llvm/lib/Analysis/LazyValueInfo.cpp
2016-02-27 05:18:30 +00:00

1612 lines
56 KiB
C++

//===- LazyValueInfo.cpp - Value constraint analysis ------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the interface for lazy computation of value constraint
// information.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/LazyValueInfo.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/ConstantRange.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/ValueHandle.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include <map>
#include <stack>
using namespace llvm;
using namespace PatternMatch;
#define DEBUG_TYPE "lazy-value-info"
char LazyValueInfo::ID = 0;
INITIALIZE_PASS_BEGIN(LazyValueInfo, "lazy-value-info",
"Lazy Value Information Analysis", false, true)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
INITIALIZE_PASS_END(LazyValueInfo, "lazy-value-info",
"Lazy Value Information Analysis", false, true)
namespace llvm {
FunctionPass *createLazyValueInfoPass() { return new LazyValueInfo(); }
}
//===----------------------------------------------------------------------===//
// LVILatticeVal
//===----------------------------------------------------------------------===//
/// This is the information tracked by LazyValueInfo for each value.
///
/// FIXME: This is basically just for bringup, this can be made a lot more rich
/// in the future.
///
namespace {
class LVILatticeVal {
enum LatticeValueTy {
/// This Value has no known value yet.
undefined,
/// This Value has a specific constant value.
constant,
/// This Value is known to not have the specified value.
notconstant,
/// The Value falls within this range.
constantrange,
/// This value is not known to be constant, and we know that it has a value.
overdefined
};
/// Val: This stores the current lattice value along with the Constant* for
/// the constant if this is a 'constant' or 'notconstant' value.
LatticeValueTy Tag;
Constant *Val;
ConstantRange Range;
public:
LVILatticeVal() : Tag(undefined), Val(nullptr), Range(1, true) {}
static LVILatticeVal get(Constant *C) {
LVILatticeVal Res;
if (!isa<UndefValue>(C))
Res.markConstant(C);
return Res;
}
static LVILatticeVal getNot(Constant *C) {
LVILatticeVal Res;
if (!isa<UndefValue>(C))
Res.markNotConstant(C);
return Res;
}
static LVILatticeVal getRange(ConstantRange CR) {
LVILatticeVal Res;
Res.markConstantRange(std::move(CR));
return Res;
}
static LVILatticeVal getOverdefined() {
LVILatticeVal Res;
Res.markOverdefined();
return Res;
}
bool isUndefined() const { return Tag == undefined; }
bool isConstant() const { return Tag == constant; }
bool isNotConstant() const { return Tag == notconstant; }
bool isConstantRange() const { return Tag == constantrange; }
bool isOverdefined() const { return Tag == overdefined; }
Constant *getConstant() const {
assert(isConstant() && "Cannot get the constant of a non-constant!");
return Val;
}
Constant *getNotConstant() const {
assert(isNotConstant() && "Cannot get the constant of a non-notconstant!");
return Val;
}
ConstantRange getConstantRange() const {
assert(isConstantRange() &&
"Cannot get the constant-range of a non-constant-range!");
return Range;
}
/// Return true if this is a change in status.
bool markOverdefined() {
if (isOverdefined())
return false;
Tag = overdefined;
return true;
}
/// Return true if this is a change in status.
bool markConstant(Constant *V) {
assert(V && "Marking constant with NULL");
if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
return markConstantRange(ConstantRange(CI->getValue()));
if (isa<UndefValue>(V))
return false;
assert((!isConstant() || getConstant() == V) &&
"Marking constant with different value");
assert(isUndefined());
Tag = constant;
Val = V;
return true;
}
/// Return true if this is a change in status.
bool markNotConstant(Constant *V) {
assert(V && "Marking constant with NULL");
if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
return markConstantRange(ConstantRange(CI->getValue()+1, CI->getValue()));
if (isa<UndefValue>(V))
return false;
assert((!isConstant() || getConstant() != V) &&
"Marking constant !constant with same value");
assert((!isNotConstant() || getNotConstant() == V) &&
"Marking !constant with different value");
assert(isUndefined() || isConstant());
Tag = notconstant;
Val = V;
return true;
}
/// Return true if this is a change in status.
bool markConstantRange(ConstantRange NewR) {
if (isConstantRange()) {
if (NewR.isEmptySet())
return markOverdefined();
bool changed = Range != NewR;
Range = std::move(NewR);
return changed;
}
assert(isUndefined());
if (NewR.isEmptySet())
return markOverdefined();
Tag = constantrange;
Range = std::move(NewR);
return true;
}
/// Merge the specified lattice value into this one, updating this
/// one and returning true if anything changed.
bool mergeIn(const LVILatticeVal &RHS, const DataLayout &DL) {
if (RHS.isUndefined() || isOverdefined()) return false;
if (RHS.isOverdefined()) return markOverdefined();
if (isUndefined()) {
Tag = RHS.Tag;
Val = RHS.Val;
Range = RHS.Range;
return true;
}
if (isConstant()) {
if (RHS.isConstant()) {
if (Val == RHS.Val)
return false;
return markOverdefined();
}
if (RHS.isNotConstant()) {
if (Val == RHS.Val)
return markOverdefined();
// Unless we can prove that the two Constants are different, we must
// move to overdefined.
if (ConstantInt *Res =
dyn_cast<ConstantInt>(ConstantFoldCompareInstOperands(
CmpInst::ICMP_NE, getConstant(), RHS.getNotConstant(), DL)))
if (Res->isOne())
return markNotConstant(RHS.getNotConstant());
return markOverdefined();
}
// RHS is a ConstantRange, LHS is a non-integer Constant.
// FIXME: consider the case where RHS is a range [1, 0) and LHS is
// a function. The correct result is to pick up RHS.
return markOverdefined();
}
if (isNotConstant()) {
if (RHS.isConstant()) {
if (Val == RHS.Val)
return markOverdefined();
// Unless we can prove that the two Constants are different, we must
// move to overdefined.
if (ConstantInt *Res =
dyn_cast<ConstantInt>(ConstantFoldCompareInstOperands(
CmpInst::ICMP_NE, getNotConstant(), RHS.getConstant(), DL)))
if (Res->isOne())
return false;
return markOverdefined();
}
if (RHS.isNotConstant()) {
if (Val == RHS.Val)
return false;
return markOverdefined();
}
return markOverdefined();
}
assert(isConstantRange() && "New LVILattice type?");
if (!RHS.isConstantRange())
return markOverdefined();
ConstantRange NewR = Range.unionWith(RHS.getConstantRange());
if (NewR.isFullSet())
return markOverdefined();
return markConstantRange(NewR);
}
};
} // end anonymous namespace.
namespace llvm {
raw_ostream &operator<<(raw_ostream &OS, const LVILatticeVal &Val)
LLVM_ATTRIBUTE_USED;
raw_ostream &operator<<(raw_ostream &OS, const LVILatticeVal &Val) {
if (Val.isUndefined())
return OS << "undefined";
if (Val.isOverdefined())
return OS << "overdefined";
if (Val.isNotConstant())
return OS << "notconstant<" << *Val.getNotConstant() << '>';
else if (Val.isConstantRange())
return OS << "constantrange<" << Val.getConstantRange().getLower() << ", "
<< Val.getConstantRange().getUpper() << '>';
return OS << "constant<" << *Val.getConstant() << '>';
}
}
/// Returns true if this lattice value represents at most one possible value.
