mirror of
https://github.com/RPCSX/llvm.git
synced 2025-04-14 22:20:52 +00:00

And implement it for AArch64, supporting x/w ADD/OR. Differential Revision: https://reviews.llvm.org/D22373 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@276875 91177308-0d34-0410-b5e6-96231b3b80d8
661 lines
24 KiB
C++
661 lines
24 KiB
C++
//===- llvm/CodeGen/GlobalISel/RegisterBankInfo.cpp --------------*- C++ -*-==//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
/// \file
|
|
/// This file implements the RegisterBankInfo class.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/CodeGen/GlobalISel/RegisterBankInfo.h"
|
|
#include "llvm/ADT/SmallString.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/iterator_range.h"
|
|
#include "llvm/CodeGen/GlobalISel/RegisterBank.h"
|
|
#include "llvm/CodeGen/MachineBasicBlock.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Target/TargetInstrInfo.h"
|
|
#include "llvm/Target/TargetOpcodes.h"
|
|
#include "llvm/Target/TargetRegisterInfo.h"
|
|
#include "llvm/Target/TargetSubtargetInfo.h"
|
|
|
|
#include <algorithm> // For std::max.
|
|
|
|
#define DEBUG_TYPE "registerbankinfo"
|
|
|
|
using namespace llvm;
|
|
|
|
const unsigned RegisterBankInfo::DefaultMappingID = UINT_MAX;
|
|
const unsigned RegisterBankInfo::InvalidMappingID = UINT_MAX - 1;
|
|
|
|
//------------------------------------------------------------------------------
|
|
// RegisterBankInfo implementation.
|
|
//------------------------------------------------------------------------------
|
|
RegisterBankInfo::RegisterBankInfo(unsigned NumRegBanks)
|
|
: NumRegBanks(NumRegBanks) {
|
|
RegBanks.reset(new RegisterBank[NumRegBanks]);
|
|
}
|
|
|
|
bool RegisterBankInfo::verify(const TargetRegisterInfo &TRI) const {
|
|
DEBUG(for (unsigned Idx = 0, End = getNumRegBanks(); Idx != End; ++Idx) {
|
|
const RegisterBank &RegBank = getRegBank(Idx);
|
|
assert(Idx == RegBank.getID() &&
|
|
"ID does not match the index in the array");
|
|
dbgs() << "Verify " << RegBank << '\n';
|
|
assert(RegBank.verify(TRI) && "RegBank is invalid");
|
|
});
|
|
return true;
|
|
}
|
|
|
|
void RegisterBankInfo::createRegisterBank(unsigned ID, const char *Name) {
|
|
DEBUG(dbgs() << "Create register bank: " << ID << " with name \"" << Name
|
|
<< "\"\n");
|
|
RegisterBank &RegBank = getRegBank(ID);
|
|
assert(RegBank.getID() == RegisterBank::InvalidID &&
|
|
"A register bank should be created only once");
|
|
RegBank.ID = ID;
|
|
RegBank.Name = Name;
|
|
}
|
|
|
|
void RegisterBankInfo::addRegBankCoverage(unsigned ID, unsigned RCId,
|
|
const TargetRegisterInfo &TRI) {
|
|
RegisterBank &RB = getRegBank(ID);
|
|
unsigned NbOfRegClasses = TRI.getNumRegClasses();
|
|
|
|
DEBUG(dbgs() << "Add coverage for: " << RB << '\n');
|
|
|
|
// Check if RB is underconstruction.
|
|
if (!RB.isValid())
|
|
RB.ContainedRegClasses.resize(NbOfRegClasses);
|
|
else if (RB.covers(*TRI.getRegClass(RCId)))
|
|
// If RB already covers this register class, there is nothing
|
|
// to do.
|
|
return;
|
|
|
|
BitVector &Covered = RB.ContainedRegClasses;
|
|
SmallVector<unsigned, 8> WorkList;
|
|
|
|
WorkList.push_back(RCId);
|
|
Covered.set(RCId);
|
|
|
|
unsigned &MaxSize = RB.Size;
|
|
do {
|
|
unsigned RCId = WorkList.pop_back_val();
|
|
|
|
const TargetRegisterClass &CurRC = *TRI.getRegClass(RCId);
|
|
|
|
DEBUG(dbgs() << "Examine: " << TRI.getRegClassName(&CurRC)
|
|
<< "(Size*8: " << (CurRC.getSize() * 8) << ")\n");
|
|
|
|
// Remember the biggest size in bits.
