llvm/lib/Transforms/Instrumentation/IndirectCallPromotion.cpp
Xinliang David Li a87e199c33 make icall pass name consistent /NFC
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@271467 91177308-0d34-0410-b5e6-96231b3b80d8
2016-06-02 01:52:05 +00:00

703 lines
26 KiB
C++

//===-- IndirectCallPromotion.cpp - Promote indirect calls to direct calls ===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the transformation that promotes indirect calls to
// conditional direct calls when the indirect-call value profile metadata is
// available.
//
//===----------------------------------------------------------------------===//
#include "IndirectCallSiteVisitor.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/Triple.h"
#include "llvm/Analysis/CFG.h"
#include "llvm/IR/CallSite.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/InstVisitor.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/MDBuilder.h"
#include "llvm/IR/Module.h"
#include "llvm/Pass.h"
#include "llvm/ProfileData/InstrProfReader.h"
#include "llvm/Support/Debug.h"
#include "llvm/Transforms/Instrumentation.h"
#include "llvm/Transforms/PGOInstrumentation.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include <string>
#include <utility>
#include <vector>
using namespace llvm;
#define DEBUG_TYPE "pgo-icall-prom"
STATISTIC(NumOfPGOICallPromotion, "Number of indirect call promotions.");
STATISTIC(NumOfPGOICallsites, "Number of indirect call candidate sites.");
// Command line option to disable indirect-call promotion with the default as
// false. This is for debug purpose.
static cl::opt<bool> DisableICP("disable-icp", cl::init(false), cl::Hidden,
cl::desc("Disable indirect call promotion"));
// The minimum call count for the direct-call target to be considered as the
// promotion candidate.
static cl::opt<unsigned>
ICPCountThreshold("icp-count-threshold", cl::Hidden, cl::ZeroOrMore,
cl::init(1000),
cl::desc("The minimum count to the direct call target "
"for the promotion"));
// The percent threshold for the direct-call target (this call site vs the
// total call count) for it to be considered as the promotion target.
static cl::opt<unsigned>
ICPPercentThreshold("icp-percent-threshold", cl::init(33), cl::Hidden,
cl::ZeroOrMore,
cl::desc("The percentage threshold for the promotion"));
// Set the maximum number of targets to promote for a single indirect-call
// callsite.
static cl::opt<unsigned>
MaxNumPromotions("icp-max-prom", cl::init(2), cl::Hidden, cl::ZeroOrMore,
cl::desc("Max number of promotions for a single indirect "
"call callsite"));
// Set the cutoff value for the promotion. If the value is other than 0, we
// stop the transformation once the total number of promotions equals the cutoff
// value.
// For debug use only.
static cl::opt<unsigned>
ICPCutOff("icp-cutoff", cl::init(0), cl::Hidden, cl::ZeroOrMore,
cl::desc("Max number of promotions for this compilaiton"));
// If ICPCSSkip is non zero, the first ICPCSSkip callsites will be skipped.
// For debug use only.
static cl::opt<unsigned>
ICPCSSkip("icp-csskip", cl::init(0), cl::Hidden, cl::ZeroOrMore,
cl::desc("Skip Callsite up to this number for this compilaiton"));
// Set if the pass is called in LTO optimization. The difference for LTO mode
// is the pass won't prefix the source module name to the internal linkage
// symbols.
static cl::opt<bool> ICPLTOMode("icp-lto", cl::init(false), cl::Hidden,
cl::desc("Run indirect-call promotion in LTO "
"mode"));
// If the option is set to true, only call instructions will be considered for
// transformation -- invoke instructions will be ignored.
static cl::opt<bool>
ICPCallOnly("icp-call-only", cl::init(false), cl::Hidden,
cl::desc("Run indirect-call promotion for call instructions "
"only"));
// If the option is set to true, only invoke instructions will be considered for
// transformation -- call instructions will be ignored.
static cl::opt<bool> ICPInvokeOnly("icp-invoke-only", cl::init(false),
cl::Hidden,
cl::desc("Run indirect-call promotion for "
"invoke instruction only"));
// Dump the function level IR if the transformation happened in this
// function. For debug use only.