/// This is as precise as any lattice value can get while still representing
/// reachable code.
static bool hasSingleValue(LVILatticeVal Val) {
if (Val.isConstantRange() &&
Val.getConstantRange().isSingleElement())
// Integer constants are single element ranges
return true;
if (Val.isConstant())
// Non integer constants
return true;
return false;
}
/// Combine two sets of facts about the same value into a single set of
/// facts. Note that this method is not suitable for merging facts along
/// different paths in a CFG; that's what the mergeIn function is for. This
/// is for merging facts gathered about the same value at the same location
/// through two independent means.
/// Notes:
/// * This method does not promise to return the most precise possible lattice
/// value implied by A and B. It is allowed to return any lattice element
/// which is at least as strong as *either* A or B (unless our facts
/// conflict, see below).
/// * Due to unreachable code, the intersection of two lattice values could be
/// contradictory. If this happens, we return some valid lattice value so as
/// not confuse the rest of LVI. Ideally, we'd always return Undefined, but
/// we do not make this guarantee. TODO: This would be a useful enhancement.
static LVILatticeVal intersect(LVILatticeVal A, LVILatticeVal B) {
// Undefined is the strongest state. It means the value is known to be along
// an unreachable path.
if (A.isUndefined())
return A;
if (B.isUndefined())
return B;
// If we gave up for one, but got a useable fact from the other, use it.
if (A.isOverdefined())
return B;
if (B.isOverdefined())
return A;
// Can't get any more precise than constants.
if (hasSingleValue(A))
return A;
if (hasSingleValue(B))
return B;
// Could be either constant range or not constant here.
if (!A.isConstantRange() || !B.isConstantRange()) {
// TODO: Arbitrary choice, could be improved
return A;
}
// Intersect two constant ranges
ConstantRange Range =
A.getConstantRange().intersectWith(B.getConstantRange());
// Note: An empty range is implicitly converted to overdefined internally.
// TODO: We could instead use Undefined here since we've proven a conflict
// and thus know this path must be unreachable.
return LVILatticeVal::getRange(std::move(Range));
}
//===----------------------------------------------------------------------===//
// LazyValueInfoCache Decl
//===----------------------------------------------------------------------===//
namespace {
/// A callback value handle updates the cache when values are erased.
class LazyValueInfoCache;
struct LVIValueHandle final : public CallbackVH {
LazyValueInfoCache *Parent;
LVIValueHandle(Value *V, LazyValueInfoCache *P)
: CallbackVH(V), Parent(P) { }
void deleted() override;
void allUsesReplacedWith(Value *V) override {
deleted();
}
};
}
namespace {
/// This is the cache kept by LazyValueInfo which
/// maintains information about queries across the clients' queries.
class LazyValueInfoCache {
/// This is all of the cached block information for exactly one Value*.
/// The entries are sorted by the BasicBlock* of the
/// entries, allowing us to do a lookup with a binary search.
/// Over-defined lattice values are recorded in OverDefinedCache to reduce
/// memory overhead.
typedef SmallDenseMap<AssertingVH<BasicBlock>, LVILatticeVal, 4>
ValueCacheEntryTy;
/// This is all of the cached information for all values,
/// mapped from Value* to key information.
std::map<LVIValueHandle, ValueCacheEntryTy> ValueCache;
/// This tracks, on a per-block basis, the set of values that are
/// over-defined at the end of that block.
typedef DenseMap<AssertingVH<BasicBlock>, SmallPtrSet<Value *, 4>>
OverDefinedCacheTy;
OverDefinedCacheTy OverDefinedCache;
/// Keep track of all blocks that we have ever seen, so we
/// don't spend time removing unused blocks from our caches.
DenseSet<AssertingVH<BasicBlock> > SeenBlocks;
/// This stack holds the state of the value solver during a query.
/// It basically emulates the callstack of the naive
/// recursive value lookup process.
std::stack<std::pair<BasicBlock*, Value*> > BlockValueStack;
/// Keeps track of which block-value pairs are in BlockValueStack.
DenseSet<std::pair<BasicBlock*, Value*> > BlockValueSet;
/// Push BV onto BlockValueStack unless it's already in there.
/// Returns true on success.
bool pushBlockValue(const std::pair<BasicBlock *, Value *> &BV) {
if (!BlockValueSet.insert(BV).second)
return false; // It's already in the stack.
DEBUG(dbgs() << "PUSH: " << *BV.second << " in " << BV.first->getName()
<< "\n");
BlockValueStack.push(BV);
return true;
}
AssumptionCache *AC; ///< A pointer to the cache of @llvm.assume calls.
const DataLayout &DL; ///< A mandatory DataLayout
DominatorTree *DT; ///< An optional DT pointer.
friend struct LVIValueHandle;
void insertResult(Value *Val, BasicBlock *BB, const LVILatticeVal &Result) {
SeenBlocks.insert(BB);
// Insert over-defined values into their own cache to reduce memory
// overhead.
if (Result.isOverdefined())
OverDefinedCache[BB].insert(Val);
else
lookup(Val)[BB] = Result;
}
LVILatticeVal getBlockValue(Value *Val, BasicBlock *BB);
bool getEdgeValue(Value *V, BasicBlock *F, BasicBlock *T,
LVILatticeVal &Result,
Instruction *CxtI = nullptr);
bool hasBlockValue(Value *Val, BasicBlock *BB);
// These methods process one work item and may add more. A false value
// returned means that the work item was not completely processed and must
// be revisited after going through the new items.
bool solveBlockValue(Value *Val, BasicBlock *BB);
bool solveBlockValueNonLocal(LVILatticeVal &BBLV,
Value *Val, BasicBlock *BB);
bool solveBlockValuePHINode(LVILatticeVal &BBLV,
PHINode *PN, BasicBlock *BB);
bool solveBlockValueSelect(LVILatticeVal &BBLV,
SelectInst *S, BasicBlock *BB);
bool solveBlockValueConstantRange(LVILatticeVal &BBLV,
Instruction *BBI, BasicBlock *BB);
void intersectAssumeBlockValueConstantRange(Value *Val, LVILatticeVal &BBLV,
Instruction *BBI);
void solve();
ValueCacheEntryTy &lookup(Value *V) {
return ValueCache[LVIValueHandle(V, this)];
}
bool isOverdefined(Value *V, BasicBlock *BB) const {
auto ODI = OverDefinedCache.find(BB);
if (ODI == OverDefinedCache.end())
return false;
return ODI->second.count(V);
}
bool hasCachedValueInfo(Value *V, BasicBlock *BB) {
if (isOverdefined(V, BB))
return true;
LVIValueHandle ValHandle(V, this);
auto I = ValueCache.find(ValHandle);
if (I == ValueCache.end())
return false;
return I->second.count(BB);
}
LVILatticeVal getCachedValueInfo(Value *V, BasicBlock *BB) {
if (isOverdefined(V, BB))
return LVILatticeVal::getOverdefined();
return lookup(V)[BB];
}
public:
/// This is the query interface to determine the lattice
/// value for the specified Value* at the end of the specified block.
