llvm/lib/VMCore/Value.cpp
2007-12-09 22:46:10 +00:00

553 lines
19 KiB
C++

//===-- Value.cpp - Implement the Value class -----------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the Value and User classes.
//
//===----------------------------------------------------------------------===//
#include "llvm/Constant.h"
#include "llvm/DerivedTypes.h"
#include "llvm/InstrTypes.h"
#include "llvm/Module.h"
#include "llvm/ValueSymbolTable.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/LeakDetector.h"
#include "llvm/Constants.h"
#include "llvm/InlineAsm.h"
#include "llvm/Instructions.h"
#include "llvm/IntrinsicInst.h"
#include "llvm/InstrTypes.h"
#include <algorithm>
using namespace llvm;
//===----------------------------------------------------------------------===//
// Value Class
//===----------------------------------------------------------------------===//
static inline const Type *checkType(const Type *Ty) {
assert(Ty && "Value defined with a null type: Error!");
return Ty;
}
Value::Value(const Type *ty, unsigned scid)
: SubclassID(scid), SubclassData(0), Ty(checkType(ty)),
UseList(0), Name(0) {
if (!isa<Constant>(this) && !isa<BasicBlock>(this))
assert((Ty->isFirstClassType() || Ty == Type::VoidTy ||
isa<OpaqueType>(ty)) &&
"Cannot create non-first-class values except for constants!");
}
Value::~Value()
{
switch(SubclassID)
{
case ArgumentVal:
Argument::destroyThis(cast<Argument>(this));
break;
case BasicBlockVal:
BasicBlock::destroyThis(cast<BasicBlock>(this));
break;
case FunctionVal:
Function::destroyThis(cast<Function>(this));
break;
case GlobalAliasVal:
GlobalAlias::destroyThis(cast<GlobalAlias>(this));
break;
case GlobalVariableVal:
GlobalVariable::destroyThis(cast<GlobalVariable>(this));
break;
case UndefValueVal:
UndefValue::destroyThis(cast<UndefValue>(this));
break;
case ConstantExprVal:
{
ConstantExpr* CE = dyn_cast<ConstantExpr>(this);
if(CE->getOpcode() == Instruction::GetElementPtr)
{
GetElementPtrConstantExpr* GECE =
dyn_cast<GetElementPtrConstantExpr>(CE);
GetElementPtrConstantExpr::destroyThis(GECE);
}
else if(CE->getOpcode() == Instruction::ExtractElement)
{
ExtractElementConstantExpr* EECE =
dyn_cast<ExtractElementConstantExpr>(CE);
ExtractElementConstantExpr::destroyThis(EECE);
}
else if(CE->getOpcode() == Instruction::InsertElement)
{
InsertElementConstantExpr* IECE =
dyn_cast<InsertElementConstantExpr>(CE);
InsertElementConstantExpr::destroyThis(IECE);
}
else if(CE->getOpcode() == Instruction::Select)
{
SelectConstantExpr* SCE = dyn_cast<SelectConstantExpr>(CE);
SelectConstantExpr::destroyThis(SCE);
}
else if(CE->getOpcode() == Instruction::ShuffleVector)
{
ShuffleVectorConstantExpr* SVCE =
dyn_cast<ShuffleVectorConstantExpr>(CE);
ShuffleVectorConstantExpr::destroyThis(SVCE);
}
else if(BinaryConstantExpr* BCE = dyn_cast<BinaryConstantExpr>(this))
BinaryConstantExpr::destroyThis(BCE);
else if(UnaryConstantExpr* UCE = dyn_cast<UnaryConstantExpr>(this))
