llvm/tools/llvm-objdump/COFFDump.cpp
Saleem Abdulrasool 8a8360251d llvm-objdump: add coff import library symbol listing support
This adds behaviour similar to binutils' objdump which can show symbols in an
import library.  Differences from that stem around the fact that we do not
create section symbols nor the all import import descriptor symbol reference.
However, this does mean that the tool can serve as a possible replacement for
the existing tool.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@279088 91177308-0d34-0410-b5e6-96231b3b80d8
2016-08-18 16:39:19 +00:00

699 lines
25 KiB
C++

//===-- COFFDump.cpp - COFF-specific dumper ---------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
///
/// \file
/// \brief This file implements the COFF-specific dumper for llvm-objdump.
/// It outputs the Win64 EH data structures as plain text.
/// The encoding of the unwind codes is described in MSDN:
/// http://msdn.microsoft.com/en-us/library/ck9asaa9.aspx
///
//===----------------------------------------------------------------------===//
#include "llvm-objdump.h"
#include "llvm/Object/COFF.h"
#include "llvm/Object/COFFImportFile.h"
#include "llvm/Object/ObjectFile.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/SourceMgr.h"
#include "llvm/Support/Win64EH.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cstring>
#include <system_error>
using namespace llvm;
using namespace object;
using namespace llvm::Win64EH;
// Returns the name of the unwind code.
static StringRef getUnwindCodeTypeName(uint8_t Code) {
switch(Code) {
default: llvm_unreachable("Invalid unwind code");
case UOP_PushNonVol: return "UOP_PushNonVol";
case UOP_AllocLarge: return "UOP_AllocLarge";
case UOP_AllocSmall: return "UOP_AllocSmall";
case UOP_SetFPReg: return "UOP_SetFPReg";
case UOP_SaveNonVol: return "UOP_SaveNonVol";
case UOP_SaveNonVolBig: return "UOP_SaveNonVolBig";
case UOP_SaveXMM128: return "UOP_SaveXMM128";
case UOP_SaveXMM128Big: return "UOP_SaveXMM128Big";
case UOP_PushMachFrame: return "UOP_PushMachFrame";
}
}
// Returns the name of a referenced register.
static StringRef getUnwindRegisterName(uint8_t Reg) {
switch(Reg) {
default: llvm_unreachable("Invalid register");
case 0: return "RAX";
case 1: return "RCX";
case 2: return "RDX";
case 3: return "RBX";
case 4: return "RSP";
case 5: return "RBP";
case 6: return "RSI";
case 7: return "RDI";
case 8: return "R8";
case 9: return "R9";
case 10: return "R10";
case 11: return "R11";
case 12: return "R12";
case 13: return "R13";
case 14: return "R14";
case 15: return "R15";
}
}
// Calculates the number of array slots required for the unwind code.
static unsigned getNumUsedSlots(const UnwindCode &UnwindCode) {
switch (UnwindCode.getUnwindOp()) {
default: llvm_unreachable("Invalid unwind code");
case UOP_PushNonVol:
case UOP_AllocSmall:
case UOP_SetFPReg:
case UOP_PushMachFrame:
return 1;
case UOP_SaveNonVol:
case UOP_SaveXMM128:
return 2;
case UOP_SaveNonVolBig:
case UOP_SaveXMM128Big:
return 3;
case UOP_AllocLarge:
return (UnwindCode.getOpInfo() == 0) ? 2 : 3;
}
}
// Prints one unwind code. Because an unwind code can occupy up to 3 slots in
// the unwind codes array, this function requires that the correct number of
// slots is provided.