static cl::opt<bool>
ICPDUMPAFTER("icp-dumpafter", cl::init(false), cl::Hidden,
cl::desc("Dump IR after transformation happens"));
namespace {
class PGOIndirectCallPromotionLegacyPass : public ModulePass {
public:
static char ID;
PGOIndirectCallPromotionLegacyPass(bool InLTO = false)
: ModulePass(ID), InLTO(InLTO) {
initializePGOIndirectCallPromotionLegacyPassPass(
*PassRegistry::getPassRegistry());
}
const char *getPassName() const override {
return "PGOIndirectCallPromotion";
}
private:
bool runOnModule(Module &M) override;
// If this pass is called in LTO. We need to special handling the PGOFuncName
// for the static variables due to LTO's internalization.
bool InLTO;
};
} // end anonymous namespace
char PGOIndirectCallPromotionLegacyPass::ID = 0;
INITIALIZE_PASS(PGOIndirectCallPromotionLegacyPass, "pgo-icall-prom",
"Use PGO instrumentation profile to promote indirect calls to "
"direct calls.",
false, false)
ModulePass *llvm::createPGOIndirectCallPromotionLegacyPass(bool InLTO) {
return new PGOIndirectCallPromotionLegacyPass(InLTO);
}
namespace {
// The class for main data structure to promote indirect calls to conditional
// direct calls.
class ICallPromotionFunc {
private:
Function &F;
Module *M;
// Symtab that maps indirect call profile values to function names and
// defines.
InstrProfSymtab *Symtab;
// Allocate space to read the profile annotation.
std::unique_ptr<InstrProfValueData[]> ValueDataArray;
// Count is the call count for the direct-call target and
// TotalCount is the call count for the indirect-call callsite.
// Return true we should promote this indirect-call target.
bool isPromotionProfitable(uint64_t Count, uint64_t TotalCount);
enum TargetStatus {
OK, // Should be able to promote.
NotAvailableInModule, // Cannot find the target in current module.
ReturnTypeMismatch, // Return type mismatch b/w target and indirect-call.
NumArgsMismatch, // Number of arguments does not match.
ArgTypeMismatch // Type mismatch in the arguments (cannot bitcast).
};
// Test if we can legally promote this direct-call of Target.
TargetStatus isPromotionLegal(Instruction *Inst, uint64_t Target,
Function *&F);
// A struct that records the direct target and it's call count.
struct PromotionCandidate {
Function *TargetFunction;
uint64_t Count;
PromotionCandidate(Function *F, uint64_t C) : TargetFunction(F), Count(C) {}
};
// Check if the indirect-call call site should be promoted. Return the number
// of promotions.
std::vector<PromotionCandidate> getPromotionCandidatesForCallSite(
Instruction *Inst, const ArrayRef<InstrProfValueData> &ValueDataRef,
uint64_t TotalCount);
// Main function that transforms Inst (either a indirect-call instruction, or
// an invoke instruction , to a conditional call to F. This is like:
// if (Inst.CalledValue == F)
// F(...);
// else
// Inst(...);
// end
// TotalCount is the profile count value that the instruction executes.
// Count is the profile count value that F is the target function.
// These two values are being used to update the branch weight.
void promote(Instruction *Inst, Function *F, uint64_t Count,
uint64_t TotalCount);
// Promote a list of targets for one indirect-call callsite. Return
// the number of promotions.