|
|
MaxSize = std::max(MaxSize, CurRC.getSize() * 8);
|
|
|
|
// Walk through all sub register classes and push them into the worklist.
|
|
bool First = true;
|
|
for (BitMaskClassIterator It(CurRC.getSubClassMask(), TRI); It.isValid();
|
|
++It) {
|
|
unsigned SubRCId = It.getID();
|
|
if (!Covered.test(SubRCId)) {
|
|
if (First)
|
|
DEBUG(dbgs() << " Enqueue sub-class: ");
|
|
DEBUG(dbgs() << TRI.getRegClassName(TRI.getRegClass(SubRCId)) << ", ");
|
|
WorkList.push_back(SubRCId);
|
|
// Remember that we saw the sub class.
|
|
Covered.set(SubRCId);
|
|
First = false;
|
|
}
|
|
}
|
|
if (!First)
|
|
DEBUG(dbgs() << '\n');
|
|
|
|
// Push also all the register classes that can be accessed via a
|
|
// subreg index, i.e., its subreg-class (which is different than
|
|
// its subclass).
|
|
//
|
|
// Note: It would probably be faster to go the other way around
|
|
// and have this method add only super classes, since this
|
|
// information is available in a more efficient way. However, it
|
|
// feels less natural for the client of this APIs plus we will
|
|
// TableGen the whole bitset at some point, so compile time for
|
|
// the initialization is not very important.
|
|
First = true;
|
|
for (unsigned SubRCId = 0; SubRCId < NbOfRegClasses; ++SubRCId) {
|
|
if (Covered.test(SubRCId))
|
|
continue;
|
|
bool Pushed = false;
|
|
const TargetRegisterClass *SubRC = TRI.getRegClass(SubRCId);
|
|
for (SuperRegClassIterator SuperRCIt(SubRC, &TRI); SuperRCIt.isValid();
|
|
++SuperRCIt) {
|
|
if (Pushed)
|
|
break;
|
|
for (BitMaskClassIterator It(SuperRCIt.getMask(), TRI); It.isValid();
|
|
++It) {
|
|
unsigned SuperRCId = It.getID();
|
|
if (SuperRCId == RCId) {
|
|
if (First)
|
|
DEBUG(dbgs() << " Enqueue subreg-class: ");
|
|
DEBUG(dbgs() << TRI.getRegClassName(SubRC) << ", ");
|
|
WorkList.push_back(SubRCId);
|
|
// Remember that we saw the sub class.
|
|
Covered.set(SubRCId);
|
|
Pushed = true;
|
|
First = false;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (!First)
|
|
DEBUG(dbgs() << '\n');
|
|
} while (!WorkList.empty());
|
|
}
|
|
|
|
const RegisterBank *
|
|
RegisterBankInfo::getRegBank(unsigned Reg, const MachineRegisterInfo &MRI,
|
|
const TargetRegisterInfo &TRI) const {
|
|
if (TargetRegisterInfo::isPhysicalRegister(Reg))
|
|
return &getRegBankFromRegClass(*TRI.getMinimalPhysRegClass(Reg));
|
|
|
|
assert(Reg && "NoRegister does not have a register bank");
|
|
const RegClassOrRegBank &RegClassOrBank = MRI.getRegClassOrRegBank(Reg);
|
|
if (auto *RB = RegClassOrBank.dyn_cast<const RegisterBank *>())
|
|
return RB;
|
|
if (auto *RC = RegClassOrBank.dyn_cast<const TargetRegisterClass *>())
|
|
return &getRegBankFromRegClass(*RC);
|
|
return nullptr;
|
|
}
|
|
|
|
const RegisterBank *RegisterBankInfo::getRegBankFromConstraints(
|
|
const MachineInstr &MI, unsigned OpIdx, const TargetInstrInfo &TII,
|
|
const TargetRegisterInfo &TRI) const {
|
|
// The mapping of the registers may be available via the
|
|
// register class constraints.
