mirror of
https://github.com/RPCSX/llvm.git
synced 2024-12-02 16:56:50 +00:00
cff4ad768e
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@152999 91177308-0d34-0410-b5e6-96231b3b80d8
682 lines
26 KiB
C++
682 lines
26 KiB
C++
//===----- CriticalAntiDepBreaker.cpp - Anti-dep breaker -------- ---------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the CriticalAntiDepBreaker class, which
|
|
// implements register anti-dependence breaking along a blocks
|
|
// critical path during post-RA scheduler.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "post-RA-sched"
|
|
#include "CriticalAntiDepBreaker.h"
|
|
#include "llvm/CodeGen/MachineBasicBlock.h"
|
|
#include "llvm/CodeGen/MachineFrameInfo.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/Target/TargetInstrInfo.h"
|
|
#include "llvm/Target/TargetRegisterInfo.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
|
|
using namespace llvm;
|
|
|
|
CriticalAntiDepBreaker::
|
|
CriticalAntiDepBreaker(MachineFunction& MFi, const RegisterClassInfo &RCI) :
|
|
AntiDepBreaker(), MF(MFi),
|
|
MRI(MF.getRegInfo()),
|
|
TII(MF.getTarget().getInstrInfo()),
|
|
TRI(MF.getTarget().getRegisterInfo()),
|
|
RegClassInfo(RCI),
|
|
Classes(TRI->getNumRegs(), static_cast<const TargetRegisterClass *>(0)),
|
|
KillIndices(TRI->getNumRegs(), 0),
|
|
DefIndices(TRI->getNumRegs(), 0),
|
|
KeepRegs(TRI->getNumRegs(), false) {}
|
|
|
|
CriticalAntiDepBreaker::~CriticalAntiDepBreaker() {
|
|
}
|
|
|
|
void CriticalAntiDepBreaker::StartBlock(MachineBasicBlock *BB) {
|
|
const unsigned BBSize = BB->size();
|
|
for (unsigned i = 0, e = TRI->getNumRegs(); i != e; ++i) {
|
|
// Clear out the register class data.
|
|
Classes[i] = static_cast<const TargetRegisterClass *>(0);
|
|
|
|
// Initialize the indices to indicate that no registers are live.
|
|
KillIndices[i] = ~0u;
|
|
DefIndices[i] = BBSize;
|
|
}
|
|
|
|
// Clear "do not change" set.
|
|
KeepRegs.reset();
|
|
|
|
bool IsReturnBlock = (BBSize != 0 && BB->back().isReturn());
|
|
|
|
// Determine the live-out physregs for this block.
|
|
if (IsReturnBlock) {
|
|
// In a return block, examine the function live-out regs.
|
|
for (MachineRegisterInfo::liveout_iterator I = MRI.liveout_begin(),
|
|
E = MRI.liveout_end(); I != E; ++I) {
|
|
unsigned Reg = *I;
|
|
Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
|
|
KillIndices[Reg] = BBSize;
|
|
DefIndices[Reg] = ~0u;
|
|
|
|
// Repeat, for all aliases.
|
|
for (const uint16_t *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
|
|
unsigned AliasReg = *Alias;
|
|
Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
|
|
KillIndices[AliasReg] = BBSize;
|
|
DefIndices[AliasReg] = ~0u;
|
|
}
|
|
}
|
|
}
|
|
|
|
// In a non-return block, examine the live-in regs of all successors.
|
|
// Note a return block can have successors if the return instruction is
|
|
// predicated.
|
|
for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
|
|
SE = BB->succ_end(); SI != SE; ++SI)
|
|
for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
|
|
E = (*SI)->livein_end(); I != E; ++I) {
|
|
unsigned Reg = *I;
|
|
Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
|
|
KillIndices[Reg] = BBSize;
|
|
DefIndices[Reg] = ~0u;
|
|
|
|
// Repeat, for all aliases.