UnaryConstantExpr::destroyThis(UCE);
else if(CompareConstantExpr* CCE = dyn_cast<CompareConstantExpr>(this))
CompareConstantExpr::destroyThis(CCE);
else
assert(0 && "Unknown ConstantExpr-inherited class in ~Value.");
}
break;
case ConstantAggregateZeroVal:
ConstantAggregateZero::destroyThis(cast<ConstantAggregateZero>(this));
break;
case ConstantIntVal:
ConstantInt::destroyThis(cast<ConstantInt>(this));
break;
case ConstantFPVal:
ConstantFP::destroyThis(cast<ConstantFP>(this));
break;
case ConstantArrayVal:
ConstantArray::destroyThis(cast<ConstantArray>(this));
break;
case ConstantStructVal:
ConstantStruct::destroyThis(cast<ConstantStruct>(this));
break;
case ConstantVectorVal:
ConstantVector::destroyThis(cast<ConstantVector>(this));
break;
case ConstantPointerNullVal:
ConstantPointerNull::destroyThis(cast<ConstantPointerNull>(this));
break;
case InlineAsmVal:
InlineAsm::destroyThis(cast<InlineAsm>(this));
break;
default:
if (BinaryOperator *BO = dyn_cast<BinaryOperator>(this))
BinaryOperator::destroyThis(BO);
else if (CallInst *CI = dyn_cast<CallInst>(this))
{
if(IntrinsicInst* II = dyn_cast<IntrinsicInst>(this))
{
if(DbgInfoIntrinsic* DII = dyn_cast<DbgInfoIntrinsic>(this))
{
if(DbgDeclareInst* DDI = dyn_cast<DbgDeclareInst>(this))
DbgDeclareInst::destroyThis(DDI);
else if(DbgFuncStartInst* DFSI = dyn_cast<DbgFuncStartInst>(this))
DbgFuncStartInst::destroyThis(DFSI);
else if(DbgRegionEndInst* DREI = dyn_cast<DbgRegionEndInst>(this))
DbgRegionEndInst::destroyThis(DREI);
else if(DbgRegionStartInst* DRSI = dyn_cast<DbgRegionStartInst>(this))
DbgRegionStartInst::destroyThis(DRSI);
else if(DbgStopPointInst* DSPI = dyn_cast<DbgStopPointInst>(this))
DbgStopPointInst::destroyThis(DSPI);
else
assert(0 && "Unknown DbgInfo-inherited class in ~Value.");
}
else if(MemIntrinsic* MI = dyn_cast<MemIntrinsic>(this))
{
if(MemCpyInst* MCI = dyn_cast<MemCpyInst>(this))
MemCpyInst::destroyThis(MCI);
else if(MemMoveInst* MMI = dyn_cast<MemMoveInst>(this))
MemMoveInst::destroyThis(MMI);
else if(MemSetInst* MSI = dyn_cast<MemSetInst>(this))
MemSetInst::destroyThis(MSI);
else
assert(0 && "Unknown MemIntrinsic-inherited class in ~Value.");
}
else
assert(0 && "Unknown IntrinsicInst-inherited class in ~Value.");
}
else
assert(0 && "Unknown CallInst-inherited class in ~Value.");
}
else if (CmpInst *CI = dyn_cast<CmpInst>(this))
{
if (FCmpInst *FCI = dyn_cast<FCmpInst>(this))
FCmpInst::destroyThis(FCI);
else if (ICmpInst *ICI = dyn_cast<ICmpInst>(this))
ICmpInst::destroyThis(ICI);
else
assert(0 && "Unknown CmpInst-inherited class in ~Value.");
}
else if (ExtractElementInst *EEI = dyn_cast<ExtractElementInst>(this))
ExtractElementInst::destroyThis(EEI);
else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(this))
GetElementPtrInst::destroyThis(GEP);
else if (InsertElementInst* IE = dyn_cast<InsertElementInst>(this))
InsertElementInst::destroyThis(IE);
else if (PHINode *PN = dyn_cast<PHINode>(this))
PHINode::destroyThis(PN);