uint32_t tryToPromote(Instruction *Inst,
const std::vector<PromotionCandidate> &Candidates,
uint64_t &TotalCount);
static const char *StatusToString(const TargetStatus S) {
switch (S) {
case OK:
return "OK to promote";
case NotAvailableInModule:
return "Cannot find the target";
case ReturnTypeMismatch:
return "Return type mismatch";
case NumArgsMismatch:
return "The number of arguments mismatch";
case ArgTypeMismatch:
return "Argument Type mismatch";
}
llvm_unreachable("Should not reach here");
}
// Noncopyable
ICallPromotionFunc(const ICallPromotionFunc &other) = delete;
ICallPromotionFunc &operator=(const ICallPromotionFunc &other) = delete;
public:
ICallPromotionFunc(Function &Func, Module *Modu, InstrProfSymtab *Symtab)
: F(Func), M(Modu), Symtab(Symtab) {
ValueDataArray = llvm::make_unique<InstrProfValueData[]>(MaxNumPromotions);
}
bool processFunction();
};
} // end anonymous namespace
bool ICallPromotionFunc::isPromotionProfitable(uint64_t Count,
uint64_t TotalCount) {
if (Count < ICPCountThreshold)
return false;
unsigned Percentage = (Count * 100) / TotalCount;
return (Percentage >= ICPPercentThreshold);
}
ICallPromotionFunc::TargetStatus
ICallPromotionFunc::isPromotionLegal(Instruction *Inst, uint64_t Target,
Function *&TargetFunction) {
Function *DirectCallee = Symtab->getFunction(Target);
if (DirectCallee == nullptr)
return NotAvailableInModule;
// Check the return type.
Type *CallRetType = Inst->getType();
if (!CallRetType->isVoidTy()) {
Type *FuncRetType = DirectCallee->getReturnType();
if (FuncRetType != CallRetType &&
!CastInst::isBitCastable(FuncRetType, CallRetType))
return ReturnTypeMismatch;
}
// Check if the arguments are compatible with the parameters
FunctionType *DirectCalleeType = DirectCallee->getFunctionType();
unsigned ParamNum = DirectCalleeType->getFunctionNumParams();
CallSite CS(Inst);
unsigned ArgNum = CS.arg_size();
if (ParamNum != ArgNum && !DirectCalleeType->isVarArg())
return NumArgsMismatch;
for (unsigned I = 0; I < ParamNum; ++I) {
Type *PTy = DirectCalleeType->getFunctionParamType(I);
Type *ATy = CS.getArgument(I)->getType();
if (PTy == ATy)
continue;
if (!CastInst::castIsValid(Instruction::BitCast, CS.getArgument(I), PTy))
return ArgTypeMismatch;
}
DEBUG(dbgs() << " #" << NumOfPGOICallPromotion << " Promote the icall to "
<< Symtab->getFuncName(Target) << "\n");
TargetFunction = DirectCallee;
return OK;
}
// Indirect-call promotion heuristic. The direct targets are sorted based on
// the count. Stop at the first target that is not promoted.
std::vector<ICallPromotionFunc::PromotionCandidate>
ICallPromotionFunc::getPromotionCandidatesForCallSite(
Instruction *Inst, const ArrayRef<InstrProfValueData> &ValueDataRef,
uint64_t TotalCount) {
uint32_t NumVals = ValueDataRef.size();
std::vector<PromotionCandidate> Ret;
DEBUG(dbgs() << " \nWork on callsite #" << NumOfPGOICallsites << *Inst
<< " Num_targets: " << NumVals << "\n");
NumOfPGOICallsites++;
if (ICPCSSkip != 0 && NumOfPGOICallsites <= ICPCSSkip) {
DEBUG(dbgs() << " Skip: User options.\n");
return Ret;
}
for (uint32_t I = 0; I < MaxNumPromotions && I < NumVals; I++) {
uint64_t Count = ValueDataRef[I].Count;
assert(Count <= TotalCount);
uint64_t Target = ValueDataRef[I].Value;
DEBUG(dbgs() << " Candidate " << I << " Count=" << Count
<< " Target_func: " << Target << "\n");
if (ICPInvokeOnly && dyn_cast<CallInst>(Inst)) {
DEBUG(dbgs() << " Not promote: User options.\n");
break;
}
if (ICPCallOnly && dyn_cast<InvokeInst>(Inst)) {
DEBUG(dbgs() << " Not promote: User option.\n");
break;
}
if (ICPCutOff != 0 && NumOfPGOICallPromotion >= ICPCutOff) {
DEBUG(dbgs() << " Not promote: Cutoff reached.\n");
break;
}
if (!isPromotionProfitable(Count, TotalCount)) {
DEBUG(dbgs() << " Not promote: Cold target.\n");
break;
}
Function *TargetFunction = nullptr;
TargetStatus Status = isPromotionLegal(Inst, Target, TargetFunction);
if (Status != OK) {
StringRef TargetFuncName = Symtab->getFuncName(Target);
const char *Reason = StatusToString(Status);
DEBUG(dbgs() << " Not promote: " << Reason << "\n");
emitOptimizationRemarkMissed(
F.getContext(), "pgo-icall-prom", F, Inst->getDebugLoc(),
Twine("Cannot promote indirect call to ") +
(TargetFuncName.empty() ? Twine(Target) : Twine(TargetFuncName)) +
Twine(" with count of ") + Twine(Count) + ": " + Reason);
break;
}
Ret.push_back(PromotionCandidate(TargetFunction, Count));
TotalCount -= Count;
}
return Ret;
}
// Create a diamond structure for If_Then_Else. Also update the profile
// count. Do the fix-up for the invoke instruction.