LVILatticeVal getValueInBlock(Value *V, BasicBlock *BB,
Instruction *CxtI = nullptr);
/// This is the query interface to determine the lattice
/// value for the specified Value* at the specified instruction (generally
/// from an assume intrinsic).
LVILatticeVal getValueAt(Value *V, Instruction *CxtI);
/// This is the query interface to determine the lattice
/// value for the specified Value* that is true on the specified edge.
LVILatticeVal getValueOnEdge(Value *V, BasicBlock *FromBB,BasicBlock *ToBB,
Instruction *CxtI = nullptr);
/// This is the update interface to inform the cache that an edge from
/// PredBB to OldSucc has been threaded to be from PredBB to NewSucc.
void threadEdge(BasicBlock *PredBB,BasicBlock *OldSucc,BasicBlock *NewSucc);
/// This is part of the update interface to inform the cache
/// that a block has been deleted.
void eraseBlock(BasicBlock *BB);
/// clear - Empty the cache.
void clear() {
SeenBlocks.clear();
ValueCache.clear();
OverDefinedCache.clear();
}
LazyValueInfoCache(AssumptionCache *AC, const DataLayout &DL,
DominatorTree *DT = nullptr)
: AC(AC), DL(DL), DT(DT) {}
};
} // end anonymous namespace
void LVIValueHandle::deleted() {
SmallVector<AssertingVH<BasicBlock>, 4> ToErase;
for (auto &I : Parent->OverDefinedCache) {
SmallPtrSetImpl<Value *> &ValueSet = I.second;
if (ValueSet.count(getValPtr()))
ValueSet.erase(getValPtr());
if (ValueSet.empty())
ToErase.push_back(I.first);
}
for (auto &BB : ToErase)
Parent->OverDefinedCache.erase(BB);
// This erasure deallocates *this, so it MUST happen after we're done
// using any and all members of *this.
Parent->ValueCache.erase(*this);
}
void LazyValueInfoCache::eraseBlock(BasicBlock *BB) {
// Shortcut if we have never seen this block.
DenseSet<AssertingVH<BasicBlock> >::iterator I = SeenBlocks.find(BB);
if (I == SeenBlocks.end())
return;
SeenBlocks.erase(I);
auto ODI = OverDefinedCache.find(BB);
if (ODI != OverDefinedCache.end())
OverDefinedCache.erase(ODI);
for (auto I = ValueCache.begin(), E = ValueCache.end(); I != E; ++I)
I->second.erase(BB);
}
void LazyValueInfoCache::solve() {
while (!BlockValueStack.empty()) {
std::pair<BasicBlock*, Value*> &e = BlockValueStack.top();
assert(BlockValueSet.count(e) && "Stack value should be in BlockValueSet!");
if (solveBlockValue(e.second, e.first)) {
// The work item was completely processed.
assert(BlockValueStack.top() == e && "Nothing should have been pushed!");
assert(hasCachedValueInfo(e.second, e.first) &&
"Result should be in cache!");
DEBUG(dbgs() << "POP " << *e.second << " in " << e.first->getName()
<< " = " << getCachedValueInfo(e.second, e.first) << "\n");
BlockValueStack.pop();
BlockValueSet.erase(e);
} else {
// More work needs to be done before revisiting.
assert(BlockValueStack.top() != e && "Stack should have been pushed!");
}
}
}
bool LazyValueInfoCache::hasBlockValue(Value *Val, BasicBlock *BB) {
// If already a constant, there is nothing to compute.
if (isa<Constant>(Val))
return true;
return hasCachedValueInfo(Val, BB);
}
LVILatticeVal LazyValueInfoCache::getBlockValue(Value *Val, BasicBlock *BB) {
// If already a constant, there is nothing to compute.
if (Constant *VC = dyn_cast<Constant>(Val))
return LVILatticeVal::get(VC);
SeenBlocks.insert(BB);
return getCachedValueInfo(Val, BB);
}
static LVILatticeVal getFromRangeMetadata(Instruction *BBI) {
switch (BBI->getOpcode()) {
default: break;
case Instruction::Load:
case Instruction::Call:
case Instruction::Invoke:
if (MDNode *Ranges = BBI->getMetadata(LLVMContext::MD_range))
if (isa<IntegerType>(BBI->getType())) {
return LVILatticeVal::getRange(getConstantRangeFromMetadata(*Ranges));
}
break;
};
// Nothing known - will be intersected with other facts
return LVILatticeVal::getOverdefined();
}
bool LazyValueInfoCache::solveBlockValue(Value *Val, BasicBlock *BB) {
if (isa<Constant>(Val))
return true;
if (hasCachedValueInfo(Val, BB)) {
// If we have a cached value, use that.
DEBUG(dbgs() << " reuse BB '" << BB->getName()
<< "' val=" << getCachedValueInfo(Val, BB) << '\n');
// Since we're reusing a cached value, we don't need to update the
// OverDefinedCache. The cache will have been properly updated whenever the
// cached value was inserted.
return true;
}
// Hold off inserting this value into the Cache in case we have to return
// false and come back later.
LVILatticeVal Res;
Instruction *BBI = dyn_cast<Instruction>(Val);
if (!BBI || BBI->getParent() != BB) {
if (!solveBlockValueNonLocal(Res, Val, BB))
return false;
insertResult(Val, BB, Res);
return true;
}
if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
if (!solveBlockValuePHINode(Res, PN, BB))
return false;
insertResult(Val, BB, Res);
return true;
}
if (auto *SI = dyn_cast<SelectInst>(BBI)) {
if (!solveBlockValueSelect(Res, SI, BB))
return false;
insertResult(Val, BB, Res);
return true;
}
// If this value is a nonnull pointer, record it's range and bailout.
PointerType *PT = dyn_cast<PointerType>(BBI->getType());
if (PT && isKnownNonNull(BBI)) {
Res = LVILatticeVal::getNot(ConstantPointerNull::get(PT));
insertResult(Val, BB, Res);
return true;
}
// If this is an instruction which supports range metadata, intersect the
// implied range.
Res = intersect(Res, getFromRangeMetadata(BBI));
// We can only analyze the definitions of certain classes of instructions
// (integral binops and casts at the moment), so bail if this isn't one.