|
|
const TargetRegisterClass *RC = MI.getRegClassConstraint(OpIdx, &TII, &TRI);
|
|
|
|
if (!RC)
|
|
return nullptr;
|
|
|
|
const RegisterBank &RegBank = getRegBankFromRegClass(*RC);
|
|
// Sanity check that the target properly implemented getRegBankFromRegClass.
|
|
assert(RegBank.covers(*RC) &&
|
|
"The mapping of the register bank does not make sense");
|
|
return &RegBank;
|
|
}
|
|
|
|
const TargetRegisterClass *RegisterBankInfo::constrainGenericRegister(
|
|
unsigned Reg, const TargetRegisterClass &RC, MachineRegisterInfo &MRI) {
|
|
|
|
// If the register already has a class, fallback to MRI::constrainRegClass.
|
|
auto &RegClassOrBank = MRI.getRegClassOrRegBank(Reg);
|
|
if (RegClassOrBank.is<const TargetRegisterClass *>())
|
|
return MRI.constrainRegClass(Reg, &RC);
|
|
|
|
const RegisterBank *RB = RegClassOrBank.get<const RegisterBank *>();
|
|
assert(RB && "Generic register does not have a register bank");
|
|
|
|
// Otherwise, all we can do is ensure the bank covers the class, and set it.
|
|
if (!RB->covers(RC))
|
|
return nullptr;
|
|
|
|
MRI.setRegClass(Reg, &RC);
|
|
return &RC;
|
|
}
|
|
|
|
RegisterBankInfo::InstructionMapping
|
|
RegisterBankInfo::getInstrMappingImpl(const MachineInstr &MI) const {
|
|
RegisterBankInfo::InstructionMapping Mapping(DefaultMappingID, /*Cost*/ 1,
|
|
MI.getNumOperands());
|
|
const MachineFunction &MF = *MI.getParent()->getParent();
|
|
const TargetSubtargetInfo &STI = MF.getSubtarget();
|
|
const TargetRegisterInfo &TRI = *STI.getRegisterInfo();
|
|
const MachineRegisterInfo &MRI = MF.getRegInfo();
|
|
// We may need to query the instruction encoding to guess the mapping.
|
|
const TargetInstrInfo &TII = *STI.getInstrInfo();
|
|
|
|
// Before doing anything complicated check if the mapping is not
|
|
// directly available.
|
|
bool CompleteMapping = true;
|
|
// For copies we want to walk over the operands and try to find one
|
|
// that has a register bank.
|
|
bool isCopyLike = MI.isCopy() || MI.isPHI();
|
|
// Remember the register bank for reuse for copy-like instructions.
|
|
const RegisterBank *RegBank = nullptr;
|
|
// Remember the size of the register for reuse for copy-like instructions.
|
|
unsigned RegSize = 0;
|
|
for (unsigned OpIdx = 0, End = MI.getNumOperands(); OpIdx != End; ++OpIdx) {
|
|
const MachineOperand &MO = MI.getOperand(OpIdx);
|
|
if (!MO.isReg())
|
|
continue;
|
|
unsigned Reg = MO.getReg();
|
|
if (!Reg)
|
|
continue;
|
|
// The register bank of Reg is just a side effect of the current
|
|
// excution and in particular, there is no reason to believe this
|
|
// is the best default mapping for the current instruction. Keep
|
|
// it as an alternative register bank if we cannot figure out
|
|
// something.
|
|
const RegisterBank *AltRegBank = getRegBank(Reg, MRI, TRI);
|
|
// For copy-like instruction, we want to reuse the register bank
|
|
// that is already set on Reg, if any, since those instructions do
|
|
// not have any constraints.
|
|
const RegisterBank *CurRegBank = isCopyLike ? AltRegBank : nullptr;
|
|
if (!CurRegBank) {
|
|
// If this is a target specific instruction, we can deduce
|
|
// the register bank from the encoding constraints.