static void createIfThenElse(Instruction *Inst, Function *DirectCallee,
uint64_t Count, uint64_t TotalCount,
BasicBlock **DirectCallBB,
BasicBlock **IndirectCallBB,
BasicBlock **MergeBB) {
CallSite CS(Inst);
Value *OrigCallee = CS.getCalledValue();
IRBuilder<> BBBuilder(Inst);
LLVMContext &Ctx = Inst->getContext();
Value *BCI1 =
BBBuilder.CreateBitCast(OrigCallee, Type::getInt8PtrTy(Ctx), "");
Value *BCI2 =
BBBuilder.CreateBitCast(DirectCallee, Type::getInt8PtrTy(Ctx), "");
Value *PtrCmp = BBBuilder.CreateICmpEQ(BCI1, BCI2, "");
uint64_t ElseCount = TotalCount - Count;
uint64_t MaxCount = (Count >= ElseCount ? Count : ElseCount);
uint64_t Scale = calculateCountScale(MaxCount);
MDBuilder MDB(Inst->getContext());
MDNode *BranchWeights = MDB.createBranchWeights(
scaleBranchCount(Count, Scale), scaleBranchCount(ElseCount, Scale));
TerminatorInst *ThenTerm, *ElseTerm;
SplitBlockAndInsertIfThenElse(PtrCmp, Inst, &ThenTerm, &ElseTerm,
BranchWeights);
*DirectCallBB = ThenTerm->getParent();
(*DirectCallBB)->setName("if.true.direct_targ");
*IndirectCallBB = ElseTerm->getParent();
(*IndirectCallBB)->setName("if.false.orig_indirect");
*MergeBB = Inst->getParent();
(*MergeBB)->setName("if.end.icp");
// Special handing of Invoke instructions.
InvokeInst *II = dyn_cast<InvokeInst>(Inst);
if (!II)
return;
// We don't need branch instructions for invoke.
ThenTerm->eraseFromParent();
ElseTerm->eraseFromParent();
// Add jump from Merge BB to the NormalDest. This is needed for the newly
// created direct invoke stmt -- as its NormalDst will be fixed up to MergeBB.
BranchInst::Create(II->getNormalDest(), *MergeBB);
}
// Find the PHI in BB that have the CallResult as the operand.
static bool getCallRetPHINode(BasicBlock *BB, Instruction *Inst) {
BasicBlock *From = Inst->getParent();
for (auto &I : *BB) {
PHINode *PHI = dyn_cast<PHINode>(&I);
if (!PHI)
continue;
int IX = PHI->getBasicBlockIndex(From);
if (IX == -1)
continue;
Value *V = PHI->getIncomingValue(IX);
if (dyn_cast<Instruction>(V) == Inst)
return true;
}
return false;
}
// This method fixes up PHI nodes in BB where BB is the UnwindDest of an
// invoke instruction. In BB, there may be PHIs with incoming block being
// OrigBB (the MergeBB after if-then-else splitting). After moving the invoke
// instructions to its own BB, OrigBB is no longer the predecessor block of BB.