LVILatticeVal Result;
if ((!isa<BinaryOperator>(BBI) && !isa<CastInst>(BBI)) ||
!BBI->getType()->isIntegerTy()) {
DEBUG(dbgs() << " compute BB '" << BB->getName()
<< "' - overdefined because inst def found.\n");
Res.markOverdefined();
insertResult(Val, BB, Res);
return true;
}
// FIXME: We're currently limited to binops with a constant RHS. This should
// be improved.
BinaryOperator *BO = dyn_cast<BinaryOperator>(BBI);
if (BO && !isa<ConstantInt>(BO->getOperand(1))) {
DEBUG(dbgs() << " compute BB '" << BB->getName()
<< "' - overdefined because inst def found.\n");
Res.markOverdefined();
insertResult(Val, BB, Res);
return true;
}
if (!solveBlockValueConstantRange(Res, BBI, BB))
return false;
insertResult(Val, BB, Res);
return true;
}
static bool InstructionDereferencesPointer(Instruction *I, Value *Ptr) {
if (LoadInst *L = dyn_cast<LoadInst>(I)) {
return L->getPointerAddressSpace() == 0 &&
GetUnderlyingObject(L->getPointerOperand(),
L->getModule()->getDataLayout()) == Ptr;
}
if (StoreInst *S = dyn_cast<StoreInst>(I)) {
return S->getPointerAddressSpace() == 0 &&
GetUnderlyingObject(S->getPointerOperand(),
S->getModule()->getDataLayout()) == Ptr;
}
if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) {
if (MI->isVolatile()) return false;
// FIXME: check whether it has a valuerange that excludes zero?
ConstantInt *Len = dyn_cast<ConstantInt>(MI->getLength());
if (!Len || Len->isZero()) return false;
if (MI->getDestAddressSpace() == 0)
if (GetUnderlyingObject(MI->getRawDest(),
MI->getModule()->getDataLayout()) == Ptr)
return true;
if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI))
if (MTI->getSourceAddressSpace() == 0)
if (GetUnderlyingObject(MTI->getRawSource(),
MTI->getModule()->getDataLayout()) == Ptr)
return true;
}
return false;
}
bool LazyValueInfoCache::solveBlockValueNonLocal(LVILatticeVal &BBLV,
Value *Val, BasicBlock *BB) {
LVILatticeVal Result; // Start Undefined.
// If this is a pointer, and there's a load from that pointer in this BB,
// then we know that the pointer can't be NULL.
bool NotNull = false;
if (Val->getType()->isPointerTy()) {
if (isKnownNonNull(Val)) {
NotNull = true;
} else {
const DataLayout &DL = BB->getModule()->getDataLayout();
Value *UnderlyingVal = GetUnderlyingObject(Val, DL);
// If 'GetUnderlyingObject' didn't converge, skip it. It won't converge
// inside InstructionDereferencesPointer either.
if (UnderlyingVal == GetUnderlyingObject(UnderlyingVal, DL, 1)) {
for (Instruction &I : *BB) {
if (InstructionDereferencesPointer(&I, UnderlyingVal)) {
NotNull = true;
break;
}
}
}
}
}
// If this is the entry block, we must be asking about an argument. The
// value is overdefined.
if (BB == &BB->getParent()->getEntryBlock()) {
assert(isa<Argument>(Val) && "Unknown live-in to the entry block");
if (NotNull) {
PointerType *PTy = cast<PointerType>(Val->getType());
Result = LVILatticeVal::getNot(ConstantPointerNull::get(PTy));
} else {
Result.markOverdefined();
}
BBLV = Result;
return true;
}
// Loop over all of our predecessors, merging what we know from them into
// result.
bool EdgesMissing = false;
for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
LVILatticeVal EdgeResult;
EdgesMissing |= !getEdgeValue(Val, *PI, BB, EdgeResult);
if (EdgesMissing)
continue;
Result.mergeIn(EdgeResult, DL);
// If we hit overdefined, exit early. The BlockVals entry is already set
// to overdefined.
if (Result.isOverdefined()) {
DEBUG(dbgs() << " compute BB '" << BB->getName()
<< "' - overdefined because of pred (non local).\n");
// If we previously determined that this is a pointer that can't be null
// then return that rather than giving up entirely.
if (NotNull) {
PointerType *PTy = cast<PointerType>(Val->getType());
Result = LVILatticeVal::getNot(ConstantPointerNull::get(PTy));
}
BBLV = Result;
return true;
}
}
if (EdgesMissing)
return false;
// Return the merged value, which is more precise than 'overdefined'.
assert(!Result.isOverdefined());
BBLV = Result;
return true;
}
bool LazyValueInfoCache::solveBlockValuePHINode(LVILatticeVal &BBLV,
PHINode *PN, BasicBlock *BB) {
LVILatticeVal Result; // Start Undefined.
// Loop over all of our predecessors, merging what we know from them into
// result.
bool EdgesMissing = false;
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
BasicBlock *PhiBB = PN->getIncomingBlock(i);
Value *PhiVal = PN->getIncomingValue(i);
LVILatticeVal EdgeResult;
// Note that we can provide PN as the context value to getEdgeValue, even
// though the results will be cached, because PN is the value being used as
// the cache key in the caller.
EdgesMissing |= !getEdgeValue(PhiVal, PhiBB, BB, EdgeResult, PN);
if (EdgesMissing)
continue;
Result.mergeIn(EdgeResult, DL);
// If we hit overdefined, exit early. The BlockVals entry is already set
// to overdefined.
if (Result.isOverdefined()) {
DEBUG(dbgs() << " compute BB '" << BB->getName()
<< "' - overdefined because of pred (local).\n");
BBLV = Result;
return true;
}
}
if (EdgesMissing)
return false;
// Return the merged value, which is more precise than 'overdefined'.
assert(!Result.isOverdefined() && "Possible PHI in entry block?");
BBLV = Result;
return true;
}
static bool getValueFromFromCondition(Value *Val, ICmpInst *ICI,
LVILatticeVal &Result,
bool isTrueDest = true);
// If we can determine a constraint on the value given conditions assumed by
// the program, intersect those constraints with BBLV
void LazyValueInfoCache::intersectAssumeBlockValueConstantRange(Value *Val,
LVILatticeVal &BBLV,
Instruction *BBI) {
BBI = BBI ? BBI : dyn_cast<Instruction>(Val);
if (!BBI)
return;
for (auto &AssumeVH : AC->assumptions()) {
if (!AssumeVH)
continue;
auto *I = cast<CallInst>(AssumeVH);
if (!isValidAssumeForContext(I, BBI, DT))
continue;
Value *C = I->getArgOperand(0);
if (ICmpInst *ICI = dyn_cast<ICmpInst>(C)) {
LVILatticeVal Result;
if (getValueFromFromCondition(Val, ICI, Result))
BBLV = intersect(BBLV, Result);
}
}
}
bool LazyValueInfoCache::solveBlockValueSelect(LVILatticeVal &BBLV,
SelectInst *SI, BasicBlock *BB) {
// Recurse on our inputs if needed
if (!hasBlockValue(SI->getTrueValue(), BB)) {
if (pushBlockValue(std::make_pair(BB, SI->getTrueValue())))
return false;
BBLV.markOverdefined();
return true;
}
LVILatticeVal TrueVal = getBlockValue(SI->getTrueValue(), BB);
// If we hit overdefined, don't ask more queries. We want to avoid poisoning
// extra slots in the table if we can.
