mirror of
https://github.com/RPCSX/llvm.git
synced 2025-01-05 11:18:48 +00:00
fad81ab170
We were deciding to not link an available_externally gv over a declaration, but then copying over the body anyway. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@255169 91177308-0d34-0410-b5e6-96231b3b80d8
2035 lines
74 KiB
C++
2035 lines
74 KiB
C++
//===- lib/Linker/LinkModules.cpp - Module Linker Implementation ----------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the LLVM module linker.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Linker/Linker.h"
|
|
#include "llvm-c/Linker.h"
|
|
#include "llvm/ADT/SetVector.h"
|
|
#include "llvm/ADT/SmallString.h"
|
|
#include "llvm/ADT/Triple.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/DiagnosticInfo.h"
|
|
#include "llvm/IR/DiagnosticPrinter.h"
|
|
#include "llvm/IR/LLVMContext.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/IR/TypeFinder.h"
|
|
#include "llvm/Transforms/Utils/Cloning.h"
|
|
using namespace llvm;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// TypeMap implementation.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
class TypeMapTy : public ValueMapTypeRemapper {
|
|
/// This is a mapping from a source type to a destination type to use.
|
|
DenseMap<Type *, Type *> MappedTypes;
|
|
|
|
/// When checking to see if two subgraphs are isomorphic, we speculatively
|
|
/// add types to MappedTypes, but keep track of them here in case we need to
|
|
/// roll back.
|
|
SmallVector<Type *, 16> SpeculativeTypes;
|
|
|
|
SmallVector<StructType *, 16> SpeculativeDstOpaqueTypes;
|
|
|
|
/// This is a list of non-opaque structs in the source module that are mapped
|
|
/// to an opaque struct in the destination module.
|
|
SmallVector<StructType *, 16> SrcDefinitionsToResolve;
|
|
|
|
/// This is the set of opaque types in the destination modules who are
|
|
/// getting a body from the source module.
|
|
SmallPtrSet<StructType *, 16> DstResolvedOpaqueTypes;
|
|
|
|
public:
|
|
TypeMapTy(Linker::IdentifiedStructTypeSet &DstStructTypesSet)
|
|
: DstStructTypesSet(DstStructTypesSet) {}
|
|
|
|
Linker::IdentifiedStructTypeSet &DstStructTypesSet;
|
|
/// Indicate that the specified type in the destination module is conceptually
|
|
/// equivalent to the specified type in the source module.
|
|
void addTypeMapping(Type *DstTy, Type *SrcTy);
|
|
|
|
/// Produce a body for an opaque type in the dest module from a type
|
|
/// definition in the source module.
|
|
void linkDefinedTypeBodies();
|
|
|
|
/// Return the mapped type to use for the specified input type from the
|
|
/// source module.
|
|
Type *get(Type *SrcTy);
|
|
Type *get(Type *SrcTy, SmallPtrSet<StructType *, 8> &Visited);
|
|
|
|
void finishType(StructType *DTy, StructType *STy, ArrayRef<Type *> ETypes);
|
|
|
|
FunctionType *get(FunctionType *T) {
|
|
return cast<FunctionType>(get((Type *)T));
|
|
}
|
|
|
|
/// Dump out the type map for debugging purposes.
|
|
void dump() const {
|
|
for (auto &Pair : MappedTypes) {
|
|
dbgs() << "TypeMap: ";
|
|
Pair.first->print(dbgs());
|
|
dbgs() << " => ";
|
|
Pair.second->print(dbgs());
|
|
dbgs() << '\n';
|
|
}
|
|
}
|
|
|
|
private:
|
|
Type *remapType(Type *SrcTy) override { return get(SrcTy); }
|
|
|
|
bool areTypesIsomorphic(Type *DstTy, Type *SrcTy);
|
|
};
|
|
}
|
|
|
|
void TypeMapTy::addTypeMapping(Type *DstTy, Type *SrcTy) {
|
|
assert(SpeculativeTypes.empty());
|
|
assert(SpeculativeDstOpaqueTypes.empty());
|
|
|
|
// Check to see if these types are recursively isomorphic and establish a
|
|
// mapping between them if so.
|
|
if (!areTypesIsomorphic(DstTy, SrcTy)) {
|
|
// Oops, they aren't isomorphic. Just discard this request by rolling out
|
|
// any speculative mappings we've established.
|
|
for (Type *Ty : SpeculativeTypes)
|
|
MappedTypes.erase(Ty);
|
|
|
|
SrcDefinitionsToResolve.resize(SrcDefinitionsToResolve.size() -
|
|
SpeculativeDstOpaqueTypes.size());
|
|
for (StructType *Ty : SpeculativeDstOpaqueTypes)
|
|
DstResolvedOpaqueTypes.erase(Ty);
|
|
} else {
|
|
for (Type *Ty : SpeculativeTypes)
|
|
if (auto *STy = dyn_cast<StructType>(Ty))
|
|
if (STy->hasName())
|
|
STy->setName("");
|
|
}
|
|
SpeculativeTypes.clear();
|
|
SpeculativeDstOpaqueTypes.clear();
|
|
}
|
|
|
|
/// Recursively walk this pair of types, returning true if they are isomorphic,
|
|
/// false if they are not.
|
|
bool TypeMapTy::areTypesIsomorphic(Type *DstTy, Type *SrcTy) {
|
|
// Two types with differing kinds are clearly not isomorphic.
|
|
if (DstTy->getTypeID() != SrcTy->getTypeID())
|
|
return false;
|
|
|
|
// If we have an entry in the MappedTypes table, then we have our answer.
|
|
Type *&Entry = MappedTypes[SrcTy];
|
|
if (Entry)
|
|
return Entry == DstTy;
|
|
|
|
// Two identical types are clearly isomorphic. Remember this
|
|
// non-speculatively.
|
|
if (DstTy == SrcTy) {
|
|
Entry = DstTy;
|
|
return true;
|
|
}
|
|
|
|
// Okay, we have two types with identical kinds that we haven't seen before.
|
|
|
|
// If this is an opaque struct type, special case it.