static void printUnwindCode(ArrayRef<UnwindCode> UCs) {
assert(UCs.size() >= getNumUsedSlots(UCs[0]));
outs() << format(" 0x%02x: ", unsigned(UCs[0].u.CodeOffset))
<< getUnwindCodeTypeName(UCs[0].getUnwindOp());
switch (UCs[0].getUnwindOp()) {
case UOP_PushNonVol:
outs() << " " << getUnwindRegisterName(UCs[0].getOpInfo());
break;
case UOP_AllocLarge:
if (UCs[0].getOpInfo() == 0) {
outs() << " " << UCs[1].FrameOffset;
} else {
outs() << " " << UCs[1].FrameOffset
+ (static_cast<uint32_t>(UCs[2].FrameOffset) << 16);
}
break;
case UOP_AllocSmall:
outs() << " " << ((UCs[0].getOpInfo() + 1) * 8);
break;
case UOP_SetFPReg:
outs() << " ";
break;
case UOP_SaveNonVol:
outs() << " " << getUnwindRegisterName(UCs[0].getOpInfo())
<< format(" [0x%04x]", 8 * UCs[1].FrameOffset);
break;
case UOP_SaveNonVolBig:
outs() << " " << getUnwindRegisterName(UCs[0].getOpInfo())
<< format(" [0x%08x]", UCs[1].FrameOffset
+ (static_cast<uint32_t>(UCs[2].FrameOffset) << 16));
break;
case UOP_SaveXMM128:
outs() << " XMM" << static_cast<uint32_t>(UCs[0].getOpInfo())
<< format(" [0x%04x]", 16 * UCs[1].FrameOffset);
break;
case UOP_SaveXMM128Big:
outs() << " XMM" << UCs[0].getOpInfo()
<< format(" [0x%08x]", UCs[1].FrameOffset
+ (static_cast<uint32_t>(UCs[2].FrameOffset) << 16));
break;
case UOP_PushMachFrame:
outs() << " " << (UCs[0].getOpInfo() ? "w/o" : "w")
<< " error code";
break;
}
outs() << "\n";
}
static void printAllUnwindCodes(ArrayRef<UnwindCode> UCs) {
for (const UnwindCode *I = UCs.begin(), *E = UCs.end(); I < E; ) {
unsigned UsedSlots = getNumUsedSlots(*I);
if (UsedSlots > UCs.size()) {
outs() << "Unwind data corrupted: Encountered unwind op "
<< getUnwindCodeTypeName((*I).getUnwindOp())
<< " which requires " << UsedSlots
<< " slots, but only " << UCs.size()
<< " remaining in buffer";
return ;
}
printUnwindCode(makeArrayRef(I, E));
I += UsedSlots;
}
}
// Given a symbol sym this functions returns the address and section of it.
static std::error_code
resolveSectionAndAddress(const COFFObjectFile *Obj, const SymbolRef &Sym,
const coff_section *&ResolvedSection,
uint64_t &ResolvedAddr) {
Expected<uint64_t> ResolvedAddrOrErr = Sym.getAddress();
if (!ResolvedAddrOrErr)
return errorToErrorCode(ResolvedAddrOrErr.takeError());
ResolvedAddr = *ResolvedAddrOrErr;
Expected<section_iterator> Iter = Sym.getSection();
if (!Iter)
return errorToErrorCode(Iter.takeError());
ResolvedSection = Obj->getCOFFSection(**Iter);
return std::error_code();
}
// Given a vector of relocations for a section and an offset into this section
// the function returns the symbol used for the relocation at the offset.
static std::error_code resolveSymbol(const std::vector<RelocationRef> &Rels,
uint64_t Offset, SymbolRef &Sym) {
for (std::vector<RelocationRef>::const_iterator I = Rels.begin(),
E = Rels.end();
I != E; ++I) {
uint64_t Ofs = I->getOffset();
if (Ofs == Offset) {
Sym = *I->getSymbol();
return std::error_code();
}
}
return object_error::parse_failed;
}
// Given a vector of relocations for a section and an offset into this section
// the function resolves the symbol used for the relocation at the offset and
// returns the section content and the address inside the content pointed to
// by the symbol.