if (TrueVal.isOverdefined()) {
BBLV.markOverdefined();
return true;
}
if (!hasBlockValue(SI->getFalseValue(), BB)) {
if (pushBlockValue(std::make_pair(BB, SI->getFalseValue())))
return false;
BBLV.markOverdefined();
return true;
}
LVILatticeVal FalseVal = getBlockValue(SI->getFalseValue(), BB);
// If we hit overdefined, don't ask more queries. We want to avoid poisoning
// extra slots in the table if we can.
if (FalseVal.isOverdefined()) {
BBLV.markOverdefined();
return true;
}
if (TrueVal.isConstantRange() && FalseVal.isConstantRange()) {
ConstantRange TrueCR = TrueVal.getConstantRange();
ConstantRange FalseCR = FalseVal.getConstantRange();
Value *LHS = nullptr;
Value *RHS = nullptr;
SelectPatternResult SPR = matchSelectPattern(SI, LHS, RHS);
// Is this a min specifically of our two inputs? (Avoid the risk of
// ValueTracking getting smarter looking back past our immediate inputs.)
if (SelectPatternResult::isMinOrMax(SPR.Flavor) &&
LHS == SI->getTrueValue() && RHS == SI->getFalseValue()) {
switch (SPR.Flavor) {
default:
llvm_unreachable("unexpected minmax type!");
case SPF_SMIN: /// Signed minimum
BBLV.markConstantRange(TrueCR.smin(FalseCR));
return true;
case SPF_UMIN: /// Unsigned minimum
BBLV.markConstantRange(TrueCR.umin(FalseCR));
return true;
case SPF_SMAX: /// Signed maximum
BBLV.markConstantRange(TrueCR.smax(FalseCR));
return true;
case SPF_UMAX: /// Unsigned maximum
BBLV.markConstantRange(TrueCR.umax(FalseCR));
return true;
};
}
// TODO: ABS, NABS from the SelectPatternResult
}
// Can we constrain the facts about the true and false values by using the
// condition itself? This shows up with idioms like e.g. select(a > 5, a, 5).
// TODO: We could potentially refine an overdefined true value above.
if (auto *ICI = dyn_cast<ICmpInst>(SI->getCondition())) {
LVILatticeVal TrueValTaken, FalseValTaken;
if (!getValueFromFromCondition(SI->getTrueValue(), ICI,
TrueValTaken, true))
TrueValTaken.markOverdefined();
if (!getValueFromFromCondition(SI->getFalseValue(), ICI,
FalseValTaken, false))
FalseValTaken.markOverdefined();
TrueVal = intersect(TrueVal, TrueValTaken);
FalseVal = intersect(FalseVal, FalseValTaken);
// Handle clamp idioms such as:
// %24 = constantrange<0, 17>
// %39 = icmp eq i32 %24, 0
// %40 = add i32 %24, -1
// %siv.next = select i1 %39, i32 16, i32 %40
// %siv.next = constantrange<0, 17> not <-1, 17>
// In general, this can handle any clamp idiom which tests the edge
// condition via an equality or inequality.
ICmpInst::Predicate Pred = ICI->getPredicate();
Value *A = ICI->getOperand(0);
if (ConstantInt *CIBase = dyn_cast<ConstantInt>(ICI->getOperand(1))) {
auto addConstants = [](ConstantInt *A, ConstantInt *B) {
assert(A->getType() == B->getType());
return ConstantInt::get(A->getType(), A->getValue() + B->getValue());
};
// See if either input is A + C2, subject to the constraint from the
// condition that A != C when that input is used. We can assume that
// that input doesn't include C + C2.
ConstantInt *CIAdded;
switch (Pred) {
default: break;
case ICmpInst::ICMP_EQ:
if (match(SI->getFalseValue(), m_Add(m_Specific(A),
m_ConstantInt(CIAdded)))) {
auto ResNot = addConstants(CIBase, CIAdded);
FalseVal = intersect(FalseVal,
LVILatticeVal::getNot(ResNot));
}
break;
case ICmpInst::ICMP_NE:
if (match(SI->getTrueValue(), m_Add(m_Specific(A),
m_ConstantInt(CIAdded)))) {
auto ResNot = addConstants(CIBase, CIAdded);
TrueVal = intersect(TrueVal,
LVILatticeVal::getNot(ResNot));
}
break;
};
}
}
LVILatticeVal Result; // Start Undefined.
Result.mergeIn(TrueVal, DL);
Result.mergeIn(FalseVal, DL);
BBLV = Result;
return true;
}
bool LazyValueInfoCache::solveBlockValueConstantRange(LVILatticeVal &BBLV,
Instruction *BBI,
BasicBlock *BB) {
// Figure out the range of the LHS. If that fails, bail.
if (!hasBlockValue(BBI->getOperand(0), BB)) {
if (pushBlockValue(std::make_pair(BB, BBI->getOperand(0))))
return false;
BBLV.markOverdefined();
return true;
}
LVILatticeVal LHSVal = getBlockValue(BBI->getOperand(0), BB);
intersectAssumeBlockValueConstantRange(BBI->getOperand(0), LHSVal, BBI);
if (!LHSVal.isConstantRange()) {
BBLV.markOverdefined();
return true;
}
ConstantRange LHSRange = LHSVal.getConstantRange();
ConstantRange RHSRange(1);
IntegerType *ResultTy = cast<IntegerType>(BBI->getType());
if (isa<BinaryOperator>(BBI)) {
if (ConstantInt *RHS = dyn_cast<ConstantInt>(BBI->getOperand(1))) {
RHSRange = ConstantRange(RHS->getValue());
} else {
BBLV.markOverdefined();
return true;
}
}
// NOTE: We're currently limited by the set of operations that ConstantRange
// can evaluate symbolically. Enhancing that set will allows us to analyze
// more definitions.