|
|
CurRegBank = getRegBankFromConstraints(MI, OpIdx, TII, TRI);
|
|
if (!CurRegBank) {
|
|
// All our attempts failed, give up.
|
|
CompleteMapping = false;
|
|
|
|
if (!isCopyLike)
|
|
// MI does not carry enough information to guess the mapping.
|
|
return InstructionMapping();
|
|
|
|
// For copies, we want to keep interating to find a register
|
|
// bank for the other operands if we did not find one yet.
|
|
if (RegBank)
|
|
break;
|
|
continue;
|
|
}
|
|
}
|
|
RegBank = CurRegBank;
|
|
RegSize = getSizeInBits(Reg, MRI, TRI);
|
|
Mapping.setOperandMapping(OpIdx, RegSize, *CurRegBank);
|
|
}
|
|
|
|
if (CompleteMapping)
|
|
return Mapping;
|
|
|
|
assert(isCopyLike && "We should have bailed on non-copies at this point");
|
|
// For copy like instruction, if none of the operand has a register
|
|
// bank avialable, there is nothing we can propagate.
|
|
if (!RegBank)
|
|
return InstructionMapping();
|
|
|
|
// This is a copy-like instruction.
|
|
// Propagate RegBank to all operands that do not have a
|
|
// mapping yet.
|
|
for (unsigned OpIdx = 0, End = MI.getNumOperands(); OpIdx != End; ++OpIdx) {
|
|
const MachineOperand &MO = MI.getOperand(OpIdx);
|
|
// Don't assign a mapping for non-reg operands.
|
|
if (!MO.isReg())
|
|
continue;
|
|
|
|
// If a mapping already exists, do not touch it.
|
|
if (!static_cast<const InstructionMapping *>(&Mapping)
|
|
->getOperandMapping(OpIdx)
|
|
.BreakDown.empty())
|
|
continue;
|
|
|
|
Mapping.setOperandMapping(OpIdx, RegSize, *RegBank);
|
|
}
|
|
return Mapping;
|
|
}
|
|
|
|
RegisterBankInfo::InstructionMapping
|
|
RegisterBankInfo::getInstrMapping(const MachineInstr &MI) const {
|
|
RegisterBankInfo::InstructionMapping Mapping = getInstrMappingImpl(MI);
|
|
if (Mapping.isValid())
|
|
return Mapping;
|
|
llvm_unreachable("The target must implement this");
|
|
}
|
|
|
|
RegisterBankInfo::InstructionMappings
|
|
RegisterBankInfo::getInstrPossibleMappings(const MachineInstr &MI) const {
|
|
InstructionMappings PossibleMappings;
|
|
// Put the default mapping first.
|
|
PossibleMappings.push_back(getInstrMapping(MI));
|
|
// Then the alternative mapping, if any.
|
|
InstructionMappings AltMappings = getInstrAlternativeMappings(MI);
|
|
for (InstructionMapping &AltMapping : AltMappings)
|
|
PossibleMappings.emplace_back(std::move(AltMapping));
|
|
#ifndef NDEBUG
|
|
for (const InstructionMapping &Mapping : PossibleMappings)
|
|
assert(Mapping.verify(MI) && "Mapping is invalid");
|
|
#endif
|
|
return PossibleMappings;
|
|
}
|
|
|
|
RegisterBankInfo::InstructionMappings
|
|
RegisterBankInfo::getInstrAlternativeMappings(const MachineInstr &MI) const {
|
|
// No alternative for MI.