|
|
if (StructType *SSTy = dyn_cast<StructType>(SrcTy)) {
|
|
// Mapping an opaque type to any struct, just keep the dest struct.
|
|
if (SSTy->isOpaque()) {
|
|
Entry = DstTy;
|
|
SpeculativeTypes.push_back(SrcTy);
|
|
return true;
|
|
}
|
|
|
|
// Mapping a non-opaque source type to an opaque dest. If this is the first
|
|
// type that we're mapping onto this destination type then we succeed. Keep
|
|
// the dest, but fill it in later. If this is the second (different) type
|
|
// that we're trying to map onto the same opaque type then we fail.
|
|
if (cast<StructType>(DstTy)->isOpaque()) {
|
|
// We can only map one source type onto the opaque destination type.
|
|
if (!DstResolvedOpaqueTypes.insert(cast<StructType>(DstTy)).second)
|
|
return false;
|
|
SrcDefinitionsToResolve.push_back(SSTy);
|
|
SpeculativeTypes.push_back(SrcTy);
|
|
SpeculativeDstOpaqueTypes.push_back(cast<StructType>(DstTy));
|
|
Entry = DstTy;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// If the number of subtypes disagree between the two types, then we fail.
|
|
if (SrcTy->getNumContainedTypes() != DstTy->getNumContainedTypes())
|
|
return false;
|
|
|
|
// Fail if any of the extra properties (e.g. array size) of the type disagree.
|
|
if (isa<IntegerType>(DstTy))
|
|
return false; // bitwidth disagrees.
|
|
if (PointerType *PT = dyn_cast<PointerType>(DstTy)) {
|
|
if (PT->getAddressSpace() != cast<PointerType>(SrcTy)->getAddressSpace())
|
|
return false;
|
|
|
|
} else if (FunctionType *FT = dyn_cast<FunctionType>(DstTy)) {
|
|
if (FT->isVarArg() != cast<FunctionType>(SrcTy)->isVarArg())
|
|
return false;
|
|
} else if (StructType *DSTy = dyn_cast<StructType>(DstTy)) {
|
|
StructType *SSTy = cast<StructType>(SrcTy);
|
|
if (DSTy->isLiteral() != SSTy->isLiteral() ||
|
|
DSTy->isPacked() != SSTy->isPacked())
|
|
return false;
|
|
} else if (ArrayType *DATy = dyn_cast<ArrayType>(DstTy)) {
|
|
if (DATy->getNumElements() != cast<ArrayType>(SrcTy)->getNumElements())
|
|
return false;
|
|
} else if (VectorType *DVTy = dyn_cast<VectorType>(DstTy)) {
|
|
if (DVTy->getNumElements() != cast<VectorType>(SrcTy)->getNumElements())
|
|
return false;
|
|
}
|
|
|
|
// Otherwise, we speculate that these two types will line up and recursively
|
|
// check the subelements.
|
|
Entry = DstTy;
|
|
SpeculativeTypes.push_back(SrcTy);
|
|
|
|
for (unsigned I = 0, E = SrcTy->getNumContainedTypes(); I != E; ++I)
|
|
if (!areTypesIsomorphic(DstTy->getContainedType(I),
|
|
SrcTy->getContainedType(I)))
|
|
return false;
|
|
|
|
// If everything seems to have lined up, then everything is great.
|
|
return true;
|
|
}
|
|
|
|
void TypeMapTy::linkDefinedTypeBodies() {
|
|
SmallVector<Type *, 16> Elements;
|
|
for (StructType *SrcSTy : SrcDefinitionsToResolve) {
|
|
StructType *DstSTy = cast<StructType>(MappedTypes[SrcSTy]);
|
|
assert(DstSTy->isOpaque());
|
|
|
|
// Map the body of the source type over to a new body for the dest type.
|
|
Elements.resize(SrcSTy->getNumElements());
|
|
for (unsigned I = 0, E = Elements.size(); I != E; ++I)
|
|
Elements[I] = get(SrcSTy->getElementType(I));
|
|
|
|
DstSTy->setBody(Elements, SrcSTy->isPacked());
|
|
DstStructTypesSet.switchToNonOpaque(DstSTy);
|
|
}
|
|
SrcDefinitionsToResolve.clear();
|
|
DstResolvedOpaqueTypes.clear();
|
|
}
|
|
|
|
void TypeMapTy::finishType(StructType *DTy, StructType *STy,
|
|
ArrayRef<Type *> ETypes) {
|
|
DTy->setBody(ETypes, STy->isPacked());
|
|
|
|
// Steal STy's name.
|
|
if (STy->hasName()) {
|
|
SmallString<16> TmpName = STy->getName();
|
|
STy->setName("");
|
|
DTy->setName(TmpName);
|
|
}
|
|
|
|
DstStructTypesSet.addNonOpaque(DTy);
|
|
}
|
|
|
|
Type *TypeMapTy::get(Type *Ty) {
|
|
SmallPtrSet<StructType *, 8> Visited;
|
|
return get(Ty, Visited);
|
|
}
|
|
|
|
Type *TypeMapTy::get(Type *Ty, SmallPtrSet<StructType *, 8> &Visited) {
|
|
// If we already have an entry for this type, return it.
|
|
Type **Entry = &MappedTypes[Ty];
|
|
if (*Entry)
|
|
return *Entry;
|
|
|
|
// These are types that LLVM itself will unique.
|
|
bool IsUniqued = !isa<StructType>(Ty) || cast<StructType>(Ty)->isLiteral();
|
|
|
|
#ifndef NDEBUG
|
|
if (!IsUniqued) {
|
|
for (auto &Pair : MappedTypes) {
|
|
assert(!(Pair.first != Ty && Pair.second == Ty) &&
|
|
"mapping to a source type");
|
|
}
|
|
}
|
|
#endif
|
|
|
|
if (!IsUniqued && !Visited.insert(cast<StructType>(Ty)).second) {
|
|
StructType *DTy = StructType::create(Ty->getContext());
|
|
return *Entry = DTy;
|
|
}
|
|
|
|
// If this is not a recursive type, then just map all of the elements and
|
|
// then rebuild the type from inside out.