// Instead two new predecessors are added: IndirectCallBB and DirectCallBB,
// so the PHI node's incoming BBs need to be fixed up accordingly.
static void fixupPHINodeForUnwind(Instruction *Inst, BasicBlock *BB,
BasicBlock *OrigBB,
BasicBlock *IndirectCallBB,
BasicBlock *DirectCallBB) {
for (auto &I : *BB) {
PHINode *PHI = dyn_cast<PHINode>(&I);
if (!PHI)
continue;
int IX = PHI->getBasicBlockIndex(OrigBB);
if (IX == -1)
continue;
Value *V = PHI->getIncomingValue(IX);
PHI->addIncoming(V, IndirectCallBB);
PHI->setIncomingBlock(IX, DirectCallBB);
}
}
// This method fixes up PHI nodes in BB where BB is the NormalDest of an
// invoke instruction. In BB, there may be PHIs with incoming block being
// OrigBB (the MergeBB after if-then-else splitting). After moving the invoke
// instructions to its own BB, a new incoming edge will be added to the original
// NormalDstBB from the IndirectCallBB.
static void fixupPHINodeForNormalDest(Instruction *Inst, BasicBlock *BB,
BasicBlock *OrigBB,
BasicBlock *IndirectCallBB,
Instruction *NewInst) {
for (auto &I : *BB) {
PHINode *PHI = dyn_cast<PHINode>(&I);
if (!PHI)
continue;
int IX = PHI->getBasicBlockIndex(OrigBB);
if (IX == -1)
continue;
Value *V = PHI->getIncomingValue(IX);
if (dyn_cast<Instruction>(V) == Inst) {
PHI->setIncomingBlock(IX, IndirectCallBB);
PHI->addIncoming(NewInst, OrigBB);
continue;
}
PHI->addIncoming(V, IndirectCallBB);
}
}
// Add a bitcast instruction to the direct-call return value if needed.
static Instruction *insertCallRetCast(const Instruction *Inst,
Instruction *DirectCallInst,
Function *DirectCallee) {
if (Inst->getType()->isVoidTy())
return DirectCallInst;
Type *CallRetType = Inst->getType();
Type *FuncRetType = DirectCallee->getReturnType();
if (FuncRetType == CallRetType)
return DirectCallInst;
BasicBlock *InsertionBB;
if (CallInst *CI = dyn_cast<CallInst>(DirectCallInst))
InsertionBB = CI->getParent();
else
InsertionBB = (dyn_cast<InvokeInst>(DirectCallInst))->getNormalDest();
return (new BitCastInst(DirectCallInst, CallRetType, "",
InsertionBB->getTerminator()));
}
// Create a DirectCall instruction in the DirectCallBB.
// Parameter Inst is the indirect-call (invoke) instruction.
// DirectCallee is the decl of the direct-call (invoke) target.
// DirecallBB is the BB that the direct-call (invoke) instruction is inserted.
// MergeBB is the bottom BB of the if-then-else-diamond after the
// transformation. For invoke instruction, the edges from DirectCallBB and
// IndirectCallBB to MergeBB are removed before this call (during
// createIfThenElse).
static Instruction *createDirectCallInst(const Instruction *Inst,
Function *DirectCallee,
BasicBlock *DirectCallBB,
BasicBlock *MergeBB) {
Instruction *NewInst = Inst->clone();
if (CallInst *CI = dyn_cast<CallInst>(NewInst)) {
CI->setCalledFunction(DirectCallee);
CI->mutateFunctionType(DirectCallee->getFunctionType());
} else {
// Must be an invoke instruction. Direct invoke's normal destination is
// fixed up to MergeBB. MergeBB is the place where return cast is inserted.
// Also since IndirectCallBB does not have an edge to MergeBB, there is no
// need to insert new PHIs into MergeBB.