|
|
return InstructionMappings();
|
|
}
|
|
|
|
void RegisterBankInfo::applyDefaultMapping(const OperandsMapper &OpdMapper) {
|
|
MachineInstr &MI = OpdMapper.getMI();
|
|
DEBUG(dbgs() << "Applying default-like mapping\n");
|
|
for (unsigned OpIdx = 0, EndIdx = MI.getNumOperands(); OpIdx != EndIdx;
|
|
++OpIdx) {
|
|
DEBUG(dbgs() << "OpIdx " << OpIdx);
|
|
MachineOperand &MO = MI.getOperand(OpIdx);
|
|
if (!MO.isReg()) {
|
|
DEBUG(dbgs() << " is not a register, nothing to be done\n");
|
|
continue;
|
|
}
|
|
assert(
|
|
OpdMapper.getInstrMapping().getOperandMapping(OpIdx).BreakDown.size() ==
|
|
1 &&
|
|
"This mapping is too complex for this function");
|
|
iterator_range<SmallVectorImpl<unsigned>::const_iterator> NewRegs =
|
|
OpdMapper.getVRegs(OpIdx);
|
|
if (NewRegs.begin() == NewRegs.end()) {
|
|
DEBUG(dbgs() << " has not been repaired, nothing to be done\n");
|
|
continue;
|
|
}
|
|
DEBUG(dbgs() << " changed, replace " << MO.getReg());
|
|
MO.setReg(*NewRegs.begin());
|
|
DEBUG(dbgs() << " with " << MO.getReg());
|
|
}
|
|
}
|
|
|
|
unsigned RegisterBankInfo::getSizeInBits(unsigned Reg,
|
|
const MachineRegisterInfo &MRI,
|
|
const TargetRegisterInfo &TRI) {
|
|
const TargetRegisterClass *RC = nullptr;
|
|
if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
|
|
// The size is not directly available for physical registers.
|
|
// Instead, we need to access a register class that contains Reg and
|
|
// get the size of that register class.
|
|
RC = TRI.getMinimalPhysRegClass(Reg);
|
|
} else {
|
|
unsigned RegSize = MRI.getSize(Reg);
|
|
// If Reg is not a generic register, query the register class to
|
|
// get its size.
|
|
if (RegSize)
|
|
return RegSize;
|
|
// Since Reg is not a generic register, it must have a register class.
|
|
RC = MRI.getRegClass(Reg);
|
|
}
|
|
assert(RC && "Unable to deduce the register class");
|
|
return RC->getSize() * 8;
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
// Helper classes implementation.
|
|
//------------------------------------------------------------------------------
|
|
void RegisterBankInfo::PartialMapping::dump() const {
|
|
print(dbgs());
|
|
dbgs() << '\n';
|
|
}
|
|
|
|
bool RegisterBankInfo::PartialMapping::verify() const {
|
|
assert(RegBank && "Register bank not set");
|
|
assert(Length && "Empty mapping");
|
|
assert((StartIdx < getHighBitIdx()) && "Overflow, switch to APInt?");
|
|
// Check if the minimum width fits into RegBank.
|
|
assert(RegBank->getSize() >= Length && "Register bank too small for Mask");
|
|
return true;
|
|
}
|
|
|
|
void RegisterBankInfo::PartialMapping::print(raw_ostream &OS) const {
|
|
OS << "[" << StartIdx << ", " << getHighBitIdx() << "], RegBank = ";
|
|
if (RegBank)
|
|
OS << *RegBank;
|
|
else
|
|
OS << "nullptr";
|
|
}
|
|
|
|
bool RegisterBankInfo::ValueMapping::verify(unsigned ExpectedBitWidth) const {
|
|
assert(!BreakDown.empty() && "Value mapped nowhere?!");
|
|
unsigned OrigValueBitWidth = 0;
|
|
for (const RegisterBankInfo::PartialMapping &PartMap : BreakDown) {
|
|
// Check that each register bank is big enough to hold the partial value:
|
|
// this check is done by PartialMapping::verify
|
|
assert(PartMap.verify() && "Partial mapping is invalid");
|
|
// The original value should completely be mapped.
|
|
// Thus the maximum accessed index + 1 is the size of the original value.
|
|
OrigValueBitWidth =
|
|
std::max(OrigValueBitWidth, PartMap.getHighBitIdx() + 1);
|
|
}
|
|
assert(OrigValueBitWidth == ExpectedBitWidth && "BitWidth does not match");
|
|
APInt ValueMask(OrigValueBitWidth, 0);
|
|
for (const RegisterBankInfo::PartialMapping &PartMap : BreakDown) {
|
|
// Check that the union of the partial mappings covers the whole value,
|
|
// without overlaps.
|
|
// The high bit is exclusive in the APInt API, thus getHighBitIdx + 1.