|
|
SmallVector<Type *, 4> ElementTypes;
|
|
|
|
// If there are no element types to map, then the type is itself. This is
|
|
// true for the anonymous {} struct, things like 'float', integers, etc.
|
|
if (Ty->getNumContainedTypes() == 0 && IsUniqued)
|
|
return *Entry = Ty;
|
|
|
|
// Remap all of the elements, keeping track of whether any of them change.
|
|
bool AnyChange = false;
|
|
ElementTypes.resize(Ty->getNumContainedTypes());
|
|
for (unsigned I = 0, E = Ty->getNumContainedTypes(); I != E; ++I) {
|
|
ElementTypes[I] = get(Ty->getContainedType(I), Visited);
|
|
AnyChange |= ElementTypes[I] != Ty->getContainedType(I);
|
|
}
|
|
|
|
// If we found our type while recursively processing stuff, just use it.
|
|
Entry = &MappedTypes[Ty];
|
|
if (*Entry) {
|
|
if (auto *DTy = dyn_cast<StructType>(*Entry)) {
|
|
if (DTy->isOpaque()) {
|
|
auto *STy = cast<StructType>(Ty);
|
|
finishType(DTy, STy, ElementTypes);
|
|
}
|
|
}
|
|
return *Entry;
|
|
}
|
|
|
|
// If all of the element types mapped directly over and the type is not
|
|
// a nomed struct, then the type is usable as-is.
|
|
if (!AnyChange && IsUniqued)
|
|
return *Entry = Ty;
|
|
|
|
// Otherwise, rebuild a modified type.
|
|
switch (Ty->getTypeID()) {
|
|
default:
|
|
llvm_unreachable("unknown derived type to remap");
|
|
case Type::ArrayTyID:
|
|
return *Entry = ArrayType::get(ElementTypes[0],
|
|
cast<ArrayType>(Ty)->getNumElements());
|
|
case Type::VectorTyID:
|
|
return *Entry = VectorType::get(ElementTypes[0],
|
|
cast<VectorType>(Ty)->getNumElements());
|
|
case Type::PointerTyID:
|
|
return *Entry = PointerType::get(ElementTypes[0],
|
|
cast<PointerType>(Ty)->getAddressSpace());
|
|
case Type::FunctionTyID:
|
|
return *Entry = FunctionType::get(ElementTypes[0],
|
|
makeArrayRef(ElementTypes).slice(1),
|
|
cast<FunctionType>(Ty)->isVarArg());
|
|
case Type::StructTyID: {
|
|
auto *STy = cast<StructType>(Ty);
|
|
bool IsPacked = STy->isPacked();
|
|
if (IsUniqued)
|
|
return *Entry = StructType::get(Ty->getContext(), ElementTypes, IsPacked);
|
|
|
|
// If the type is opaque, we can just use it directly.
|
|
if (STy->isOpaque()) {
|
|
DstStructTypesSet.addOpaque(STy);
|
|
return *Entry = Ty;
|
|
}
|
|
|
|
if (StructType *OldT =
|
|
DstStructTypesSet.findNonOpaque(ElementTypes, IsPacked)) {
|
|
STy->setName("");
|
|
return *Entry = OldT;
|
|
}
|
|
|
|
if (!AnyChange) {
|
|
DstStructTypesSet.addNonOpaque(STy);
|
|
return *Entry = Ty;
|
|
}
|
|
|
|
StructType *DTy = StructType::create(Ty->getContext());
|
|
finishType(DTy, STy, ElementTypes);
|
|
return *Entry = DTy;
|
|
}
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ModuleLinker implementation.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
class ModuleLinker;
|
|
|
|
/// Creates prototypes for functions that are lazily linked on the fly. This
|
|
/// speeds up linking for modules with many/ lazily linked functions of which
|
|
/// few get used.
|
|
class ValueMaterializerTy final : public ValueMaterializer {
|
|
ModuleLinker *ModLinker;
|
|
|
|
public:
|
|
ValueMaterializerTy(ModuleLinker *ModLinker) : ModLinker(ModLinker) {}
|
|
|
|
Value *materializeDeclFor(Value *V) override;
|
|
void materializeInitFor(GlobalValue *New, GlobalValue *Old) override;
|
|
};
|
|
|
|
class LinkDiagnosticInfo : public DiagnosticInfo {
|
|
const Twine &Msg;
|
|
|
|
public:
|
|
LinkDiagnosticInfo(DiagnosticSeverity Severity, const Twine &Msg);
|
|
void print(DiagnosticPrinter &DP) const override;
|
|
};
|
|
LinkDiagnosticInfo::LinkDiagnosticInfo(DiagnosticSeverity Severity,
|
|
const Twine &Msg)
|
|
: DiagnosticInfo(DK_Linker, Severity), Msg(Msg) {}
|
|
void LinkDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; }
|
|
|
|
/// This is an implementation class for the LinkModules function, which is the
|
|
/// entrypoint for this file.
|
|
class ModuleLinker {
|
|
Module &DstM;
|
|
Module &SrcM;
|
|
|
|
TypeMapTy TypeMap;
|
|
ValueMaterializerTy ValMaterializer;
|
|
|
|
/// Mapping of values from what they used to be in Src, to what they are now
|
|
/// in DstM. ValueToValueMapTy is a ValueMap, which involves some overhead
|
|
/// due to the use of Value handles which the Linker doesn't actually need,
|
|
/// but this allows us to reuse the ValueMapper code.
|
|
ValueToValueMapTy ValueMap;
|
|
|
|
SetVector<GlobalValue *> ValuesToLink;
|
|
|
|
DiagnosticHandlerFunction DiagnosticHandler;
|
|
|
|
/// For symbol clashes, prefer those from Src.
|
|
unsigned Flags;
|
|
|
|
/// Function index passed into ModuleLinker for using in function
|
|
/// importing/exporting handling.
|
|
const FunctionInfoIndex *ImportIndex;
|
|
|
|
/// Function to import from source module, all other functions are
|
|
/// imported as declarations instead of definitions.