|
|
for (const uint16_t *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
|
|
unsigned AliasReg = *Alias;
|
|
Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
|
|
KillIndices[AliasReg] = BBSize;
|
|
DefIndices[AliasReg] = ~0u;
|
|
}
|
|
}
|
|
|
|
// Mark live-out callee-saved registers. In a return block this is
|
|
// all callee-saved registers. In non-return this is any
|
|
// callee-saved register that is not saved in the prolog.
|
|
const MachineFrameInfo *MFI = MF.getFrameInfo();
|
|
BitVector Pristine = MFI->getPristineRegs(BB);
|
|
for (const uint16_t *I = TRI->getCalleeSavedRegs(&MF); *I; ++I) {
|
|
unsigned Reg = *I;
|
|
if (!IsReturnBlock && !Pristine.test(Reg)) continue;
|
|
Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
|
|
KillIndices[Reg] = BBSize;
|
|
DefIndices[Reg] = ~0u;
|
|
|
|
// Repeat, for all aliases.
|
|
for (const uint16_t *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
|
|
unsigned AliasReg = *Alias;
|
|
Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
|
|
KillIndices[AliasReg] = BBSize;
|
|
DefIndices[AliasReg] = ~0u;
|
|
}
|
|
}
|
|
}
|
|
|
|
void CriticalAntiDepBreaker::FinishBlock() {
|
|
RegRefs.clear();
|
|
KeepRegs.reset();
|
|
}
|
|
|
|
void CriticalAntiDepBreaker::Observe(MachineInstr *MI, unsigned Count,
|
|
unsigned InsertPosIndex) {
|
|
if (MI->isDebugValue())
|
|
return;
|
|
assert(Count < InsertPosIndex && "Instruction index out of expected range!");
|
|
|
|
for (unsigned Reg = 0; Reg != TRI->getNumRegs(); ++Reg) {
|
|
if (KillIndices[Reg] != ~0u) {
|
|
// If Reg is currently live, then mark that it can't be renamed as
|
|
// we don't know the extent of its live-range anymore (now that it
|
|
// has been scheduled).
|
|
Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
|
|
KillIndices[Reg] = Count;
|
|
} else if (DefIndices[Reg] < InsertPosIndex && DefIndices[Reg] >= Count) {
|
|
// Any register which was defined within the previous scheduling region
|
|
// may have been rescheduled and its lifetime may overlap with registers
|
|
// in ways not reflected in our current liveness state. For each such
|
|
// register, adjust the liveness state to be conservatively correct.
|
|
Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
|
|
|
|
// Move the def index to the end of the previous region, to reflect
|
|
// that the def could theoretically have been scheduled at the end.
|
|
DefIndices[Reg] = InsertPosIndex;
|
|
}
|
|
}
|
|
|
|
PrescanInstruction(MI);
|
|
ScanInstruction(MI, Count);
|
|
}
|
|
|
|
/// CriticalPathStep - Return the next SUnit after SU on the bottom-up
|
|
/// critical path.
|
|
static const SDep *CriticalPathStep(const SUnit *SU) {
|
|
const SDep *Next = 0;
|
|
unsigned NextDepth = 0;
|
|
// Find the predecessor edge with the greatest depth.
|
|
for (SUnit::const_pred_iterator P = SU->Preds.begin(), PE = SU->Preds.end();
|
|
P != PE; ++P) {
|
|
const SUnit *PredSU = P->getSUnit();
|
|
unsigned PredLatency = P->getLatency();
|
|
unsigned PredTotalLatency = PredSU->getDepth() + PredLatency;
|
|
// In the case of a latency tie, prefer an anti-dependency edge over
|
|
// other types of edges.
|
|
if (NextDepth < PredTotalLatency ||
|
|
(NextDepth == PredTotalLatency && P->getKind() == SDep::Anti)) {
|
|
NextDepth = PredTotalLatency;
|
|
Next = &*P;
|
|
}
|
|
}
|
|
return Next;
|
|
}
|
|
|
|
void CriticalAntiDepBreaker::PrescanInstruction(MachineInstr *MI) {
|
|
// It's not safe to change register allocation for source operands of
|
|
// that have special allocation requirements. Also assume all registers
|
|
// used in a call must not be changed (ABI).