|
|
APInt PartMapMask = APInt::getBitsSet(OrigValueBitWidth, PartMap.StartIdx,
|
|
PartMap.getHighBitIdx() + 1);
|
|
ValueMask ^= PartMapMask;
|
|
assert((ValueMask & PartMapMask) == PartMapMask &&
|
|
"Some partial mappings overlap");
|
|
}
|
|
assert(ValueMask.isAllOnesValue() && "Value is not fully mapped");
|
|
return true;
|
|
}
|
|
|
|
void RegisterBankInfo::ValueMapping::dump() const {
|
|
print(dbgs());
|
|
dbgs() << '\n';
|
|
}
|
|
|
|
void RegisterBankInfo::ValueMapping::print(raw_ostream &OS) const {
|
|
OS << "#BreakDown: " << BreakDown.size() << " ";
|
|
bool IsFirst = true;
|
|
for (const PartialMapping &PartMap : BreakDown) {
|
|
if (!IsFirst)
|
|
OS << ", ";
|
|
OS << '[' << PartMap << ']';
|
|
IsFirst = false;
|
|
}
|
|
}
|
|
|
|
void RegisterBankInfo::InstructionMapping::setOperandMapping(
|
|
unsigned OpIdx, unsigned MaskSize, const RegisterBank &RegBank) {
|
|
// Build the value mapping.
|
|
assert(MaskSize <= RegBank.getSize() && "Register bank is too small");
|
|
|
|
// Create the mapping object.
|
|
getOperandMapping(OpIdx).BreakDown.push_back(
|
|
PartialMapping(0, MaskSize, RegBank));
|
|
}
|
|
|
|
bool RegisterBankInfo::InstructionMapping::verify(
|
|
const MachineInstr &MI) const {
|
|
// Check that all the register operands are properly mapped.
|
|
// Check the constructor invariant.
|
|
assert(NumOperands == MI.getNumOperands() &&
|
|
"NumOperands must match, see constructor");
|
|
assert(MI.getParent() && MI.getParent()->getParent() &&
|
|
"MI must be connected to a MachineFunction");
|
|
const MachineFunction &MF = *MI.getParent()->getParent();
|
|
(void)MF;
|
|
|
|
for (unsigned Idx = 0; Idx < NumOperands; ++Idx) {
|
|
const MachineOperand &MO = MI.getOperand(Idx);
|
|
const RegisterBankInfo::ValueMapping &MOMapping = getOperandMapping(Idx);
|
|
(void)MOMapping;
|
|
if (!MO.isReg()) {
|
|
assert(MOMapping.BreakDown.empty() &&
|
|
"We should not care about non-reg mapping");
|
|
continue;
|
|
}
|
|
unsigned Reg = MO.getReg();
|
|
if (!Reg)
|
|
continue;
|
|
// Register size in bits.
|
|
// This size must match what the mapping expects.
|
|
assert(MOMapping.verify(getSizeInBits(
|
|
Reg, MF.getRegInfo(), *MF.getSubtarget().getRegisterInfo())) &&
|
|
"Value mapping is invalid");
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void RegisterBankInfo::InstructionMapping::dump() const {
|
|
print(dbgs());
|
|
dbgs() << '\n';
|
|
}
|
|
|
|
void RegisterBankInfo::InstructionMapping::print(raw_ostream &OS) const {
|
|
OS << "ID: " << getID() << " Cost: " << getCost() << " Mapping: ";
|
|
|
|
for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
|
|
const ValueMapping &ValMapping = getOperandMapping(OpIdx);
|
|
if (OpIdx)
|
|
OS << ", ";
|
|
OS << "{ Idx: " << OpIdx << " Map: " << ValMapping << '}';
|
|
}
|
|
}
|
|
|
|
const int RegisterBankInfo::OperandsMapper::DontKnowIdx = -1;
|
|
|
|
RegisterBankInfo::OperandsMapper::OperandsMapper(
|
|
MachineInstr &MI, const InstructionMapping &InstrMapping,
|
|
MachineRegisterInfo &MRI)
|
|
: MRI(MRI), MI(MI), InstrMapping(InstrMapping) {
|
|
unsigned NumOpds = MI.getNumOperands();
|
|
OpToNewVRegIdx.reset(new int[NumOpds]);
|
|
std::fill(&OpToNewVRegIdx[0], &OpToNewVRegIdx[NumOpds],
|
|
OperandsMapper::DontKnowIdx);
|
|
assert(InstrMapping.verify(MI) && "Invalid mapping for MI");
|
|
}
|
|
|
|
iterator_range<SmallVectorImpl<unsigned>::iterator>
|
|
RegisterBankInfo::OperandsMapper::getVRegsMem(unsigned OpIdx) {
|
|
assert(OpIdx < getMI().getNumOperands() && "Out-of-bound access");
|
|
unsigned NumPartialVal =
|
|
getInstrMapping().getOperandMapping(OpIdx).BreakDown.size();
|
|
int StartIdx = OpToNewVRegIdx[OpIdx];
|
|
|
|
if (StartIdx == OperandsMapper::DontKnowIdx) {
|
|
// This is the first time we try to access OpIdx.