|
|
DenseSet<const GlobalValue *> *ImportFunction;
|
|
|
|
/// Set to true if the given FunctionInfoIndex contains any functions
|
|
/// from this source module, in which case we must conservatively assume
|
|
/// that any of its functions may be imported into another module
|
|
/// as part of a different backend compilation process.
|
|
bool HasExportedFunctions = false;
|
|
|
|
/// Set to true when all global value body linking is complete (including
|
|
/// lazy linking). Used to prevent metadata linking from creating new
|
|
/// references.
|
|
bool DoneLinkingBodies = false;
|
|
|
|
bool HasError = false;
|
|
|
|
bool shouldOverrideFromSrc() { return Flags & Linker::OverrideFromSrc; }
|
|
bool shouldLinkOnlyNeeded() { return Flags & Linker::LinkOnlyNeeded; }
|
|
bool shouldInternalizeLinkedSymbols() {
|
|
return Flags & Linker::InternalizeLinkedSymbols;
|
|
}
|
|
|
|
/// Handles cloning of a global values from the source module into
|
|
/// the destination module, including setting the attributes and visibility.
|
|
GlobalValue *copyGlobalValueProto(const GlobalValue *SGV, bool ForDefinition);
|
|
|
|
/// Check if we should promote the given local value to global scope.
|
|
bool doPromoteLocalToGlobal(const GlobalValue *SGV);
|
|
|
|
bool shouldLinkFromSource(bool &LinkFromSrc, const GlobalValue &Dest,
|
|
const GlobalValue &Src);
|
|
|
|
/// Helper method for setting a message and returning an error code.
|
|
bool emitError(const Twine &Message) {
|
|
DiagnosticHandler(LinkDiagnosticInfo(DS_Error, Message));
|
|
HasError = true;
|
|
return true;
|
|
}
|
|
|
|
void emitWarning(const Twine &Message) {
|
|
DiagnosticHandler(LinkDiagnosticInfo(DS_Warning, Message));
|
|
}
|
|
|
|
bool getComdatLeader(Module &M, StringRef ComdatName,
|
|
const GlobalVariable *&GVar);
|
|
bool computeResultingSelectionKind(StringRef ComdatName,
|
|
Comdat::SelectionKind Src,
|
|
Comdat::SelectionKind Dst,
|
|
Comdat::SelectionKind &Result,
|
|
bool &LinkFromSrc);
|
|
std::map<const Comdat *, std::pair<Comdat::SelectionKind, bool>>
|
|
ComdatsChosen;
|
|
bool getComdatResult(const Comdat *SrcC, Comdat::SelectionKind &SK,
|
|
bool &LinkFromSrc);
|
|
// Keep track of the global value members of each comdat in source.
|
|
DenseMap<const Comdat *, std::vector<GlobalValue *>> ComdatMembers;
|
|
|
|
/// Given a global in the source module, return the global in the
|
|
/// destination module that is being linked to, if any.
|
|
GlobalValue *getLinkedToGlobal(const GlobalValue *SrcGV) {
|
|
// If the source has no name it can't link. If it has local linkage,
|
|
// there is no name match-up going on.
|
|
if (!SrcGV->hasName() || GlobalValue::isLocalLinkage(getLinkage(SrcGV)))
|
|
return nullptr;
|
|
|
|
// Otherwise see if we have a match in the destination module's symtab.
|
|
GlobalValue *DGV = DstM.getNamedValue(getName(SrcGV));
|
|
if (!DGV)
|
|
return nullptr;
|
|
|
|
// If we found a global with the same name in the dest module, but it has
|
|
// internal linkage, we are really not doing any linkage here.
|
|
if (DGV->hasLocalLinkage())
|
|
return nullptr;
|
|
|
|
// Otherwise, we do in fact link to the destination global.
|
|
return DGV;
|
|
}
|
|
|
|
void computeTypeMapping();
|
|
|
|
bool linkIfNeeded(GlobalValue &GV);
|
|
Constant *linkAppendingVarProto(GlobalVariable *DstGV,
|
|
const GlobalVariable *SrcGV);
|
|
|
|
Constant *linkGlobalValueProto(GlobalValue *GV);
|
|
bool linkModuleFlagsMetadata();
|
|
|
|
void linkGlobalInit(GlobalVariable &Dst, GlobalVariable &Src);
|
|
bool linkFunctionBody(Function &Dst, Function &Src);
|
|
void linkAliasBody(GlobalAlias &Dst, GlobalAlias &Src);
|
|
bool linkGlobalValueBody(GlobalValue &Dst, GlobalValue &Src);
|
|
|
|
/// Functions that take care of cloning a specific global value type
|
|
/// into the destination module.
|
|
GlobalVariable *copyGlobalVariableProto(const GlobalVariable *SGVar);
|
|
Function *copyFunctionProto(const Function *SF);
|
|
GlobalValue *copyGlobalAliasProto(const GlobalAlias *SGA);
|
|
|
|
/// Helper methods to check if we are importing from or potentially
|
|
/// exporting from the current source module.
|
|
bool isPerformingImport() { return ImportFunction != nullptr; }
|
|
bool isModuleExporting() { return HasExportedFunctions; }
|
|
|
|
/// If we are importing from the source module, checks if we should
|
|
/// import SGV as a definition, otherwise import as a declaration.
|
|
bool doImportAsDefinition(const GlobalValue *SGV);
|
|
|
|
/// Get the name for SGV that should be used in the linked destination
|
|
/// module. Specifically, this handles the case where we need to rename
|
|
/// a local that is being promoted to global scope.
|
|
std::string getName(const GlobalValue *SGV);
|
|
|
|
/// Get the new linkage for SGV that should be used in the linked destination
|
|
/// module. Specifically, for ThinLTO importing or exporting it may need
|
|
/// to be adjusted.
|
|
GlobalValue::LinkageTypes getLinkage(const GlobalValue *SGV);
|
|
|
|
/// Copies the necessary global value attributes and name from the source
|
|
/// to the newly cloned global value.