|
|
// FIXME: The issue with predicated instruction is more complex. We are being
|
|
// conservative here because the kill markers cannot be trusted after
|
|
// if-conversion:
|
|
// %R6<def> = LDR %SP, %reg0, 92, pred:14, pred:%reg0; mem:LD4[FixedStack14]
|
|
// ...
|
|
// STR %R0, %R6<kill>, %reg0, 0, pred:0, pred:%CPSR; mem:ST4[%395]
|
|
// %R6<def> = LDR %SP, %reg0, 100, pred:0, pred:%CPSR; mem:LD4[FixedStack12]
|
|
// STR %R0, %R6<kill>, %reg0, 0, pred:14, pred:%reg0; mem:ST4[%396](align=8)
|
|
//
|
|
// The first R6 kill is not really a kill since it's killed by a predicated
|
|
// instruction which may not be executed. The second R6 def may or may not
|
|
// re-define R6 so it's not safe to change it since the last R6 use cannot be
|
|
// changed.
|
|
bool Special = MI->isCall() ||
|
|
MI->hasExtraSrcRegAllocReq() ||
|
|
TII->isPredicated(MI);
|
|
|
|
// Scan the register operands for this instruction and update
|
|
// Classes and RegRefs.
|
|
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
|
|
MachineOperand &MO = MI->getOperand(i);
|
|
if (!MO.isReg()) continue;
|
|
unsigned Reg = MO.getReg();
|
|
if (Reg == 0) continue;
|
|
const TargetRegisterClass *NewRC = 0;
|
|
|
|
if (i < MI->getDesc().getNumOperands())
|
|
NewRC = TII->getRegClass(MI->getDesc(), i, TRI);
|
|
|
|
// For now, only allow the register to be changed if its register
|
|
// class is consistent across all uses.
|
|
if (!Classes[Reg] && NewRC)
|
|
Classes[Reg] = NewRC;
|
|
else if (!NewRC || Classes[Reg] != NewRC)
|
|
Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
|
|
|
|
// Now check for aliases.
|
|
for (const uint16_t *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
|
|
// If an alias of the reg is used during the live range, give up.
|
|
// Note that this allows us to skip checking if AntiDepReg
|
|
// overlaps with any of the aliases, among other things.
|
|
unsigned AliasReg = *Alias;
|
|
if (Classes[AliasReg]) {
|
|
Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
|
|
Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
|
|
}
|
|
}
|
|
|
|
// If we're still willing to consider this register, note the reference.
|
|
if (Classes[Reg] != reinterpret_cast<TargetRegisterClass *>(-1))
|
|
RegRefs.insert(std::make_pair(Reg, &MO));
|
|
|
|
if (MO.isUse() && Special) {
|
|
if (!KeepRegs.test(Reg)) {
|
|
KeepRegs.set(Reg);
|
|
for (const uint16_t *Subreg = TRI->getSubRegisters(Reg);
|
|
*Subreg; ++Subreg)
|
|
KeepRegs.set(*Subreg);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void CriticalAntiDepBreaker::ScanInstruction(MachineInstr *MI,
|
|
unsigned Count) {
|
|
// Update liveness.
|
|
// Proceding upwards, registers that are defed but not used in this
|
|
// instruction are now dead.
|
|
|
|
if (!TII->isPredicated(MI)) {
|
|
// Predicated defs are modeled as read + write, i.e. similar to two
|
|
// address updates.