static std::error_code
getSectionContents(const COFFObjectFile *Obj,
const std::vector<RelocationRef> &Rels, uint64_t Offset,
ArrayRef<uint8_t> &Contents, uint64_t &Addr) {
SymbolRef Sym;
if (std::error_code EC = resolveSymbol(Rels, Offset, Sym))
return EC;
const coff_section *Section;
if (std::error_code EC = resolveSectionAndAddress(Obj, Sym, Section, Addr))
return EC;
if (std::error_code EC = Obj->getSectionContents(Section, Contents))
return EC;
return std::error_code();
}
// Given a vector of relocations for a section and an offset into this section
// the function returns the name of the symbol used for the relocation at the
// offset.
static std::error_code resolveSymbolName(const std::vector<RelocationRef> &Rels,
uint64_t Offset, StringRef &Name) {
SymbolRef Sym;
if (std::error_code EC = resolveSymbol(Rels, Offset, Sym))
return EC;
Expected<StringRef> NameOrErr = Sym.getName();
if (!NameOrErr)
return errorToErrorCode(NameOrErr.takeError());
Name = *NameOrErr;
return std::error_code();
}
static void printCOFFSymbolAddress(llvm::raw_ostream &Out,
const std::vector<RelocationRef> &Rels,
uint64_t Offset, uint32_t Disp) {
StringRef Sym;
if (!resolveSymbolName(Rels, Offset, Sym)) {
Out << Sym;
if (Disp > 0)
Out << format(" + 0x%04x", Disp);
} else {
Out << format("0x%04x", Disp);
}
}
static void
printSEHTable(const COFFObjectFile *Obj, uint32_t TableVA, int Count) {
if (Count == 0)
return;
const pe32_header *PE32Header;
error(Obj->getPE32Header(PE32Header));
uint32_t ImageBase = PE32Header->ImageBase;
uintptr_t IntPtr = 0;
error(Obj->getVaPtr(TableVA, IntPtr));
const support::ulittle32_t *P = (const support::ulittle32_t *)IntPtr;
outs() << "SEH Table:";
for (int I = 0; I < Count; ++I)
outs() << format(" 0x%x", P[I] + ImageBase);
outs() << "\n\n";
}
template <typename T>
static void printTLSDirectoryT(const coff_tls_directory<T> *TLSDir) {
size_t FormatWidth = sizeof(T) * 2;
outs() << "TLS directory:"
<< "\n StartAddressOfRawData: "
<< format_hex(TLSDir->StartAddressOfRawData, FormatWidth)
<< "\n EndAddressOfRawData: "
<< format_hex(TLSDir->EndAddressOfRawData, FormatWidth)
<< "\n AddressOfIndex: "
<< format_hex(TLSDir->AddressOfIndex, FormatWidth)
<< "\n AddressOfCallBacks: "
<< format_hex(TLSDir->AddressOfCallBacks, FormatWidth)
<< "\n SizeOfZeroFill: "
<< TLSDir->SizeOfZeroFill
<< "\n Characteristics: "
<< TLSDir->Characteristics
<< "\n Alignment: "
<< TLSDir->getAlignment()
<< "\n\n";
}
static void printTLSDirectory(const COFFObjectFile *Obj) {
const pe32_header *PE32Header;
error(Obj->getPE32Header(PE32Header));
const pe32plus_header *PE32PlusHeader;
error(Obj->getPE32PlusHeader(PE32PlusHeader));
// Skip if it's not executable.
if (!PE32Header && !PE32PlusHeader)
return;
const data_directory *DataDir;
error(Obj->getDataDirectory(COFF::TLS_TABLE, DataDir));
uintptr_t IntPtr = 0;
if (DataDir->RelativeVirtualAddress == 0)
return;
error(Obj->getRvaPtr(DataDir->RelativeVirtualAddress, IntPtr));
if (PE32Header) {
auto *TLSDir = reinterpret_cast<const coff_tls_directory32 *>(IntPtr);
printTLSDirectoryT(TLSDir);
} else {
auto *TLSDir = reinterpret_cast<const coff_tls_directory64 *>(IntPtr);
printTLSDirectoryT(TLSDir);
}
outs() << "\n";
}
static void printLoadConfiguration(const COFFObjectFile *Obj) {
// Skip if it's not executable.