|
|
void copyGVAttributes(GlobalValue *NewGV, const GlobalValue *SrcGV);
|
|
|
|
/// Updates the visibility for the new global cloned from the source
|
|
/// and, if applicable, linked with an existing destination global.
|
|
/// Handles visibility change required for promoted locals.
|
|
void setVisibility(GlobalValue *NewGV, const GlobalValue *SGV,
|
|
const GlobalValue *DGV = nullptr);
|
|
|
|
void linkNamedMDNodes();
|
|
|
|
public:
|
|
ModuleLinker(Module &DstM, Linker::IdentifiedStructTypeSet &Set, Module &SrcM,
|
|
DiagnosticHandlerFunction DiagnosticHandler, unsigned Flags,
|
|
const FunctionInfoIndex *Index = nullptr,
|
|
DenseSet<const GlobalValue *> *FunctionsToImport = nullptr)
|
|
: DstM(DstM), SrcM(SrcM), TypeMap(Set), ValMaterializer(this),
|
|
DiagnosticHandler(DiagnosticHandler), Flags(Flags), ImportIndex(Index),
|
|
ImportFunction(FunctionsToImport) {
|
|
assert((ImportIndex || !ImportFunction) &&
|
|
"Expect a FunctionInfoIndex when importing");
|
|
// If we have a FunctionInfoIndex but no function to import,
|
|
// then this is the primary module being compiled in a ThinLTO
|
|
// backend compilation, and we need to see if it has functions that
|
|
// may be exported to another backend compilation.
|
|
if (ImportIndex && !ImportFunction)
|
|
HasExportedFunctions = ImportIndex->hasExportedFunctions(SrcM);
|
|
}
|
|
|
|
bool run();
|
|
Value *materializeDeclFor(Value *V);
|
|
void materializeInitFor(GlobalValue *New, GlobalValue *Old);
|
|
};
|
|
}
|
|
|
|
/// The LLVM SymbolTable class autorenames globals that conflict in the symbol
|
|
/// table. This is good for all clients except for us. Go through the trouble
|
|
/// to force this back.
|
|
static void forceRenaming(GlobalValue *GV, StringRef Name) {
|
|
// If the global doesn't force its name or if it already has the right name,
|
|
// there is nothing for us to do.
|
|
// Note that any required local to global promotion should already be done,
|
|
// so promoted locals will not skip this handling as their linkage is no
|
|
// longer local.
|
|
if (GV->hasLocalLinkage() || GV->getName() == Name)
|
|
return;
|
|
|
|
Module *M = GV->getParent();
|
|
|
|
// If there is a conflict, rename the conflict.
|
|
if (GlobalValue *ConflictGV = M->getNamedValue(Name)) {
|
|
GV->takeName(ConflictGV);
|
|
ConflictGV->setName(Name); // This will cause ConflictGV to get renamed
|
|
assert(ConflictGV->getName() != Name && "forceRenaming didn't work");
|
|
} else {
|
|
GV->setName(Name); // Force the name back
|
|
}
|
|
}
|
|
|
|
/// copy additional attributes (those not needed to construct a GlobalValue)
|
|
/// from the SrcGV to the DestGV.
|
|
void ModuleLinker::copyGVAttributes(GlobalValue *NewGV,
|
|
const GlobalValue *SrcGV) {
|
|
NewGV->copyAttributesFrom(SrcGV);
|
|
forceRenaming(NewGV, getName(SrcGV));
|
|
}
|
|
|
|
bool ModuleLinker::doImportAsDefinition(const GlobalValue *SGV) {
|
|
if (!isPerformingImport())
|
|
return false;
|
|
auto *GA = dyn_cast<GlobalAlias>(SGV);
|
|
if (GA) {
|
|
if (GA->hasWeakAnyLinkage())
|
|
return false;
|
|
const GlobalObject *GO = GA->getBaseObject();
|
|
if (!GO->hasLinkOnceODRLinkage())
|
|
return false;
|
|
return doImportAsDefinition(GO);
|
|
}
|
|
// Always import GlobalVariable definitions, except for the special
|
|
// case of WeakAny which are imported as ExternalWeak declarations
|
|
// (see comments in ModuleLinker::getLinkage). The linkage changes
|
|
// described in ModuleLinker::getLinkage ensure the correct behavior (e.g.
|
|
// global variables with external linkage are transformed to
|
|
// available_externally definitions, which are ultimately turned into
|
|
// declarations after the EliminateAvailableExternally pass).
|
|
if (isa<GlobalVariable>(SGV) && !SGV->isDeclaration() &&
|
|
!SGV->hasWeakAnyLinkage())
|
|
return true;
|
|
// Only import the function requested for importing.
|
|
auto *SF = dyn_cast<Function>(SGV);
|
|
if (SF && ImportFunction->count(SF))
|
|
return true;
|
|
// Otherwise no.
|
|
return false;
|
|
}
|
|
|
|
bool ModuleLinker::doPromoteLocalToGlobal(const GlobalValue *SGV) {
|
|
assert(SGV->hasLocalLinkage());
|
|
// Both the imported references and the original local variable must
|
|
// be promoted.
|
|
if (!isPerformingImport() && !isModuleExporting())
|
|
return false;
|
|
|
|
// Local const variables never need to be promoted unless they are address
|
|
// taken. The imported uses can simply use the clone created in this module.
|
|
// For now we are conservative in determining which variables are not
|
|
// address taken by checking the unnamed addr flag. To be more aggressive,
|
|
// the address taken information must be checked earlier during parsing
|
|
// of the module and recorded in the function index for use when importing
|
|
// from that module.
|
|
auto *GVar = dyn_cast<GlobalVariable>(SGV);
|
|
if (GVar && GVar->isConstant() && GVar->hasUnnamedAddr())
|
|
return false;
|
|
|
|
// Eventually we only need to promote functions in the exporting module that
|
|
// are referenced by a potentially exported function (i.e. one that is in the
|
|
// function index).