InvokeInst *II = dyn_cast<InvokeInst>(NewInst);
assert(II);
II->setCalledFunction(DirectCallee);
II->mutateFunctionType(DirectCallee->getFunctionType());
II->setNormalDest(MergeBB);
}
DirectCallBB->getInstList().insert(DirectCallBB->getFirstInsertionPt(),
NewInst);
// Clear the value profile data.
NewInst->setMetadata(LLVMContext::MD_prof, 0);
CallSite NewCS(NewInst);
FunctionType *DirectCalleeType = DirectCallee->getFunctionType();
unsigned ParamNum = DirectCalleeType->getFunctionNumParams();
for (unsigned I = 0; I < ParamNum; ++I) {
Type *ATy = NewCS.getArgument(I)->getType();
Type *PTy = DirectCalleeType->getParamType(I);
if (ATy != PTy) {
BitCastInst *BI = new BitCastInst(NewCS.getArgument(I), PTy, "", NewInst);
NewCS.setArgument(I, BI);
}
}
return insertCallRetCast(Inst, NewInst, DirectCallee);
}
// Create a PHI to unify the return values of calls.
static void insertCallRetPHI(Instruction *Inst, Instruction *CallResult,
Function *DirectCallee) {
if (Inst->getType()->isVoidTy())
return;
BasicBlock *RetValBB = CallResult->getParent();
BasicBlock *PHIBB;
if (InvokeInst *II = dyn_cast<InvokeInst>(CallResult))
RetValBB = II->getNormalDest();
PHIBB = RetValBB->getSingleSuccessor();
if (getCallRetPHINode(PHIBB, Inst))
return;
PHINode *CallRetPHI = PHINode::Create(Inst->getType(), 0);
PHIBB->getInstList().push_front(CallRetPHI);
Inst->replaceAllUsesWith(CallRetPHI);
CallRetPHI->addIncoming(Inst, Inst->getParent());
CallRetPHI->addIncoming(CallResult, RetValBB);
}
// This function does the actual indirect-call promotion transformation:
// For an indirect-call like:
// Ret = (*Foo)(Args);
// It transforms to:
// if (Foo == DirectCallee)
// Ret1 = DirectCallee(Args);
// else
// Ret2 = (*Foo)(Args);
// Ret = phi(Ret1, Ret2);
// It adds type casts for the args do not match the parameters and the return
// value. Branch weights metadata also updated.
void ICallPromotionFunc::promote(Instruction *Inst, Function *DirectCallee,
uint64_t Count, uint64_t TotalCount) {
assert(DirectCallee != nullptr);
BasicBlock *BB = Inst->getParent();
// Just to suppress the non-debug build warning.
(void)BB;
DEBUG(dbgs() << "\n\n== Basic Block Before ==\n");
DEBUG(dbgs() << *BB << "\n");
BasicBlock *DirectCallBB, *IndirectCallBB, *MergeBB;
createIfThenElse(Inst, DirectCallee, Count, TotalCount, &DirectCallBB,
&IndirectCallBB, &MergeBB);
Instruction *NewInst =
createDirectCallInst(Inst, DirectCallee, DirectCallBB, MergeBB);
// Move Inst from MergeBB to IndirectCallBB.
Inst->removeFromParent();
IndirectCallBB->getInstList().insert(IndirectCallBB->getFirstInsertionPt(),
Inst);
if (InvokeInst *II = dyn_cast<InvokeInst>(Inst)) {
// At this point, the original indirect invoke instruction has the original
// UnwindDest and NormalDest. For the direct invoke instruction, the
// NormalDest points to MergeBB, and MergeBB jumps to the original
// NormalDest. MergeBB might have a new bitcast instruction for the return
// value. The PHIs are with the original NormalDest. Since we now have two
// incoming edges to NormalDest and UnwindDest, we have to do some fixups.
//
// UnwindDest will not use the return value. So pass nullptr here.
fixupPHINodeForUnwind(Inst, II->getUnwindDest(), MergeBB, IndirectCallBB,
DirectCallBB);
// We don't need to update the operand from NormalDest for DirectCallBB.