const pe32_header *PE32Header;
error(Obj->getPE32Header(PE32Header));
if (!PE32Header)
return;
// Currently only x86 is supported
if (Obj->getMachine() != COFF::IMAGE_FILE_MACHINE_I386)
return;
const data_directory *DataDir;
error(Obj->getDataDirectory(COFF::LOAD_CONFIG_TABLE, DataDir));
uintptr_t IntPtr = 0;
if (DataDir->RelativeVirtualAddress == 0)
return;
error(Obj->getRvaPtr(DataDir->RelativeVirtualAddress, IntPtr));
auto *LoadConf = reinterpret_cast<const coff_load_configuration32 *>(IntPtr);
outs() << "Load configuration:"
<< "\n Timestamp: " << LoadConf->TimeDateStamp
<< "\n Major Version: " << LoadConf->MajorVersion
<< "\n Minor Version: " << LoadConf->MinorVersion
<< "\n GlobalFlags Clear: " << LoadConf->GlobalFlagsClear
<< "\n GlobalFlags Set: " << LoadConf->GlobalFlagsSet
<< "\n Critical Section Default Timeout: " << LoadConf->CriticalSectionDefaultTimeout
<< "\n Decommit Free Block Threshold: " << LoadConf->DeCommitFreeBlockThreshold
<< "\n Decommit Total Free Threshold: " << LoadConf->DeCommitTotalFreeThreshold
<< "\n Lock Prefix Table: " << LoadConf->LockPrefixTable
<< "\n Maximum Allocation Size: " << LoadConf->MaximumAllocationSize
<< "\n Virtual Memory Threshold: " << LoadConf->VirtualMemoryThreshold
<< "\n Process Affinity Mask: " << LoadConf->ProcessAffinityMask
<< "\n Process Heap Flags: " << LoadConf->ProcessHeapFlags
<< "\n CSD Version: " << LoadConf->CSDVersion
<< "\n Security Cookie: " << LoadConf->SecurityCookie
<< "\n SEH Table: " << LoadConf->SEHandlerTable
<< "\n SEH Count: " << LoadConf->SEHandlerCount
<< "\n\n";
printSEHTable(Obj, LoadConf->SEHandlerTable, LoadConf->SEHandlerCount);
outs() << "\n";
}
// Prints import tables. The import table is a table containing the list of
// DLL name and symbol names which will be linked by the loader.
static void printImportTables(const COFFObjectFile *Obj) {
import_directory_iterator I = Obj->import_directory_begin();
import_directory_iterator E = Obj->import_directory_end();
if (I == E)
return;
outs() << "The Import Tables:\n";
for (const ImportDirectoryEntryRef &DirRef : Obj->import_directories()) {
const coff_import_directory_table_entry *Dir;
StringRef Name;
if (DirRef.getImportTableEntry(Dir)) return;
if (DirRef.getName(Name)) return;
outs() << format(" lookup %08x time %08x fwd %08x name %08x addr %08x\n\n",
static_cast<uint32_t>(Dir->ImportLookupTableRVA),
static_cast<uint32_t>(Dir->TimeDateStamp),
static_cast<uint32_t>(Dir->ForwarderChain),
static_cast<uint32_t>(Dir->NameRVA),
static_cast<uint32_t>(Dir->ImportAddressTableRVA));
outs() << " DLL Name: " << Name << "\n";
outs() << " Hint/Ord Name\n";
for (const ImportedSymbolRef &Entry : DirRef.imported_symbols()) {
bool IsOrdinal;
if (Entry.isOrdinal(IsOrdinal))
return;
if (IsOrdinal) {
uint16_t Ordinal;
if (Entry.getOrdinal(Ordinal))
return;
outs() << format(" % 6d\n", Ordinal);
continue;
}
uint32_t HintNameRVA;
if (Entry.getHintNameRVA(HintNameRVA))
return;
uint16_t Hint;
StringRef Name;
if (Obj->getHintName(HintNameRVA, Hint, Name))
return;
outs() << format(" % 6d ", Hint) << Name << "\n";
}
outs() << "\n";
}
}
// Prints export tables. The export table is a table containing the list of
// exported symbol from the DLL.