|
|
// Create the cells that will hold all the partial values at the
|
|
// end of the list of NewVReg.
|
|
StartIdx = NewVRegs.size();
|
|
OpToNewVRegIdx[OpIdx] = StartIdx;
|
|
for (unsigned i = 0; i < NumPartialVal; ++i)
|
|
NewVRegs.push_back(0);
|
|
}
|
|
SmallVectorImpl<unsigned>::iterator End =
|
|
getNewVRegsEnd(StartIdx, NumPartialVal);
|
|
|
|
return make_range(&NewVRegs[StartIdx], End);
|
|
}
|
|
|
|
SmallVectorImpl<unsigned>::const_iterator
|
|
RegisterBankInfo::OperandsMapper::getNewVRegsEnd(unsigned StartIdx,
|
|
unsigned NumVal) const {
|
|
return const_cast<OperandsMapper *>(this)->getNewVRegsEnd(StartIdx, NumVal);
|
|
}
|
|
SmallVectorImpl<unsigned>::iterator
|
|
RegisterBankInfo::OperandsMapper::getNewVRegsEnd(unsigned StartIdx,
|
|
unsigned NumVal) {
|
|
assert((NewVRegs.size() == StartIdx + NumVal ||
|
|
NewVRegs.size() > StartIdx + NumVal) &&
|
|
"NewVRegs too small to contain all the partial mapping");
|
|
return NewVRegs.size() <= StartIdx + NumVal ? NewVRegs.end()
|
|
: &NewVRegs[StartIdx + NumVal];
|
|
}
|
|
|
|
void RegisterBankInfo::OperandsMapper::createVRegs(unsigned OpIdx) {
|
|
assert(OpIdx < getMI().getNumOperands() && "Out-of-bound access");
|
|
iterator_range<SmallVectorImpl<unsigned>::iterator> NewVRegsForOpIdx =
|
|
getVRegsMem(OpIdx);
|
|
const SmallVectorImpl<PartialMapping> &PartMapList =
|
|
getInstrMapping().getOperandMapping(OpIdx).BreakDown;
|
|
SmallVectorImpl<PartialMapping>::const_iterator PartMap = PartMapList.begin();
|
|
for (unsigned &NewVReg : NewVRegsForOpIdx) {
|
|
assert(PartMap != PartMapList.end() && "Out-of-bound access");
|
|
assert(NewVReg == 0 && "Register has already been created");
|
|
NewVReg = MRI.createGenericVirtualRegister(PartMap->Length);
|
|
MRI.setRegBank(NewVReg, *PartMap->RegBank);
|
|
++PartMap;
|
|
}
|
|
}
|
|
|
|
void RegisterBankInfo::OperandsMapper::setVRegs(unsigned OpIdx,
|
|
unsigned PartialMapIdx,
|
|
unsigned NewVReg) {
|
|
assert(OpIdx < getMI().getNumOperands() && "Out-of-bound access");
|
|
assert(getInstrMapping().getOperandMapping(OpIdx).BreakDown.size() >
|
|
PartialMapIdx &&
|
|
"Out-of-bound access for partial mapping");
|
|
// Make sure the memory is initialized for that operand.