else if (SelectInst *SI = dyn_cast<SelectInst>(this))
SelectInst::destroyThis(SI);
else if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(this))
ShuffleVectorInst::destroyThis(SVI);
else if (StoreInst *SI = dyn_cast<StoreInst>(this))
StoreInst::destroyThis(SI);
else if (TerminatorInst *TI = dyn_cast<TerminatorInst>(this))
{
if (BranchInst* BI = dyn_cast<BranchInst>(this))
BranchInst::destroyThis(BI);
else if (InvokeInst* II = dyn_cast<InvokeInst>(this))
InvokeInst::destroyThis(II);
else if (ReturnInst* RI = dyn_cast<ReturnInst>(this))
ReturnInst::destroyThis(RI);
else if (SwitchInst *SI = dyn_cast<SwitchInst>(this))
SwitchInst::destroyThis(SI);
else if (UnreachableInst *UI = dyn_cast<UnreachableInst>(this))
UnreachableInst::destroyThis(UI);
else if (UnwindInst *UI = dyn_cast<UnwindInst>(this))
UnwindInst::destroyThis(UI);
else
assert(0 && "Unknown TerminatorInst-inherited class in ~Value.");
}
else if(UnaryInstruction* UI = dyn_cast<UnaryInstruction>(this))
{
if(AllocationInst* AI = dyn_cast<AllocationInst>(this))
{
if(AllocaInst* AI = dyn_cast<AllocaInst>(this))
AllocaInst::destroyThis(AI);
else if(MallocInst* MI = dyn_cast<MallocInst>(this))
MallocInst::destroyThis(MI);
else
assert(0 && "Unknown AllocationInst-inherited class in ~Value.");
}
else if(CastInst* CI = dyn_cast<CastInst>(this))
{
if(BitCastInst* BCI = dyn_cast<BitCastInst>(this))
BitCastInst::destroyThis(BCI);
else if(FPExtInst* FPEI = dyn_cast<FPExtInst>(this))
FPExtInst::destroyThis(FPEI);
else if(FPToSIInst* FPSII = dyn_cast<FPToSIInst>(this))
FPToSIInst::destroyThis(FPSII);
else if(FPToUIInst* FPUII = dyn_cast<FPToUIInst>(this))
FPToUIInst::destroyThis(FPUII);
else if(FPTruncInst* FPTI = dyn_cast<FPTruncInst>(this))
FPTruncInst::destroyThis(FPTI);
else if(IntToPtrInst* I2PI = dyn_cast<IntToPtrInst>(this))
IntToPtrInst::destroyThis(I2PI);
else if(PtrToIntInst* P2II = dyn_cast<PtrToIntInst>(this))
PtrToIntInst::destroyThis(P2II);
else if(SExtInst* SEI = dyn_cast<SExtInst>(this))
SExtInst::destroyThis(SEI);
else if(SIToFPInst* SIFPI = dyn_cast<SIToFPInst>(this))
SIToFPInst::destroyThis(SIFPI);
else if(TruncInst* TI = dyn_cast<TruncInst>(this))
TruncInst::destroyThis(TI);
else if(UIToFPInst* UIFPI = dyn_cast<UIToFPInst>(this))
UIToFPInst::destroyThis(UIFPI);
else if(ZExtInst* ZEI = dyn_cast<ZExtInst>(this))
ZExtInst::destroyThis(ZEI);
else
assert(0 && "Unknown CastInst-inherited class in ~Value.");
}
else if(FreeInst* FI = dyn_cast<FreeInst>(this))
FreeInst::destroyThis(FI);
else if(LoadInst* LI = dyn_cast<LoadInst>(this))
LoadInst::destroyThis(LI);
else if(VAArgInst* VAI = dyn_cast<VAArgInst>(this))
VAArgInst::destroyThis(VAI);
else
assert(0 && "Unknown UnaryInstruction-inherited class in ~Value.");
}
else if (DummyInst *DI = dyn_cast<DummyInst>(this))
DummyInst::destroyThis(DI);
else
assert(0 && "Unknown Instruction-inherited class in ~Value.");
break;
}
}
void Value::destroyThis(Value*v)
{
#ifndef NDEBUG // Only in -g mode...