|
|
return true;
|
|
}
|
|
|
|
std::string ModuleLinker::getName(const GlobalValue *SGV) {
|
|
// For locals that must be promoted to global scope, ensure that
|
|
// the promoted name uniquely identifies the copy in the original module,
|
|
// using the ID assigned during combined index creation. When importing,
|
|
// we rename all locals (not just those that are promoted) in order to
|
|
// avoid naming conflicts between locals imported from different modules.
|
|
if (SGV->hasLocalLinkage() &&
|
|
(doPromoteLocalToGlobal(SGV) || isPerformingImport()))
|
|
return FunctionInfoIndex::getGlobalNameForLocal(
|
|
SGV->getName(),
|
|
ImportIndex->getModuleId(SGV->getParent()->getModuleIdentifier()));
|
|
return SGV->getName();
|
|
}
|
|
|
|
GlobalValue::LinkageTypes ModuleLinker::getLinkage(const GlobalValue *SGV) {
|
|
// Any local variable that is referenced by an exported function needs
|
|
// to be promoted to global scope. Since we don't currently know which
|
|
// functions reference which local variables/functions, we must treat
|
|
// all as potentially exported if this module is exporting anything.
|
|
if (isModuleExporting()) {
|
|
if (SGV->hasLocalLinkage() && doPromoteLocalToGlobal(SGV))
|
|
return GlobalValue::ExternalLinkage;
|
|
return SGV->getLinkage();
|
|
}
|
|
|
|
// Otherwise, if we aren't importing, no linkage change is needed.
|
|
if (!isPerformingImport())
|
|
return SGV->getLinkage();
|
|
|
|
switch (SGV->getLinkage()) {
|
|
case GlobalValue::ExternalLinkage:
|
|
// External defnitions are converted to available_externally
|
|
// definitions upon import, so that they are available for inlining
|
|
// and/or optimization, but are turned into declarations later
|
|
// during the EliminateAvailableExternally pass.
|
|
if (doImportAsDefinition(SGV) && !dyn_cast<GlobalAlias>(SGV))
|
|
return GlobalValue::AvailableExternallyLinkage;
|
|
// An imported external declaration stays external.
|
|
return SGV->getLinkage();
|
|
|
|
case GlobalValue::AvailableExternallyLinkage:
|
|
// An imported available_externally definition converts
|
|
// to external if imported as a declaration.
|
|
if (!doImportAsDefinition(SGV))
|
|
return GlobalValue::ExternalLinkage;
|
|
// An imported available_externally declaration stays that way.
|
|
return SGV->getLinkage();
|
|
|
|
case GlobalValue::LinkOnceAnyLinkage:
|
|
case GlobalValue::LinkOnceODRLinkage:
|
|
// These both stay the same when importing the definition.
|
|
// The ThinLTO pass will eventually force-import their definitions.
|
|
return SGV->getLinkage();
|
|
|
|
case GlobalValue::WeakAnyLinkage:
|
|
// Can't import weak_any definitions correctly, or we might change the
|
|
// program semantics, since the linker will pick the first weak_any
|
|
// definition and importing would change the order they are seen by the
|
|
// linker. The module linking caller needs to enforce this.
|
|
assert(!doImportAsDefinition(SGV));
|
|
// If imported as a declaration, it becomes external_weak.
|
|
return GlobalValue::ExternalWeakLinkage;
|
|
|
|
case GlobalValue::WeakODRLinkage:
|
|
// For weak_odr linkage, there is a guarantee that all copies will be
|
|
// equivalent, so the issue described above for weak_any does not exist,
|
|
// and the definition can be imported. It can be treated similarly
|
|
// to an imported externally visible global value.
|
|
if (doImportAsDefinition(SGV) && !dyn_cast<GlobalAlias>(SGV))
|
|
return GlobalValue::AvailableExternallyLinkage;
|
|
else
|
|
return GlobalValue::ExternalLinkage;
|
|
|
|
case GlobalValue::AppendingLinkage:
|
|
// It would be incorrect to import an appending linkage variable,
|
|
// since it would cause global constructors/destructors to be
|
|
// executed multiple times. This should have already been handled
|
|
// by linkIfNeeded, and we will assert in shouldLinkFromSource
|
|
// if we try to import, so we simply return AppendingLinkage here
|
|
// as this helper is called more widely in getLinkedToGlobal.
|
|
return GlobalValue::AppendingLinkage;
|
|
|
|
case GlobalValue::InternalLinkage:
|
|
case GlobalValue::PrivateLinkage:
|
|
// If we are promoting the local to global scope, it is handled
|
|
// similarly to a normal externally visible global.
|
|
if (doPromoteLocalToGlobal(SGV)) {
|
|
if (doImportAsDefinition(SGV) && !dyn_cast<GlobalAlias>(SGV))
|
|
return GlobalValue::AvailableExternallyLinkage;
|
|
else
|
|
return GlobalValue::ExternalLinkage;
|
|
}
|
|
// A non-promoted imported local definition stays local.
|
|
// The ThinLTO pass will eventually force-import their definitions.
|
|
return SGV->getLinkage();
|
|
|
|
case GlobalValue::ExternalWeakLinkage:
|
|
// External weak doesn't apply to definitions, must be a declaration.
|
|
assert(!doImportAsDefinition(SGV));
|
|
// Linkage stays external_weak.
|
|
return SGV->getLinkage();
|
|
|
|
case GlobalValue::CommonLinkage:
|
|
// Linkage stays common on definitions.
|
|
// The ThinLTO pass will eventually force-import their definitions.
|
|
return SGV->getLinkage();
|
|
}
|
|
|
|
llvm_unreachable("unknown linkage type");
|
|
}
|
|
|
|
/// Loop through the global variables in the src module and merge them into the
|
|
/// dest module.
|
|
GlobalVariable *
|
|
ModuleLinker::copyGlobalVariableProto(const GlobalVariable *SGVar) {
|
|
// No linking to be performed or linking from the source: simply create an
|
|
// identical version of the symbol over in the dest module... the
|
|
// initializer will be filled in later by LinkGlobalInits.