// Pass nullptr here.
fixupPHINodeForNormalDest(Inst, II->getNormalDest(), MergeBB,
IndirectCallBB, NewInst);
}
insertCallRetPHI(Inst, NewInst, DirectCallee);
DEBUG(dbgs() << "\n== Basic Blocks After ==\n");
DEBUG(dbgs() << *BB << *DirectCallBB << *IndirectCallBB << *MergeBB << "\n");
emitOptimizationRemark(
F.getContext(), "pgo-icall-prom", F, Inst->getDebugLoc(),
Twine("Promote indirect call to ") + DirectCallee->getName() +
" with count " + Twine(Count) + " out of " + Twine(TotalCount));
}
// Promote indirect-call to conditional direct-call for one callsite.
uint32_t ICallPromotionFunc::tryToPromote(
Instruction *Inst, const std::vector<PromotionCandidate> &Candidates,
uint64_t &TotalCount) {
uint32_t NumPromoted = 0;
for (auto &C : Candidates) {
uint64_t Count = C.Count;
promote(Inst, C.TargetFunction, Count, TotalCount);
assert(TotalCount >= Count);
TotalCount -= Count;
NumOfPGOICallPromotion++;
NumPromoted++;
}
return NumPromoted;
}
// Traverse all the indirect-call callsite and get the value profile
// annotation to perform indirect-call promotion.
bool ICallPromotionFunc::processFunction() {
bool Changed = false;
for (auto &I : findIndirectCallSites(F)) {
uint32_t NumVals;
uint64_t TotalCount;
bool Res =
getValueProfDataFromInst(*I, IPVK_IndirectCallTarget, MaxNumPromotions,
ValueDataArray.get(), NumVals, TotalCount);
if (!Res)
continue;
ArrayRef<InstrProfValueData> ValueDataArrayRef(ValueDataArray.get(),
NumVals);
auto PromotionCandidates =
getPromotionCandidatesForCallSite(I, ValueDataArrayRef, TotalCount);
uint32_t NumPromoted = tryToPromote(I, PromotionCandidates, TotalCount);
if (NumPromoted == 0)
continue;
Changed = true;
// Adjust the MD.prof metadata. First delete the old one.
I->setMetadata(LLVMContext::MD_prof, 0);
// If all promoted, we don't need the MD.prof metadata.
if (TotalCount == 0 || NumPromoted == NumVals)
continue;
// Otherwise we need update with the un-promoted records back.
annotateValueSite(*M, *I, ValueDataArrayRef.slice(NumPromoted), TotalCount,
IPVK_IndirectCallTarget, MaxNumPromotions);
}
return Changed;
}
// A wrapper function that does the actual work.
static bool promoteIndirectCalls(Module &M, bool InLTO) {
if (DisableICP)
return false;
InstrProfSymtab Symtab;
Symtab.create(M, InLTO);
bool Changed = false;
for (auto &F : M) {
if (F.isDeclaration())
continue;
if (F.hasFnAttribute(Attribute::OptimizeNone))
continue;
ICallPromotionFunc ICallPromotion(F, &M, &Symtab);
bool FuncChanged = ICallPromotion.processFunction();
if (ICPDUMPAFTER && FuncChanged) {
DEBUG(dbgs() << "\n== IR Dump After =="; F.print(dbgs()));
DEBUG(dbgs() << "\n");
}
Changed |= FuncChanged;
if (ICPCutOff != 0 && NumOfPGOICallPromotion >= ICPCutOff) {
DEBUG(dbgs() << " Stop: Cutoff reached.\n");
break;
}
}
return Changed;
}
bool PGOIndirectCallPromotionLegacyPass::runOnModule(Module &M) {
// Command-line option has the priority for InLTO.
return promoteIndirectCalls(M, InLTO | ICPLTOMode);
}
PreservedAnalyses PGOIndirectCallPromotion::run(Module &M, AnalysisManager<Module> &AM) {
if (!promoteIndirectCalls(M, InLTO | ICPLTOMode))
return PreservedAnalyses::all();
return PreservedAnalyses::none();
}