|
|
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
|
|
MachineOperand &MO = MI->getOperand(i);
|
|
|
|
if (MO.isRegMask())
|
|
for (unsigned i = 0, e = TRI->getNumRegs(); i != e; ++i)
|
|
if (MO.clobbersPhysReg(i)) {
|
|
DefIndices[i] = Count;
|
|
KillIndices[i] = ~0u;
|
|
KeepRegs.reset(i);
|
|
Classes[i] = 0;
|
|
RegRefs.erase(i);
|
|
}
|
|
|
|
if (!MO.isReg()) continue;
|
|
unsigned Reg = MO.getReg();
|
|
if (Reg == 0) continue;
|
|
if (!MO.isDef()) continue;
|
|
// Ignore two-addr defs.
|
|
if (MI->isRegTiedToUseOperand(i)) continue;
|
|
|
|
DefIndices[Reg] = Count;
|
|
KillIndices[Reg] = ~0u;
|
|
assert(((KillIndices[Reg] == ~0u) !=
|
|
(DefIndices[Reg] == ~0u)) &&
|
|
"Kill and Def maps aren't consistent for Reg!");
|
|
KeepRegs.reset(Reg);
|
|
Classes[Reg] = 0;
|
|
RegRefs.erase(Reg);
|
|
// Repeat, for all subregs.
|
|
for (const uint16_t *Subreg = TRI->getSubRegisters(Reg);
|
|
*Subreg; ++Subreg) {
|
|
unsigned SubregReg = *Subreg;
|
|
DefIndices[SubregReg] = Count;
|
|
KillIndices[SubregReg] = ~0u;
|
|
KeepRegs.reset(SubregReg);
|
|
Classes[SubregReg] = 0;
|
|
RegRefs.erase(SubregReg);
|
|
}
|
|
// Conservatively mark super-registers as unusable.
|
|
for (const uint16_t *Super = TRI->getSuperRegisters(Reg);
|
|
*Super; ++Super) {
|
|
unsigned SuperReg = *Super;
|
|
Classes[SuperReg] = reinterpret_cast<TargetRegisterClass *>(-1);
|
|
}
|
|
}
|
|
}
|
|
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
|
|
MachineOperand &MO = MI->getOperand(i);
|
|
if (!MO.isReg()) continue;
|
|
unsigned Reg = MO.getReg();
|
|
if (Reg == 0) continue;
|
|
if (!MO.isUse()) continue;
|
|
|
|
const TargetRegisterClass *NewRC = 0;
|
|
if (i < MI->getDesc().getNumOperands())
|
|
NewRC = TII->getRegClass(MI->getDesc(), i, TRI);
|
|
|
|
// For now, only allow the register to be changed if its register
|
|
// class is consistent across all uses.
|
|
if (!Classes[Reg] && NewRC)
|
|
Classes[Reg] = NewRC;
|
|
else if (!NewRC || Classes[Reg] != NewRC)
|
|
Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
|
|
|
|
RegRefs.insert(std::make_pair(Reg, &MO));
|
|
|
|
// It wasn't previously live but now it is, this is a kill.
|
|
if (KillIndices[Reg] == ~0u) {
|
|
KillIndices[Reg] = Count;
|
|
DefIndices[Reg] = ~0u;
|
|
assert(((KillIndices[Reg] == ~0u) !=
|
|
(DefIndices[Reg] == ~0u)) &&
|
|
"Kill and Def maps aren't consistent for Reg!");
|
|
}
|
|
// Repeat, for all aliases.
|
|
for (const uint16_t *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
|
|
unsigned AliasReg = *Alias;
|
|
if (KillIndices[AliasReg] == ~0u) {
|
|
KillIndices[AliasReg] = Count;
|
|
DefIndices[AliasReg] = ~0u;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Check all machine operands that reference the antidependent register and must
|
|
// be replaced by NewReg. Return true if any of their parent instructions may
|
|
// clobber the new register.
|
|
//
|
|
// Note: AntiDepReg may be referenced by a two-address instruction such that
|
|
// it's use operand is tied to a def operand. We guard against the case in which
|
|
// the two-address instruction also defines NewReg, as may happen with
|
|
// pre/postincrement loads. In this case, both the use and def operands are in
|
|
// RegRefs because the def is inserted by PrescanInstruction and not erased
|
|
// during ScanInstruction. So checking for an instructions with definitions of
|
|
// both NewReg and AntiDepReg covers it.