|
|
(void)getVRegsMem(OpIdx);
|
|
assert(NewVRegs[OpToNewVRegIdx[OpIdx] + PartialMapIdx] == 0 &&
|
|
"This value is already set");
|
|
NewVRegs[OpToNewVRegIdx[OpIdx] + PartialMapIdx] = NewVReg;
|
|
}
|
|
|
|
iterator_range<SmallVectorImpl<unsigned>::const_iterator>
|
|
RegisterBankInfo::OperandsMapper::getVRegs(unsigned OpIdx,
|
|
bool ForDebug) const {
|
|
(void)ForDebug;
|
|
assert(OpIdx < getMI().getNumOperands() && "Out-of-bound access");
|
|
int StartIdx = OpToNewVRegIdx[OpIdx];
|
|
|
|
if (StartIdx == OperandsMapper::DontKnowIdx)
|
|
return make_range(NewVRegs.end(), NewVRegs.end());
|
|
|
|
unsigned PartMapSize =
|
|
getInstrMapping().getOperandMapping(OpIdx).BreakDown.size();
|
|
SmallVectorImpl<unsigned>::const_iterator End =
|
|
getNewVRegsEnd(StartIdx, PartMapSize);
|
|
iterator_range<SmallVectorImpl<unsigned>::const_iterator> Res =
|
|
make_range(&NewVRegs[StartIdx], End);
|
|
#ifndef NDEBUG
|
|
for (unsigned VReg : Res)
|
|
assert((VReg || ForDebug) && "Some registers are uninitialized");
|
|
#endif
|
|
return Res;
|
|
}
|
|
|
|
void RegisterBankInfo::OperandsMapper::dump() const {
|
|
print(dbgs(), true);
|
|
dbgs() << '\n';
|
|
}
|
|
|
|
void RegisterBankInfo::OperandsMapper::print(raw_ostream &OS,
|
|
bool ForDebug) const {
|
|
unsigned NumOpds = getMI().getNumOperands();
|
|
if (ForDebug) {
|
|
OS << "Mapping for " << getMI() << "\nwith " << getInstrMapping() << '\n';
|
|
// Print out the internal state of the index table.
|
|
OS << "Populated indices (CellNumber, IndexInNewVRegs): ";
|
|
bool IsFirst = true;
|
|
for (unsigned Idx = 0; Idx != NumOpds; ++Idx) {
|
|
if (OpToNewVRegIdx[Idx] != DontKnowIdx) {
|
|
if (!IsFirst)
|
|
OS << ", ";
|
|
OS << '(' << Idx << ", " << OpToNewVRegIdx[Idx] << ')';
|
|
IsFirst = false;
|
|
}
|
|
}
|
|
OS << '\n';
|
|
} else
|
|
OS << "Mapping ID: " << getInstrMapping().getID() << ' ';
|
|
|
|
OS << "Operand Mapping: ";
|
|
// If we have a function, we can pretty print the name of the registers.
|
|
// Otherwise we will print the raw numbers.
|
|
const TargetRegisterInfo *TRI =
|
|
getMI().getParent() && getMI().getParent()->getParent()
|
|
? getMI().getParent()->getParent()->getSubtarget().getRegisterInfo()
|
|
: nullptr;
|
|
bool IsFirst = true;
|
|
for (unsigned Idx = 0; Idx != NumOpds; ++Idx) {
|
|
if (OpToNewVRegIdx[Idx] == DontKnowIdx)
|
|
continue;
|
|
if (!IsFirst)
|
|
OS << ", ";
|
|
IsFirst = false;
|
|
OS << '(' << PrintReg(getMI().getOperand(Idx).getReg(), TRI) << ", [";
|
|
bool IsFirstNewVReg = true;
|
|
for (unsigned VReg : getVRegs(Idx)) {
|
|
if (!IsFirstNewVReg)
|
|
OS << ", ";
|
|
IsFirstNewVReg = false;
|
|
OS << PrintReg(VReg, TRI);
|
|
}
|
|
OS << "])";
|
|
}
|
|
}
|