static void printExportTable(const COFFObjectFile *Obj) {
outs() << "Export Table:\n";
export_directory_iterator I = Obj->export_directory_begin();
export_directory_iterator E = Obj->export_directory_end();
if (I == E)
return;
StringRef DllName;
uint32_t OrdinalBase;
if (I->getDllName(DllName))
return;
if (I->getOrdinalBase(OrdinalBase))
return;
outs() << " DLL name: " << DllName << "\n";
outs() << " Ordinal base: " << OrdinalBase << "\n";
outs() << " Ordinal RVA Name\n";
for (; I != E; I = ++I) {
uint32_t Ordinal;
if (I->getOrdinal(Ordinal))
return;
uint32_t RVA;
if (I->getExportRVA(RVA))
return;
bool IsForwarder;
if (I->isForwarder(IsForwarder))
return;
if (IsForwarder) {
// Export table entries can be used to re-export symbols that
// this COFF file is imported from some DLLs. This is rare.
// In most cases IsForwarder is false.
outs() << format(" % 4d ", Ordinal);
} else {
outs() << format(" % 4d %# 8x", Ordinal, RVA);
}
StringRef Name;
if (I->getSymbolName(Name))
continue;
if (!Name.empty())
outs() << " " << Name;
if (IsForwarder) {
StringRef S;
if (I->getForwardTo(S))
return;
outs() << " (forwarded to " << S << ")";
}
outs() << "\n";
}
}
// Given the COFF object file, this function returns the relocations for .pdata
// and the pointer to "runtime function" structs.
static bool getPDataSection(const COFFObjectFile *Obj,
std::vector<RelocationRef> &Rels,
const RuntimeFunction *&RFStart, int &NumRFs) {
for (const SectionRef &Section : Obj->sections()) {
StringRef Name;
error(Section.getName(Name));
if (Name != ".pdata")
continue;
const coff_section *Pdata = Obj->getCOFFSection(Section);
for (const RelocationRef &Reloc : Section.relocations())
Rels.push_back(Reloc);
// Sort relocations by address.
std::sort(Rels.begin(), Rels.end(), RelocAddressLess);
ArrayRef<uint8_t> Contents;
error(Obj->getSectionContents(Pdata, Contents));
if (Contents.empty())
continue;
RFStart = reinterpret_cast<const RuntimeFunction *>(Contents.data());
NumRFs = Contents.size() / sizeof(RuntimeFunction);
return true;
}
return false;
}
static void printWin64EHUnwindInfo(const Win64EH::UnwindInfo *UI) {
// The casts to int are required in order to output the value as number.
// Without the casts the value would be interpreted as char data (which
// results in garbage output).
outs() << " Version: " << static_cast<int>(UI->getVersion()) << "\n";
outs() << " Flags: " << static_cast<int>(UI->getFlags());
if (UI->getFlags()) {
if (UI->getFlags() & UNW_ExceptionHandler)
outs() << " UNW_ExceptionHandler";
if (UI->getFlags() & UNW_TerminateHandler)
outs() << " UNW_TerminateHandler";
if (UI->getFlags() & UNW_ChainInfo)
outs() << " UNW_ChainInfo";
}
outs() << "\n";
outs() << " Size of prolog: " << static_cast<int>(UI->PrologSize) << "\n";
outs() << " Number of Codes: " << static_cast<int>(UI->NumCodes) << "\n";
// Maybe this should move to output of UOP_SetFPReg?
