); i != e; ++i)
|
|
MetadataMap.erase(MDs[i]);
|
|
for (unsigned i = 0, e = BasicBlocks.size(); i != e; ++i)
|
|
ValueMap.erase(BasicBlocks[i]);
|
|
|
|
Values.resize(NumModuleValues);
|
|
MDs.resize(NumModuleMDs);
|
|
BasicBlocks.clear();
|
|
NumMDStrings = 0;
|
|
}
|
|
|
|
static void IncorporateFunctionInfoGlobalBBIDs(const Function *F,
|
|
DenseMap<const BasicBlock*, unsigned> &IDMap) {
|
|
unsigned Counter = 0;
|
|
for (const BasicBlock &BB : *F)
|
|
IDMap[&BB] = ++Counter;
|
|
}
|
|
|
|
/// getGlobalBasicBlockID - This returns the function-specific ID for the
|
|
/// specified basic block. This is relatively expensive information, so it
|
|
/// should only be used by rare constructs such as address-of-label.
|
|
unsigned ValueEnumerator::getGlobalBasicBlockID(const BasicBlock *BB) const {
|
|
unsigned &Idx = GlobalBasicBlockIDs[BB];
|
|
if (Idx != 0)
|
|
return Idx-1;
|
|
|
|
IncorporateFunctionInfoGlobalBBIDs(BB->getParent(), GlobalBasicBlockIDs);
|
|
return getGlobalBasicBlockID(BB);
|
|
}
|
|
|
|
uint64_t ValueEnumerator::computeBitsRequiredForTypeIndicies() const {
|
|
return Log2_32_Ceil(getTypes().size() + 1);
|
|
}
|