|
|
bool
|
|
CriticalAntiDepBreaker::isNewRegClobberedByRefs(RegRefIter RegRefBegin,
|
|
RegRefIter RegRefEnd,
|
|
unsigned NewReg)
|
|
{
|
|
for (RegRefIter I = RegRefBegin; I != RegRefEnd; ++I ) {
|
|
MachineOperand *RefOper = I->second;
|
|
|
|
// Don't allow the instruction defining AntiDepReg to earlyclobber its
|
|
// operands, in case they may be assigned to NewReg. In this case antidep
|
|
// breaking must fail, but it's too rare to bother optimizing.
|
|
if (RefOper->isDef() && RefOper->isEarlyClobber())
|
|
return true;
|
|
|
|
// Handle cases in which this instructions defines NewReg.
|
|
MachineInstr *MI = RefOper->getParent();
|
|
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
|
|
const MachineOperand &CheckOper = MI->getOperand(i);
|
|
|
|
if (CheckOper.isRegMask() && CheckOper.clobbersPhysReg(NewReg))
|
|
return true;
|
|
|
|
if (!CheckOper.isReg() || !CheckOper.isDef() ||
|
|
CheckOper.getReg() != NewReg)
|
|
continue;
|
|
|
|
// Don't allow the instruction to define NewReg and AntiDepReg.
|
|
// When AntiDepReg is renamed it will be an illegal op.
|
|
if (RefOper->isDef())
|
|
return true;
|
|
|
|
// Don't allow an instruction using AntiDepReg to be earlyclobbered by
|
|
// NewReg
|
|
if (CheckOper.isEarlyClobber())
|
|
return true;
|
|
|
|
// Don't allow inline asm to define NewReg at all. Who know what it's
|
|
// doing with it.
|
|
if (MI->isInlineAsm())
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
unsigned
|
|
CriticalAntiDepBreaker::findSuitableFreeRegister(RegRefIter RegRefBegin,
|
|
RegRefIter RegRefEnd,
|
|
unsigned AntiDepReg,
|
|
unsigned LastNewReg,
|
|
const TargetRegisterClass *RC)
|
|
{
|
|
ArrayRef<unsigned> Order = RegClassInfo.getOrder(RC);
|
|
for (unsigned i = 0; i != Order.size(); ++i) {
|
|
unsigned NewReg = Order[i];
|
|
// Don't replace a register with itself.
|
|
if (NewReg == AntiDepReg) continue;
|
|
// Don't replace a register with one that was recently used to repair
|
|
// an anti-dependence with this AntiDepReg, because that would
|
|
// re-introduce that anti-dependence.
|
|
if (NewReg == LastNewReg) continue;
|
|
// If any instructions that define AntiDepReg also define the NewReg, it's
|
|
// not suitable. For example, Instruction with multiple definitions can
|
|
// result in this condition.
|
|
if (isNewRegClobberedByRefs(RegRefBegin, RegRefEnd, NewReg)) continue;
|
|
// If NewReg is dead and NewReg's most recent def is not before
|
|
// AntiDepReg's kill, it's safe to replace AntiDepReg with NewReg.
|
|
assert(((KillIndices[AntiDepReg] == ~0u) != (DefIndices[AntiDepReg] == ~0u))
|
|
&& "Kill and Def maps aren't consistent for AntiDepReg!");
|
|
assert(((KillIndices[NewReg] == ~0u) != (DefIndices[NewReg] == ~0u))
|
|
&& "Kill and Def maps aren't consistent for NewReg!");
|
|
if (KillIndices[NewReg] != ~0u ||
|
|
Classes[NewReg] == reinterpret_cast<TargetRegisterClass *>(-1) ||
|
|
KillIndices[AntiDepReg] > DefIndices[NewReg])
|
|
continue;
|
|
return NewReg;
|
|
}
|
|
|
|
// No registers are free and available!