if (UI->getFrameRegister()) {
outs() << " Frame register: "
<< getUnwindRegisterName(UI->getFrameRegister()) << "\n";
outs() << " Frame offset: " << 16 * UI->getFrameOffset() << "\n";
} else {
outs() << " No frame pointer used\n";
}
if (UI->getFlags() & (UNW_ExceptionHandler | UNW_TerminateHandler)) {
// FIXME: Output exception handler data
} else if (UI->getFlags() & UNW_ChainInfo) {
// FIXME: Output chained unwind info
}
if (UI->NumCodes)
outs() << " Unwind Codes:\n";
printAllUnwindCodes(makeArrayRef(&UI->UnwindCodes[0], UI->NumCodes));
outs() << "\n";
outs().flush();
}
/// Prints out the given RuntimeFunction struct for x64, assuming that Obj is
/// pointing to an executable file.
static void printRuntimeFunction(const COFFObjectFile *Obj,
const RuntimeFunction &RF) {
if (!RF.StartAddress)
return;
outs() << "Function Table:\n"
<< format(" Start Address: 0x%04x\n",
static_cast<uint32_t>(RF.StartAddress))
<< format(" End Address: 0x%04x\n",
static_cast<uint32_t>(RF.EndAddress))
<< format(" Unwind Info Address: 0x%04x\n",
static_cast<uint32_t>(RF.UnwindInfoOffset));
uintptr_t addr;
if (Obj->getRvaPtr(RF.UnwindInfoOffset, addr))
return;
printWin64EHUnwindInfo(reinterpret_cast<const Win64EH::UnwindInfo *>(addr));
}
/// Prints out the given RuntimeFunction struct for x64, assuming that Obj is
/// pointing to an object file. Unlike executable, fields in RuntimeFunction
/// struct are filled with zeros, but instead there are relocations pointing to
/// them so that the linker will fill targets' RVAs to the fields at link
/// time. This function interprets the relocations to find the data to be used
/// in the resulting executable.
static void printRuntimeFunctionRels(const COFFObjectFile *Obj,
const RuntimeFunction &RF,
uint64_t SectionOffset,
const std::vector<RelocationRef> &Rels) {
outs() << "Function Table:\n";
outs() << " Start Address: ";
printCOFFSymbolAddress(outs(), Rels,
SectionOffset +
/*offsetof(RuntimeFunction, StartAddress)*/ 0,
RF.StartAddress);
outs() << "\n";
outs() << " End Address: ";
printCOFFSymbolAddress(outs(), Rels,
SectionOffset +
/*offsetof(RuntimeFunction, EndAddress)*/ 4,
RF.EndAddress);
outs() << "\n";
outs() << " Unwind Info Address: ";
printCOFFSymbolAddress(outs(), Rels,
SectionOffset +
/*offsetof(RuntimeFunction, UnwindInfoOffset)*/ 8,
RF.UnwindInfoOffset);
outs() << "\n";
ArrayRef<uint8_t> XContents;
uint64_t UnwindInfoOffset = 0;
error(getSectionContents(
Obj, Rels, SectionOffset +
/*offsetof(RuntimeFunction, UnwindInfoOffset)*/ 8,
XContents, UnwindInfoOffset));
if (XContents.empty())
return;
UnwindInfoOffset += RF.UnwindInfoOffset;
if (UnwindInfoOffset > XContents.size())
return;
auto *UI = reinterpret_cast<const Win64EH::UnwindInfo *>(XContents.data() +
UnwindInfoOffset);
printWin64EHUnwindInfo(UI);
}
void llvm::printCOFFUnwindInfo(const COFFObjectFile *Obj) {
if (Obj->getMachine() != COFF::IMAGE_FILE_MACHINE_AMD64) {
errs() << "Unsupported image machine type "
"(currently only AMD64 is supported).\n";
return;
}
std::vector<RelocationRef> Rels;
const RuntimeFunction *RFStart;
int NumRFs;
if (!getPDataSection(Obj, Rels, RFStart, NumRFs))
return;
ArrayRef<RuntimeFunction> RFs(RFStart, NumRFs);
bool IsExecutable = Rels.empty();
if (IsExecutable) {
for (const RuntimeFunction &RF : RFs)
printRuntimeFunction(Obj, RF);
return;
}
for (const RuntimeFunction &RF : RFs) {
uint64_t SectionOffset =
std::distance(RFs.begin(), &RF) * sizeof(RuntimeFunction);
printRuntimeFunctionRels(Obj, RF, SectionOffset, Rels);
}
}
void llvm::printCOFFFileHeader(const object::ObjectFile *Obj) {
const COFFObjectFile *file = dyn_cast<const COFFObjectFile>(Obj);
printTLSDirectory(file);
printLoadConfiguration(file);
printImportTables(file);
printExportTable(file);
}
void llvm::printCOFFSymbolTable(const object::COFFImportFile *i) {
unsigned Index = 0;
bool IsCode = i->getCOFFImportHeader()->getType() == COFF::IMPORT_CODE;
for (const object::BasicSymbolRef &Sym : i->symbols()) {
std::string Name;
raw_string_ostream NS(Name);
Sym.printName(NS);
NS.flush();
outs() << "[" << format("%2d", Index) << "]"
<< "(sec " << format("%2d", 0) << ")"
<< "(fl 0x00)" // Flag bits, which COFF doesn't have.