LVILatticeVal Result;
switch (BBI->getOpcode()) {
case Instruction::Add:
Result.markConstantRange(LHSRange.add(RHSRange));
break;
case Instruction::Sub:
Result.markConstantRange(LHSRange.sub(RHSRange));
break;
case Instruction::Mul:
Result.markConstantRange(LHSRange.multiply(RHSRange));
break;
case Instruction::UDiv:
Result.markConstantRange(LHSRange.udiv(RHSRange));
break;
case Instruction::Shl:
Result.markConstantRange(LHSRange.shl(RHSRange));
break;
case Instruction::LShr:
Result.markConstantRange(LHSRange.lshr(RHSRange));
break;
case Instruction::Trunc:
Result.markConstantRange(LHSRange.truncate(ResultTy->getBitWidth()));
break;
case Instruction::SExt:
Result.markConstantRange(LHSRange.signExtend(ResultTy->getBitWidth()));
break;
case Instruction::ZExt:
Result.markConstantRange(LHSRange.zeroExtend(ResultTy->getBitWidth()));
break;
case Instruction::BitCast:
Result.markConstantRange(LHSRange);
break;
case Instruction::And:
Result.markConstantRange(LHSRange.binaryAnd(RHSRange));
break;
case Instruction::Or:
Result.markConstantRange(LHSRange.binaryOr(RHSRange));
break;
// Unhandled instructions are overdefined.
default:
DEBUG(dbgs() << " compute BB '" << BB->getName()
<< "' - overdefined because inst def found.\n");
Result.markOverdefined();
break;
}
BBLV = Result;
return true;
}
bool getValueFromFromCondition(Value *Val, ICmpInst *ICI,
LVILatticeVal &Result, bool isTrueDest) {
if (ICI && isa<Constant>(ICI->getOperand(1))) {
if (ICI->isEquality() && ICI->getOperand(0) == Val) {
// We know that V has the RHS constant if this is a true SETEQ or
// false SETNE.
if (isTrueDest == (ICI->getPredicate() == ICmpInst::ICMP_EQ))
Result = LVILatticeVal::get(cast<Constant>(ICI->getOperand(1)));
else
Result = LVILatticeVal::getNot(cast<Constant>(ICI->getOperand(1)));
return true;
}
// Recognize the range checking idiom that InstCombine produces.
// (X-C1) u< C2 --> [C1, C1+C2)
ConstantInt *NegOffset = nullptr;
if (ICI->getPredicate() == ICmpInst::ICMP_ULT)
match(ICI->getOperand(0), m_Add(m_Specific(Val),
m_ConstantInt(NegOffset)));
ConstantInt *CI = dyn_cast<ConstantInt>(ICI->getOperand(1));
if (CI && (ICI->getOperand(0) == Val || NegOffset)) {
// Calculate the range of values that are allowed by the comparison
ConstantRange CmpRange(CI->getValue());
ConstantRange TrueValues =
ConstantRange::makeAllowedICmpRegion(ICI->getPredicate(), CmpRange);
if (NegOffset) // Apply the offset from above.
TrueValues = TrueValues.subtract(NegOffset->getValue());
// If we're interested in the false dest, invert the condition.
if (!isTrueDest) TrueValues = TrueValues.inverse();
Result = LVILatticeVal::getRange(std::move(TrueValues));
return true;
}
}
return false;
}
/// \brief Compute the value of Val on the edge BBFrom -> BBTo. Returns false if
/// Val is not constrained on the edge. Result is unspecified if return value
/// is false.
static bool getEdgeValueLocal(Value *Val, BasicBlock *BBFrom,
BasicBlock *BBTo, LVILatticeVal &Result) {
// TODO: Handle more complex conditionals. If (v == 0 || v2 < 1) is false, we
// know that v != 0.
if (BranchInst *BI = dyn_cast<BranchInst>(BBFrom->getTerminator())) {
// If this is a conditional branch and only one successor goes to BBTo, then
// we may be able to infer something from the condition.
if (BI->isConditional() &&
BI->getSuccessor(0) != BI->getSuccessor(1)) {
bool isTrueDest = BI->getSuccessor(0) == BBTo;
assert(BI->getSuccessor(!isTrueDest) == BBTo &&
"BBTo isn't a successor of BBFrom");
// If V is the condition of the branch itself, then we know exactly what
// it is.
if (BI->getCondition() == Val) {
Result = LVILatticeVal::get(ConstantInt::get(
Type::getInt1Ty(Val->getContext()), isTrueDest));
return true;
}
// If the condition of the branch is an equality comparison, we may be
// able to infer the value.
if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition()))
if (getValueFromFromCondition(Val, ICI, Result, isTrueDest))
return true;
}
}
// If the edge was formed by a switch on the value, then we may know exactly
// what it is.
if (SwitchInst *SI = dyn_cast<SwitchInst>(BBFrom->getTerminator())) {
if (SI->getCondition() != Val)
return false;
bool DefaultCase = SI->getDefaultDest() == BBTo;
unsigned BitWidth = Val->getType()->getIntegerBitWidth();
ConstantRange EdgesVals(BitWidth, DefaultCase/*isFullSet*/);
for (SwitchInst::CaseIt i : SI->cases()) {
ConstantRange EdgeVal(i.getCaseValue()->getValue());
if (DefaultCase) {
// It is possible that the default destination is the destination of
// some cases. There is no need to perform difference for those cases.
if (i.getCaseSuccessor() != BBTo)
EdgesVals = EdgesVals.difference(EdgeVal);
} else if (i.getCaseSuccessor() == BBTo)
EdgesVals = EdgesVals.unionWith(EdgeVal);
}
Result = LVILatticeVal::getRange(std::move(EdgesVals));
return true;
}
return false;
}
/// \brief Compute the value of Val on the edge BBFrom -> BBTo or the value at
/// the basic block if the edge does not constrain Val.
bool LazyValueInfoCache::getEdgeValue(Value *Val, BasicBlock *BBFrom,
BasicBlock *BBTo, LVILatticeVal &Result,
Instruction *CxtI) {
// If already a constant, there is nothing to compute.
if (Constant *VC = dyn_cast<Constant>(Val)) {
Result = LVILatticeVal::get(VC);
return true;
}
LVILatticeVal LocalResult;
if (!getEdgeValueLocal(Val, BBFrom, BBTo, LocalResult))
// If we couldn't constrain the value on the edge, LocalResult doesn't
// provide any information.
LocalResult.markOverdefined();
if (hasSingleValue(LocalResult)) {
// Can't get any more precise here
Result = LocalResult;
return true;
}
if (!hasBlockValue(Val, BBFrom)) {
if (pushBlockValue(std::make_pair(BBFrom, Val)))
return false;
// No new information.
Result = LocalResult;
return true;
}
// Try to intersect ranges of the BB and the constraint on the edge.