|
|
return 0;
|
|
}
|
|
|
|
unsigned CriticalAntiDepBreaker::
|
|
BreakAntiDependencies(const std::vector<SUnit>& SUnits,
|
|
MachineBasicBlock::iterator Begin,
|
|
MachineBasicBlock::iterator End,
|
|
unsigned InsertPosIndex,
|
|
DbgValueVector &DbgValues) {
|
|
// The code below assumes that there is at least one instruction,
|
|
// so just duck out immediately if the block is empty.
|
|
if (SUnits.empty()) return 0;
|
|
|
|
// Keep a map of the MachineInstr*'s back to the SUnit representing them.
|
|
// This is used for updating debug information.
|
|
//
|
|
// FIXME: Replace this with the existing map in ScheduleDAGInstrs::MISUnitMap
|
|
DenseMap<MachineInstr*,const SUnit*> MISUnitMap;
|
|
|
|
// Find the node at the bottom of the critical path.
|
|
const SUnit *Max = 0;
|
|
for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
|
|
const SUnit *SU = &SUnits[i];
|
|
MISUnitMap[SU->getInstr()] = SU;
|
|
if (!Max || SU->getDepth() + SU->Latency > Max->getDepth() + Max->Latency)
|
|
Max = SU;
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
{
|
|
DEBUG(dbgs() << "Critical path has total latency "
|
|
<< (Max->getDepth() + Max->Latency) << "\n");
|
|
DEBUG(dbgs() << "Available regs:");
|
|
for (unsigned Reg = 0; Reg < TRI->getNumRegs(); ++Reg) {
|
|
if (KillIndices[Reg] == ~0u)
|
|
DEBUG(dbgs() << " " << TRI->getName(Reg));
|
|
}
|
|
DEBUG(dbgs() << '\n');
|
|
}
|
|
#endif
|
|
|
|
// Track progress along the critical path through the SUnit graph as we walk
|
|
// the instructions.
|
|
const SUnit *CriticalPathSU = Max;
|
|
MachineInstr *CriticalPathMI = CriticalPathSU->getInstr();
|
|
|
|
// Consider this pattern:
|
|
// A = ...
|
|
// ... = A
|
|
// A = ...
|
|
// ... = A
|
|
// A = ...
|
|
// ... = A
|
|
// A = ...
|
|
// ... = A
|
|
// There are three anti-dependencies here, and without special care,
|
|
// we'd break all of them using the same register:
|
|
// A = ...
|
|
// ... = A
|
|
// B = ...
|
|
// ... = B
|
|
// B = ...
|
|
// ... = B
|
|
// B = ...
|
|
// ... = B
|
|
// because at each anti-dependence, B is the first register that
|
|
// isn't A which is free. This re-introduces anti-dependencies
|
|
// at all but one of the original anti-dependencies that we were
|
|
// trying to break. To avoid this, keep track of the most recent
|
|
// register that each register was replaced with, avoid
|
|
// using it to repair an anti-dependence on the same register.
|
|
// This lets us produce this:
|
|
// A = ...
|
|
// ... = A
|
|
// B = ...
|
|
// ... = B
|
|
// C = ...
|
|
// ... = C
|
|
// B = ...
|
|
// ... = B
|
|
// This still has an anti-dependence on B, but at least it isn't on the
|
|
// original critical path.
|
|
//
|
|
// TODO: If we tracked more than one register here, we could potentially
|
|
// fix that remaining critical edge too. This is a little more involved,
|
|
// because unlike the most recent register, less recent registers should
|
|
// still be considered, though only if no other registers are available.
|
|
std::vector<unsigned> LastNewReg(TRI->getNumRegs(), 0);
|
|
|
|
// Attempt to break anti-dependence edges on the critical path. Walk the
|
|
// instructions from the bottom up, tracking information about liveness
|
|
// as we go to help determine which registers are available.