<< "(ty " << format("%3x", (IsCode && Index) ? 32 : 0) << ")"
<< "(scl " << format("%3x", 0) << ") "
<< "(nx " << 0 << ") "
<< "0x" << format("%08x", 0) << " " << Name << '\n';
++Index;
}
}
void llvm::printCOFFSymbolTable(const COFFObjectFile *coff) {
for (unsigned SI = 0, SE = coff->getNumberOfSymbols(); SI != SE; ++SI) {
ErrorOr<COFFSymbolRef> Symbol = coff->getSymbol(SI);
StringRef Name;
error(Symbol.getError());
error(coff->getSymbolName(*Symbol, Name));
outs() << "[" << format("%2d", SI) << "]"
<< "(sec " << format("%2d", int(Symbol->getSectionNumber())) << ")"
<< "(fl 0x00)" // Flag bits, which COFF doesn't have.
<< "(ty " << format("%3x", unsigned(Symbol->getType())) << ")"
<< "(scl " << format("%3x", unsigned(Symbol->getStorageClass())) << ") "
<< "(nx " << unsigned(Symbol->getNumberOfAuxSymbols()) << ") "
<< "0x" << format("%08x", unsigned(Symbol->getValue())) << " "
<< Name << "\n";
for (unsigned AI = 0, AE = Symbol->getNumberOfAuxSymbols(); AI < AE; ++AI, ++SI) {
if (Symbol->isSectionDefinition()) {
const coff_aux_section_definition *asd;
error(coff->getAuxSymbol<coff_aux_section_definition>(SI + 1, asd));
int32_t AuxNumber = asd->getNumber(Symbol->isBigObj());
outs() << "AUX "
<< format("scnlen 0x%x nreloc %d nlnno %d checksum 0x%x "
, unsigned(asd->Length)
, unsigned(asd->NumberOfRelocations)
, unsigned(asd->NumberOfLinenumbers)
, unsigned(asd->CheckSum))
<< format("assoc %d comdat %d\n"
, unsigned(AuxNumber)
, unsigned(asd->Selection));
} else if (Symbol->isFileRecord()) {
const char *FileName;
error(coff->getAuxSymbol<char>(SI + 1, FileName));
StringRef Name(FileName, Symbol->getNumberOfAuxSymbols() *
coff->getSymbolTableEntrySize());
outs() << "AUX " << Name.rtrim(StringRef("\0", 1)) << '\n';
SI = SI + Symbol->getNumberOfAuxSymbols();
break;
} else if (Symbol->isWeakExternal()) {
const coff_aux_weak_external *awe;
error(coff->getAuxSymbol<coff_aux_weak_external>(SI + 1, awe));
outs() << "AUX " << format("indx %d srch %d\n",
static_cast<uint32_t>(awe->TagIndex),
static_cast<uint32_t>(awe->Characteristics));
} else {
outs() << "AUX Unknown\n";
}
}
}
}