|
|
GlobalVariable *NewDGV =
|
|
new GlobalVariable(DstM, TypeMap.get(SGVar->getType()->getElementType()),
|
|
SGVar->isConstant(), GlobalValue::ExternalLinkage,
|
|
/*init*/ nullptr, getName(SGVar),
|
|
/*insertbefore*/ nullptr, SGVar->getThreadLocalMode(),
|
|
SGVar->getType()->getAddressSpace());
|
|
|
|
return NewDGV;
|
|
}
|
|
|
|
/// Link the function in the source module into the destination module if
|
|
/// needed, setting up mapping information.
|
|
Function *ModuleLinker::copyFunctionProto(const Function *SF) {
|
|
// If there is no linkage to be performed or we are linking from the source,
|
|
// bring SF over.
|
|
return Function::Create(TypeMap.get(SF->getFunctionType()),
|
|
GlobalValue::ExternalLinkage, getName(SF), &DstM);
|
|
}
|
|
|
|
/// Set up prototypes for any aliases that come over from the source module.
|
|
GlobalValue *ModuleLinker::copyGlobalAliasProto(const GlobalAlias *SGA) {
|
|
// If there is no linkage to be performed or we're linking from the source,
|
|
// bring over SGA.
|
|
auto *Ty = TypeMap.get(SGA->getValueType());
|
|
return GlobalAlias::create(Ty, SGA->getType()->getPointerAddressSpace(),
|
|
GlobalValue::ExternalLinkage, getName(SGA), &DstM);
|
|
}
|
|
|
|
static GlobalValue::VisibilityTypes
|
|
getMinVisibility(GlobalValue::VisibilityTypes A,
|
|
GlobalValue::VisibilityTypes B) {
|
|
if (A == GlobalValue::HiddenVisibility || B == GlobalValue::HiddenVisibility)
|
|
return GlobalValue::HiddenVisibility;
|
|
if (A == GlobalValue::ProtectedVisibility ||
|
|
B == GlobalValue::ProtectedVisibility)
|
|
return GlobalValue::ProtectedVisibility;
|
|
return GlobalValue::DefaultVisibility;
|
|
}
|
|
|
|
void ModuleLinker::setVisibility(GlobalValue *NewGV, const GlobalValue *SGV,
|
|
const GlobalValue *DGV) {
|
|
GlobalValue::VisibilityTypes Visibility = SGV->getVisibility();
|
|
if (DGV)
|
|
Visibility = getMinVisibility(DGV->getVisibility(), Visibility);
|
|
// For promoted locals, mark them hidden so that they can later be
|
|
// stripped from the symbol table to reduce bloat.
|
|
if (SGV->hasLocalLinkage() && doPromoteLocalToGlobal(SGV))
|
|
Visibility = GlobalValue::HiddenVisibility;
|
|
NewGV->setVisibility(Visibility);
|
|
}
|
|
|
|
GlobalValue *ModuleLinker::copyGlobalValueProto(const GlobalValue *SGV,
|
|
bool ForDefinition) {
|
|
GlobalValue *NewGV;
|
|
if (auto *SGVar = dyn_cast<GlobalVariable>(SGV)) {
|
|
NewGV = copyGlobalVariableProto(SGVar);
|
|
} else if (auto *SF = dyn_cast<Function>(SGV)) {
|
|
NewGV = copyFunctionProto(SF);
|
|
} else {
|
|
if (ForDefinition)
|
|
NewGV = copyGlobalAliasProto(cast<GlobalAlias>(SGV));
|
|
else
|
|
NewGV = new GlobalVariable(
|
|
DstM, TypeMap.get(SGV->getType()->getElementType()),
|
|
/*isConstant*/ false, GlobalValue::ExternalLinkage,
|
|
/*init*/ nullptr, getName(SGV),
|
|
/*insertbefore*/ nullptr, SGV->getThreadLocalMode(),
|
|
SGV->getType()->getAddressSpace());
|
|
}
|
|
|
|
if (ForDefinition)
|
|
NewGV->setLinkage(getLinkage(SGV));
|
|
else if (SGV->hasAvailableExternallyLinkage() || SGV->hasWeakLinkage() ||
|
|
SGV->hasLinkOnceLinkage())
|
|
NewGV->setLinkage(GlobalValue::ExternalWeakLinkage);
|
|
|
|
copyGVAttributes(NewGV, SGV);
|
|
return NewGV;
|
|
}
|
|
|
|
Value *ValueMaterializerTy::materializeDeclFor(Value *V) {
|
|
return ModLinker->materializeDeclFor(V);
|
|
}
|
|
|
|
Value *ModuleLinker::materializeDeclFor(Value *V) {
|
|
auto *SGV = dyn_cast<GlobalValue>(V);
|
|
if (!SGV)
|
|
return nullptr;
|
|
|
|
return linkGlobalValueProto(SGV);
|
|
}
|
|
|
|
void ValueMaterializerTy::materializeInitFor(GlobalValue *New,
|
|
GlobalValue *Old) {
|
|
return ModLinker->materializeInitFor(New, Old);
|
|
}
|
|
|
|
static bool shouldLazyLink(const GlobalValue &GV) {
|
|
return GV.hasLocalLinkage() || GV.hasLinkOnceLinkage() ||
|
|
GV.hasAvailableExternallyLinkage();
|
|
}
|
|
|
|
void ModuleLinker::materializeInitFor(GlobalValue *New, GlobalValue *Old) {
|
|
if (auto *F = dyn_cast<Function>(New)) {
|
|
if (!F->isDeclaration())
|
|
return;
|
|
} else if (auto *V = dyn_cast<GlobalVariable>(New)) {
|
|
if (V->hasInitializer())
|
|
return;
|
|
} else {
|
|
auto *A = cast<GlobalAlias>(New);
|
|
if (A->getAliasee())
|
|
return;
|
|
}
|
|
|
|
if (Old->isDeclaration())
|
|
return;
|
|
|
|
if (isPerformingImport() && !doImportAsDefinition(Old))
|
|
return;
|
|
|
|
if (!ValuesToLink.count(Old) && !shouldLazyLink(*Old))
|
|
return;
|
|
|
|
linkGlobalValueBody(*New, *Old);
|
|
}
|
|
|
|
bool ModuleLinker::getComdatLeader(Module &M, StringRef ComdatName,
|
|
const GlobalVariable *&GVar) {
|
|
const GlobalValue *GVal = M.getNamedValue(ComdatName);
|
|
if (const auto *GA = dyn_cast_or_null<GlobalAlias>(GVal)) {
|
|
GVal = GA->getBaseObject();
|
|
if (!GVal)
|
|
// We cannot resolve the size of the aliasee yet.