|
|
unsigned Broken = 0;
|
|
unsigned Count = InsertPosIndex - 1;
|
|
for (MachineBasicBlock::iterator I = End, E = Begin;
|
|
I != E; --Count) {
|
|
MachineInstr *MI = --I;
|
|
if (MI->isDebugValue())
|
|
continue;
|
|
|
|
// Check if this instruction has a dependence on the critical path that
|
|
// is an anti-dependence that we may be able to break. If it is, set
|
|
// AntiDepReg to the non-zero register associated with the anti-dependence.
|
|
//
|
|
// We limit our attention to the critical path as a heuristic to avoid
|
|
// breaking anti-dependence edges that aren't going to significantly
|
|
// impact the overall schedule. There are a limited number of registers
|
|
// and we want to save them for the important edges.
|
|
//
|
|
// TODO: Instructions with multiple defs could have multiple
|
|
// anti-dependencies. The current code here only knows how to break one
|
|
// edge per instruction. Note that we'd have to be able to break all of
|
|
// the anti-dependencies in an instruction in order to be effective.
|
|
unsigned AntiDepReg = 0;
|
|
if (MI == CriticalPathMI) {
|
|
if (const SDep *Edge = CriticalPathStep(CriticalPathSU)) {
|
|
const SUnit *NextSU = Edge->getSUnit();
|
|
|
|
// Only consider anti-dependence edges.
|
|
if (Edge->getKind() == SDep::Anti) {
|
|
AntiDepReg = Edge->getReg();
|
|
assert(AntiDepReg != 0 && "Anti-dependence on reg0?");
|
|
if (!RegClassInfo.isAllocatable(AntiDepReg))
|
|
// Don't break anti-dependencies on non-allocatable registers.
|
|
AntiDepReg = 0;
|
|
else if (KeepRegs.test(AntiDepReg))
|
|
// Don't break anti-dependencies if an use down below requires
|
|
// this exact register.
|
|
AntiDepReg = 0;
|
|
else {
|
|
// If the SUnit has other dependencies on the SUnit that it
|
|
// anti-depends on, don't bother breaking the anti-dependency
|
|
// since those edges would prevent such units from being
|
|
// scheduled past each other regardless.
|
|
//
|
|
// Also, if there are dependencies on other SUnits with the
|
|
// same register as the anti-dependency, don't attempt to
|
|
// break it.
|
|
for (SUnit::const_pred_iterator P = CriticalPathSU->Preds.begin(),
|
|
PE = CriticalPathSU->Preds.end(); P != PE; ++P)
|
|
if (P->getSUnit() == NextSU ?
|
|
(P->getKind() != SDep::Anti || P->getReg() != AntiDepReg) :
|
|
(P->getKind() == SDep::Data && P->getReg() == AntiDepReg)) {
|
|
AntiDepReg = 0;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
CriticalPathSU = NextSU;
|
|
CriticalPathMI = CriticalPathSU->getInstr();
|
|
} else {
|
|
// We've reached the end of the critical path.
|
|
CriticalPathSU = 0;
|
|
CriticalPathMI = 0;
|
|
}
|
|
}
|
|
|
|
PrescanInstruction(MI);
|
|
|
|
// If MI's defs have a special allocation requirement, don't allow
|
|
// any def registers to be changed. Also assume all registers
|
|
// defined in a call must not be changed (ABI).
|
|
if (MI->isCall() || MI->hasExtraDefRegAllocReq() ||
|
|
TII->isPredicated(MI))
|
|
// If this instruction's defs have special allocation requirement, don't
|
|
// break this anti-dependency.
|
|
AntiDepReg = 0;
|
|
else if (AntiDepReg) {
|
|
// If this instruction has a use of AntiDepReg, breaking it
|
|
// is invalid.