LVILatticeVal InBlock = getBlockValue(Val, BBFrom);
intersectAssumeBlockValueConstantRange(Val, InBlock, BBFrom->getTerminator());
// We can use the context instruction (generically the ultimate instruction
// the calling pass is trying to simplify) here, even though the result of
// this function is generally cached when called from the solve* functions
// (and that cached result might be used with queries using a different
// context instruction), because when this function is called from the solve*
// functions, the context instruction is not provided. When called from
// LazyValueInfoCache::getValueOnEdge, the context instruction is provided,
// but then the result is not cached.
intersectAssumeBlockValueConstantRange(Val, InBlock, CxtI);
Result = intersect(LocalResult, InBlock);
return true;
}
LVILatticeVal LazyValueInfoCache::getValueInBlock(Value *V, BasicBlock *BB,
Instruction *CxtI) {
DEBUG(dbgs() << "LVI Getting block end value " << *V << " at '"
<< BB->getName() << "'\n");
assert(BlockValueStack.empty() && BlockValueSet.empty());
if (!hasBlockValue(V, BB)) {
pushBlockValue(std::make_pair(BB, V));
solve();
}
LVILatticeVal Result = getBlockValue(V, BB);
intersectAssumeBlockValueConstantRange(V, Result, CxtI);
DEBUG(dbgs() << " Result = " << Result << "\n");
return Result;
}
LVILatticeVal LazyValueInfoCache::getValueAt(Value *V, Instruction *CxtI) {
DEBUG(dbgs() << "LVI Getting value " << *V << " at '"
<< CxtI->getName() << "'\n");
if (auto *C = dyn_cast<Constant>(V))
return LVILatticeVal::get(C);
LVILatticeVal Result = LVILatticeVal::getOverdefined();
if (auto *I = dyn_cast<Instruction>(V))
Result = getFromRangeMetadata(I);
intersectAssumeBlockValueConstantRange(V, Result, CxtI);
DEBUG(dbgs() << " Result = " << Result << "\n");
return Result;
}
LVILatticeVal LazyValueInfoCache::
getValueOnEdge(Value *V, BasicBlock *FromBB, BasicBlock *ToBB,
Instruction *CxtI) {
DEBUG(dbgs() << "LVI Getting edge value " << *V << " from '"
<< FromBB->getName() << "' to '" << ToBB->getName() << "'\n");
LVILatticeVal Result;
if (!getEdgeValue(V, FromBB, ToBB, Result, CxtI)) {
solve();
bool WasFastQuery = getEdgeValue(V, FromBB, ToBB, Result, CxtI);
(void)WasFastQuery;
assert(WasFastQuery && "More work to do after problem solved?");
}
DEBUG(dbgs() << " Result = " << Result << "\n");
return Result;
}
void LazyValueInfoCache::threadEdge(BasicBlock *PredBB, BasicBlock *OldSucc,
BasicBlock *NewSucc) {
// When an edge in the graph has been threaded, values that we could not
// determine a value for before (i.e. were marked overdefined) may be
// possible to solve now. We do NOT try to proactively update these values.
// Instead, we clear their entries from the cache, and allow lazy updating to
// recompute them when needed.
// The updating process is fairly simple: we need to drop cached info
// for all values that were marked overdefined in OldSucc, and for those same
// values in any successor of OldSucc (except NewSucc) in which they were
// also marked overdefined.
std::vector<BasicBlock*> worklist;
worklist.push_back(OldSucc);
auto I = OverDefinedCache.find(OldSucc);
if (I == OverDefinedCache.end())
return; // Nothing to process here.
SmallVector<Value *, 4> ValsToClear(I->second.begin(), I->second.end());
// Use a worklist to perform a depth-first search of OldSucc's successors.
// NOTE: We do not need a visited list since any blocks we have already
// visited will have had their overdefined markers cleared already, and we
// thus won't loop to their successors.
while (!worklist.empty()) {
BasicBlock *ToUpdate = worklist.back();
worklist.pop_back();
// Skip blocks only accessible through NewSucc.
if (ToUpdate == NewSucc) continue;
bool changed = false;
for (Value *V : ValsToClear) {
// If a value was marked overdefined in OldSucc, and is here too...
auto OI = OverDefinedCache.find(ToUpdate);
if (OI == OverDefinedCache.end())
continue;
SmallPtrSetImpl<Value *> &ValueSet = OI->second;
if (!ValueSet.count(V))
continue;
ValueSet.erase(V);
if (ValueSet.empty())
OverDefinedCache.erase(OI);
// If we removed anything, then we potentially need to update
// blocks successors too.
changed = true;
}
if (!changed) continue;
worklist.insert(worklist.end(), succ_begin(ToUpdate), succ_end(ToUpdate));
}
}
//===----------------------------------------------------------------------===//
// LazyValueInfo Impl
//===----------------------------------------------------------------------===//
/// This lazily constructs the LazyValueInfoCache.
static LazyValueInfoCache &getCache(void *&PImpl, AssumptionCache *AC,
const DataLayout *DL,
DominatorTree *DT = nullptr) {
if (!PImpl) {
assert(DL && "getCache() called with a null DataLayout");
PImpl = new LazyValueInfoCache(AC, *DL, DT);
}
return *static_cast<LazyValueInfoCache*>(PImpl);
}
bool LazyValueInfo::runOnFunction(Function &F) {
AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
const DataLayout &DL = F.getParent()->getDataLayout();
DominatorTreeWrapperPass *DTWP =
getAnalysisIfAvailable<DominatorTreeWrapperPass>();
DT = DTWP ? &DTWP->getDomTree() : nullptr;
TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
if (PImpl)
getCache(PImpl, AC, &DL, DT).clear();
// Fully lazy.
return false;
}
void LazyValueInfo::getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll();
AU.addRequired<AssumptionCacheTracker>();
AU.addRequired<TargetLibraryInfoWrapperPass>();
}
void LazyValueInfo::releaseMemory() {
// If the cache was allocated, free it.
if (PImpl) {
delete &getCache(PImpl, AC, nullptr);
PImpl = nullptr;
}
}
Constant *LazyValueInfo::getConstant(Value *V, BasicBlock *BB,
Instruction *CxtI) {
const DataLayout &DL = BB->getModule()->getDataLayout();
LVILatticeVal Result =
getCache(PImpl, AC, &DL, DT).getValueInBlock(V, BB, CxtI);
if (Result.isConstant())
return Result.getConstant();
if (Result.isConstantRange()) {
ConstantRange CR = Result.getConstantRange();
if (const APInt *SingleVal = CR.getSingleElement())
return ConstantInt::get(V->getContext(), *SingleVal);
}
return nullptr;
}
/// Determine whether the specified value is known to be a
/// constant on the specified edge. Return null if not.
Constant *LazyValueInfo::getConstantOnEdge(Value *V, BasicBlock *FromBB,
BasicBlock *ToBB,
Instruction *CxtI) {
const DataLayout &DL = FromBB->getModule()->getDataLayout();
LVILatticeVal Result =
getCache(PImpl, AC, &DL, DT).getValueOnEdge(V, FromBB, ToBB, CxtI);
if (Result.isConstant())
return Result.getConstant();
if (Result.isConstantRange()) {
ConstantRange CR = Result.getConstantRange();
if (const APInt *SingleVal = CR.getSingleElement())
return ConstantInt::get(V->getContext(), *SingleVal);
}
return nullptr;
}
static LazyValueInfo::Tristate getPredicateResult(unsigned Pred, Constant *C,
LVILatticeVal &Result,
const DataLayout &DL,
TargetLibraryInfo *TLI) {
// If we know the value is a constant, evaluate the conditional.