// Check to make sure that there are no uses of this value that are still
// around when the value is destroyed. If there are, then we have a dangling
// reference and something is wrong. This code is here to print out what is
// still being referenced. The value in question should be printed as
// a <badref>
//
if (!v->use_empty()) {
DOUT << "While deleting: " << *v->Ty << " %" << v->Name << "\n";
for (use_iterator I = v->use_begin(), E = v->use_end(); I != E; ++I)
DOUT << "Use still stuck around after Def is destroyed:"
<< **I << "\n";
}
#endif
assert(v->use_empty() && "Uses remain when a value is destroyed!");
// If this value is named, destroy the name. This should not be in a symtab
// at this point.
if (v->Name)
v->Name->Destroy();
// There should be no uses of this object anymore, remove it.
LeakDetector::removeGarbageObject(v);
}
/// hasNUses - Return true if this Value has exactly N users.
///
bool Value::hasNUses(unsigned N) const {
use_const_iterator UI = use_begin(), E = use_end();
for (; N; --N, ++UI)
if (UI == E) return false; // Too few.
return UI == E;
}
/// hasNUsesOrMore - Return true if this value has N users or more. This is
/// logically equivalent to getNumUses() >= N.
///
bool Value::hasNUsesOrMore(unsigned N) const {
use_const_iterator UI = use_begin(), E = use_end();
for (; N; --N, ++UI)
if (UI == E) return false; // Too few.
return true;
}
/// getNumUses - This method computes the number of uses of this Value. This
/// is a linear time operation. Use hasOneUse or hasNUses to check for specific
/// values.
unsigned Value::getNumUses() const {
return (unsigned)std::distance(use_begin(), use_end());
}
static bool getSymTab(Value *V, ValueSymbolTable *&ST) {
ST = 0;
if (Instruction *I = dyn_cast<Instruction>(V)) {
if (BasicBlock *P = I->getParent())
if (Function *PP = P->getParent())
ST = &PP->getValueSymbolTable();
} else if (BasicBlock *BB = dyn_cast<BasicBlock>(V)) {
if (Function *P = BB->getParent())
ST = &P->getValueSymbolTable();
} else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
if (Module *P = GV->getParent())
ST = &P->getValueSymbolTable();
} else if (Argument *A = dyn_cast<Argument>(V)) {
if (Function *P = A->getParent())
ST = &P->getValueSymbolTable();
} else {
assert(isa<Constant>(V) && "Unknown value type!");
return true; // no name is setable for this.
}
return false;
}
/// getNameStart - Return a pointer to a null terminated string for this name.
/// Note that names can have null characters within the string as well as at
/// their end. This always returns a non-null pointer.
const char *Value::getNameStart() const {
if (Name == 0) return "";
return Name->getKeyData();
}
/// getNameLen - Return the length of the string, correctly handling nul
/// characters embedded into them.
unsigned Value::getNameLen() const {
return Name ? Name->getKeyLength() : 0;
}
std::string Value::getNameStr() const {
if (Name == 0) return "";
return std::string(Name->getKeyData(),
Name->getKeyData()+Name->getKeyLength());
}
void Value::setName(const std::string &name) {
setName(&name[0], name.size());
}
void Value::setName(const char *Name) {
setName(Name, Name ? strlen(Name) : 0);
}
void Value::setName(const char *NameStr, unsigned NameLen) {
if (NameLen == 0 && !hasName()) return;
assert(getType() != Type::VoidTy && "Cannot assign a name to void values!");
// Get the symbol table to update for this object.
ValueSymbolTable *ST;
if (getSymTab(this, ST))
return; // Cannot set a name on this value (e.g. constant).
if (!ST) { // No symbol table to update? Just do the change.
if (NameLen == 0) {
// Free the name for this value.
Name->Destroy();
Name = 0;
return;
}
if (Name) {
// Name isn't changing?
if (NameLen == Name->getKeyLength() &&
!memcmp(Name->getKeyData(), NameStr, NameLen))
return;
Name->Destroy();
}
// NOTE: Could optimize for the case the name is shrinking to not deallocate
// then reallocated.
// Create the new name.