|
|
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
|
|
MachineOperand &MO = MI->getOperand(i);
|
|
if (!MO.isReg()) continue;
|
|
unsigned Reg = MO.getReg();
|
|
if (Reg == 0) continue;
|
|
if (MO.isUse() && TRI->regsOverlap(AntiDepReg, Reg)) {
|
|
AntiDepReg = 0;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Determine AntiDepReg's register class, if it is live and is
|
|
// consistently used within a single class.
|
|
const TargetRegisterClass *RC = AntiDepReg != 0 ? Classes[AntiDepReg] : 0;
|
|
assert((AntiDepReg == 0 || RC != NULL) &&
|
|
"Register should be live if it's causing an anti-dependence!");
|
|
if (RC == reinterpret_cast<TargetRegisterClass *>(-1))
|
|
AntiDepReg = 0;
|
|
|
|
// Look for a suitable register to use to break the anti-depenence.
|
|
//
|
|
// TODO: Instead of picking the first free register, consider which might
|
|
// be the best.
|
|
if (AntiDepReg != 0) {
|
|
std::pair<std::multimap<unsigned, MachineOperand *>::iterator,
|
|
std::multimap<unsigned, MachineOperand *>::iterator>
|
|
Range = RegRefs.equal_range(AntiDepReg);
|
|
if (unsigned NewReg = findSuitableFreeRegister(Range.first, Range.second,
|
|
AntiDepReg,
|
|
LastNewReg[AntiDepReg],
|
|
RC)) {
|
|
DEBUG(dbgs() << "Breaking anti-dependence edge on "
|
|
<< TRI->getName(AntiDepReg)
|
|
<< " with " << RegRefs.count(AntiDepReg) << " references"
|
|
<< " using " << TRI->getName(NewReg) << "!\n");
|
|
|
|
// Update the references to the old register to refer to the new
|
|
// register.
|
|
for (std::multimap<unsigned, MachineOperand *>::iterator
|
|
Q = Range.first, QE = Range.second; Q != QE; ++Q) {
|
|
Q->second->setReg(NewReg);
|
|
// If the SU for the instruction being updated has debug information
|
|
// related to the anti-dependency register, make sure to update that
|
|
// as well.
|
|
const SUnit *SU = MISUnitMap[Q->second->getParent()];
|
|
if (!SU) continue;
|
|
for (DbgValueVector::iterator DVI = DbgValues.begin(),
|
|
DVE = DbgValues.end(); DVI != DVE; ++DVI)
|
|
if (DVI->second == Q->second->getParent())
|
|
UpdateDbgValue(DVI->first, AntiDepReg, NewReg);
|
|
}
|
|
|
|
// We just went back in time and modified history; the
|
|
// liveness information for the anti-dependence reg is now
|
|
// inconsistent. Set the state as if it were dead.
|
|
Classes[NewReg] = Classes[AntiDepReg];
|
|
DefIndices[NewReg] = DefIndices[AntiDepReg];
|
|
KillIndices[NewReg] = KillIndices[AntiDepReg];
|
|
assert(((KillIndices[NewReg] == ~0u) !=
|
|
(DefIndices[NewReg] == ~0u)) &&
|
|
"Kill and Def maps aren't consistent for NewReg!");
|
|
|
|
Classes[AntiDepReg] = 0;
|
|
DefIndices[AntiDepReg] = KillIndices[AntiDepReg];
|
|
KillIndices[AntiDepReg] = ~0u;
|
|
assert(((KillIndices[AntiDepReg] == ~0u) !=
|
|
(DefIndices[AntiDepReg] == ~0u)) &&
|
|
"Kill and Def maps aren't consistent for AntiDepReg!");
|
|
|
|
RegRefs.erase(AntiDepReg);
|
|
LastNewReg[AntiDepReg] = NewReg;
|
|
++Broken;
|
|
}
|
|
}
|
|
|
|
ScanInstruction(MI, Count);
|
|
}
|
|
|
|
return Broken;
|
|
}
|