Constant *Res = nullptr;
if (Result.isConstant()) {
Res = ConstantFoldCompareInstOperands(Pred, Result.getConstant(), C, DL,
TLI);
if (ConstantInt *ResCI = dyn_cast<ConstantInt>(Res))
return ResCI->isZero() ? LazyValueInfo::False : LazyValueInfo::True;
return LazyValueInfo::Unknown;
}
if (Result.isConstantRange()) {
ConstantInt *CI = dyn_cast<ConstantInt>(C);
if (!CI) return LazyValueInfo::Unknown;
ConstantRange CR = Result.getConstantRange();
if (Pred == ICmpInst::ICMP_EQ) {
if (!CR.contains(CI->getValue()))
return LazyValueInfo::False;
if (CR.isSingleElement() && CR.contains(CI->getValue()))
return LazyValueInfo::True;
} else if (Pred == ICmpInst::ICMP_NE) {
if (!CR.contains(CI->getValue()))
return LazyValueInfo::True;
if (CR.isSingleElement() && CR.contains(CI->getValue()))
return LazyValueInfo::False;
}
// Handle more complex predicates.
ConstantRange TrueValues =
ICmpInst::makeConstantRange((ICmpInst::Predicate)Pred, CI->getValue());
if (TrueValues.contains(CR))
return LazyValueInfo::True;
if (TrueValues.inverse().contains(CR))
return LazyValueInfo::False;
return LazyValueInfo::Unknown;
}
if (Result.isNotConstant()) {
// If this is an equality comparison, we can try to fold it knowing that
// "V != C1".
if (Pred == ICmpInst::ICMP_EQ) {
// !C1 == C -> false iff C1 == C.
Res = ConstantFoldCompareInstOperands(ICmpInst::ICMP_NE,
Result.getNotConstant(), C, DL,
TLI);
if (Res->isNullValue())
return LazyValueInfo::False;
} else if (Pred == ICmpInst::ICMP_NE) {
// !C1 != C -> true iff C1 == C.
Res = ConstantFoldCompareInstOperands(ICmpInst::ICMP_NE,
Result.getNotConstant(), C, DL,
TLI);
if (Res->isNullValue())
return LazyValueInfo::True;
}
return LazyValueInfo::Unknown;
}
return LazyValueInfo::Unknown;
}
/// Determine whether the specified value comparison with a constant is known to
/// be true or false on the specified CFG edge. Pred is a CmpInst predicate.
LazyValueInfo::Tristate
LazyValueInfo::getPredicateOnEdge(unsigned Pred, Value *V, Constant *C,
BasicBlock *FromBB, BasicBlock *ToBB,
Instruction *CxtI) {
const DataLayout &DL = FromBB->getModule()->getDataLayout();
LVILatticeVal Result =
getCache(PImpl, AC, &DL, DT).getValueOnEdge(V, FromBB, ToBB, CxtI);
return getPredicateResult(Pred, C, Result, DL, TLI);
}
LazyValueInfo::Tristate
LazyValueInfo::getPredicateAt(unsigned Pred, Value *V, Constant *C,
Instruction *CxtI) {
const DataLayout &DL = CxtI->getModule()->getDataLayout();
LVILatticeVal Result = getCache(PImpl, AC, &DL, DT).getValueAt(V, CxtI);
Tristate Ret = getPredicateResult(Pred, C, Result, DL, TLI);
if (Ret != Unknown)
return Ret;
// Note: The following bit of code is somewhat distinct from the rest of LVI;
// LVI as a whole tries to compute a lattice value which is conservatively
// correct at a given location. In this case, we have a predicate which we
// weren't able to prove about the merged result, and we're pushing that
// predicate back along each incoming edge to see if we can prove it
// separately for each input. As a motivating example, consider:
// bb1:
// %v1 = ... ; constantrange<1, 5>
// br label %merge
// bb2:
// %v2 = ... ; constantrange<10, 20>
// br label %merge
// merge:
// %phi = phi [%v1, %v2] ; constantrange<1,20>
// %pred = icmp eq i32 %phi, 8
// We can't tell from the lattice value for '%phi' that '%pred' is false
// along each path, but by checking the predicate over each input separately,
// we can.
// We limit the search to one step backwards from the current BB and value.
// We could consider extending this to search further backwards through the
// CFG and/or value graph, but there are non-obvious compile time vs quality
// tradeoffs.
if (CxtI) {
BasicBlock *BB = CxtI->getParent();
// Function entry or an unreachable block. Bail to avoid confusing
// analysis below.
pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
if (PI == PE)
return Unknown;
// If V is a PHI node in the same block as the context, we need to ask
// questions about the predicate as applied to the incoming value along
// each edge. This is useful for eliminating cases where the predicate is
// known along all incoming edges.
if (auto *PHI = dyn_cast<PHINode>(V))
if (PHI->getParent() == BB) {
Tristate Baseline = Unknown;
for (unsigned i = 0, e = PHI->getNumIncomingValues(); i < e; i++) {
Value *Incoming = PHI->getIncomingValue(i);
BasicBlock *PredBB = PHI->getIncomingBlock(i);
// Note that PredBB may be BB itself.
Tristate Result = getPredicateOnEdge(Pred, Incoming, C, PredBB, BB,
CxtI);
// Keep going as long as we've seen a consistent known result for
// all inputs.
Baseline = (i == 0) ? Result /* First iteration */
: (Baseline == Result ? Baseline : Unknown); /* All others */
if (Baseline == Unknown)
break;
}
if (Baseline != Unknown)
return Baseline;
}
// For a comparison where the V is outside this block, it's possible
// that we've branched on it before. Look to see if the value is known
// on all incoming edges.
if (!isa<Instruction>(V) ||
cast<Instruction>(V)->getParent() != BB) {
// For predecessor edge, determine if the comparison is true or false
// on that edge. If they're all true or all false, we can conclude
// the value of the comparison in this block.
Tristate Baseline = getPredicateOnEdge(Pred, V, C, *PI, BB, CxtI);
if (Baseline != Unknown) {
// Check that all remaining incoming values match the first one.
while (++PI != PE) {
Tristate Ret = getPredicateOnEdge(Pred, V, C, *PI, BB, CxtI);
if (Ret != Baseline) break;
}
// If we terminated early, then one of the values didn't match.
if (PI == PE) {
return Baseline;
}
}
}
}
return Unknown;
}
void LazyValueInfo::threadEdge(BasicBlock *PredBB, BasicBlock *OldSucc,
BasicBlock *NewSucc) {
if (PImpl) {
const DataLayout &DL = PredBB->getModule()->getDataLayout();
getCache(PImpl, AC, &DL, DT).threadEdge(PredBB, OldSucc, NewSucc);
}
}
void LazyValueInfo::eraseBlock(BasicBlock *BB) {
if (PImpl) {
const DataLayout &DL = BB->getModule()->getDataLayout();
getCache(PImpl, AC, &DL, DT).eraseBlock(BB);
}
}