Name = ValueName::Create(NameStr, NameStr+NameLen);
Name->setValue(this);
return;
}
// NOTE: Could optimize for the case the name is shrinking to not deallocate
// then reallocated.
if (hasName()) {
// Name isn't changing?
if (NameLen == Name->getKeyLength() &&
!memcmp(Name->getKeyData(), NameStr, NameLen))
return;
// Remove old name.
ST->removeValueName(Name);
Name->Destroy();
Name = 0;
if (NameLen == 0)
return;
}
// Name is changing to something new.
Name = ST->createValueName(NameStr, NameLen, this);
}
/// takeName - transfer the name from V to this value, setting V's name to
/// empty. It is an error to call V->takeName(V).
void Value::takeName(Value *V) {
ValueSymbolTable *ST = 0;
// If this value has a name, drop it.
if (hasName()) {
// Get the symtab this is in.
if (getSymTab(this, ST)) {
// We can't set a name on this value, but we need to clear V's name if
// it has one.
if (V->hasName()) V->setName(0, 0);
return; // Cannot set a name on this value (e.g. constant).
}
// Remove old name.
if (ST)
ST->removeValueName(Name);
Name->Destroy();
Name = 0;
}
// Now we know that this has no name.
// If V has no name either, we're done.
if (!V->hasName()) return;
// Get this's symtab if we didn't before.
if (!ST) {
if (getSymTab(this, ST)) {
// Clear V's name.
V->setName(0, 0);
return; // Cannot set a name on this value (e.g. constant).
}
}
// Get V's ST, this should always succed, because V has a name.
ValueSymbolTable *VST;
bool Failure = getSymTab(V, VST);
assert(!Failure && "V has a name, so it should have a ST!");
// If these values are both in the same symtab, we can do this very fast.
// This works even if both values have no symtab yet.
if (ST == VST) {
// Take the name!
Name = V->Name;
V->Name = 0;
Name->setValue(this);
return;
}
// Otherwise, things are slightly more complex. Remove V's name from VST and
// then reinsert it into ST.
if (VST)
VST->removeValueName(V->Name);
Name = V->Name;
V->Name = 0;
Name->setValue(this);
if (ST)
ST->reinsertValue(this);
}
// uncheckedReplaceAllUsesWith - This is exactly the same as replaceAllUsesWith,
// except that it doesn't have all of the asserts. The asserts fail because we
// are half-way done resolving types, which causes some types to exist as two
// different Type*'s at the same time. This is a sledgehammer to work around
// this problem.
//
void Value::uncheckedReplaceAllUsesWith(Value *New) {
while (!use_empty()) {
Use &U = *UseList;
// Must handle Constants specially, we cannot call replaceUsesOfWith on a
// constant because they are uniqued.
if (Constant *C = dyn_cast<Constant>(U.getUser())) {
if (!isa<GlobalValue>(C)) {
C->replaceUsesOfWithOnConstant(this, New, &U);
continue;
}
}
U.set(New);
}
}
void Value::replaceAllUsesWith(Value *New) {
assert(New && "Value::replaceAllUsesWith(<null>) is invalid!");
assert(New != this && "this->replaceAllUsesWith(this) is NOT valid!");
assert(New->getType() == getType() &&
"replaceAllUses of value with new value of different type!");
uncheckedReplaceAllUsesWith(New);
}
//===----------------------------------------------------------------------===//
// User Class
//===----------------------------------------------------------------------===//
// replaceUsesOfWith - Replaces all references to the "From" definition with
// references to the "To" definition.
//
void User::replaceUsesOfWith(Value *From, Value *To) {
if (From == To) return; // Duh what?
assert(!isa<Constant>(this) || isa<GlobalValue>(this) &&
"Cannot call User::replaceUsesofWith on a constant!");
for (unsigned i = 0, E = getNumOperands(); i != E; ++i)
if (getOperand(i) == From) { // Is This operand is pointing to oldval?
// The side effects of this setOperand call include linking to
// "To", adding "this" to the uses list of To, and
// most importantly, removing "this" from the use list of "From".
setOperand(i, To); // Fix it now...
}
}