|
|
return emitError("Linking COMDATs named '" + ComdatName +
|
|
"': COMDAT key involves incomputable alias size.");
|
|
}
|
|
|
|
GVar = dyn_cast_or_null<GlobalVariable>(GVal);
|
|
if (!GVar)
|
|
return emitError(
|
|
"Linking COMDATs named '" + ComdatName +
|
|
"': GlobalVariable required for data dependent selection!");
|
|
|
|
return false;
|
|
}
|
|
|
|
bool ModuleLinker::computeResultingSelectionKind(StringRef ComdatName,
|
|
Comdat::SelectionKind Src,
|
|
Comdat::SelectionKind Dst,
|
|
Comdat::SelectionKind &Result,
|
|
bool &LinkFromSrc) {
|
|
// The ability to mix Comdat::SelectionKind::Any with
|
|
// Comdat::SelectionKind::Largest is a behavior that comes from COFF.
|
|
bool DstAnyOrLargest = Dst == Comdat::SelectionKind::Any ||
|
|
Dst == Comdat::SelectionKind::Largest;
|
|
bool SrcAnyOrLargest = Src == Comdat::SelectionKind::Any ||
|
|
Src == Comdat::SelectionKind::Largest;
|
|
if (DstAnyOrLargest && SrcAnyOrLargest) {
|
|
if (Dst == Comdat::SelectionKind::Largest ||
|
|
Src == Comdat::SelectionKind::Largest)
|
|
Result = Comdat::SelectionKind::Largest;
|
|
else
|
|
Result = Comdat::SelectionKind::Any;
|
|
} else if (Src == Dst) {
|
|
Result = Dst;
|
|
} else {
|
|
return emitError("Linking COMDATs named '" + ComdatName +
|
|
"': invalid selection kinds!");
|
|
}
|
|
|
|
switch (Result) {
|
|
case Comdat::SelectionKind::Any:
|
|
// Go with Dst.
|
|
LinkFromSrc = false;
|
|
break;
|
|
case Comdat::SelectionKind::NoDuplicates:
|
|
return emitError("Linking COMDATs named '" + ComdatName +
|
|
"': noduplicates has been violated!");
|
|
case Comdat::SelectionKind::ExactMatch:
|
|
case Comdat::SelectionKind::Largest:
|
|
case Comdat::SelectionKind::SameSize: {
|
|
const GlobalVariable *DstGV;
|
|
const GlobalVariable *SrcGV;
|
|
if (getComdatLeader(DstM, ComdatName, DstGV) ||
|
|
getComdatLeader(SrcM, ComdatName, SrcGV))
|
|
return true;
|
|
|
|
const DataLayout &DstDL = DstM.getDataLayout();
|
|
const DataLayout &SrcDL = SrcM.getDataLayout();
|
|
uint64_t DstSize =
|
|
DstDL.getTypeAllocSize(DstGV->getType()->getPointerElementType());
|
|
uint64_t SrcSize =
|
|
SrcDL.getTypeAllocSize(SrcGV->getType()->getPointerElementType());
|
|
if (Result == Comdat::SelectionKind::ExactMatch) {
|
|
if (SrcGV->getInitializer() != DstGV->getInitializer())
|
|
return emitError("Linking COMDATs named '" + ComdatName +
|
|
"': ExactMatch violated!");
|
|
LinkFromSrc = false;
|
|
} else if (Result == Comdat::SelectionKind::Largest) {
|
|
LinkFromSrc = SrcSize > DstSize;
|
|
} else if (Result == Comdat::SelectionKind::SameSize) {
|
|
if (SrcSize != DstSize)
|
|
return emitError("Linking COMDATs named '" + ComdatName +
|
|
"': SameSize violated!");
|
|
LinkFromSrc = false;
|
|
} else {
|
|
llvm_unreachable("unknown selection kind");
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool ModuleLinker::getComdatResult(const Comdat *SrcC,
|
|
Comdat::SelectionKind &Result,
|
|
bool &LinkFromSrc) {
|
|
Comdat::SelectionKind SSK = SrcC->getSelectionKind();
|
|
StringRef ComdatName = SrcC->getName();
|
|
Module::ComdatSymTabType &ComdatSymTab = DstM.getComdatSymbolTable();
|
|
Module::ComdatSymTabType::iterator DstCI = ComdatSymTab.find(ComdatName);
|
|
|
|
if (DstCI == ComdatSymTab.end()) {
|
|
// Use the comdat if it is only available in one of the modules.
|
|
LinkFromSrc = true;
|
|
Result = SSK;
|
|
return false;
|
|
}
|
|
|
|
const Comdat *DstC = &DstCI->second;
|
|
Comdat::SelectionKind DSK = DstC->getSelectionKind();
|
|
return computeResultingSelectionKind(ComdatName, SSK, DSK, Result,
|
|
LinkFromSrc);
|
|
}
|
|
|
|
bool ModuleLinker::shouldLinkFromSource(bool &LinkFromSrc,
|
|
const GlobalValue &Dest,
|
|
const GlobalValue &Src) {
|
|
// Should we unconditionally use the Src?
|
|
if (shouldOverrideFromSrc()) {
|
|
LinkFromSrc = true;
|
|
return false;
|
|
}
|
|
|
|
// We always have to add Src if it has appending linkage.
|
|
if (Src.hasAppendingLinkage()) {
|
|
// Should have prevented importing for appending linkage in linkIfNeeded.
|
|
assert(!isPerformingImport());
|
|
LinkFromSrc = true;
|
|
return false;
|
|
}
|
|
|
|
bool SrcIsDeclaration = Src.isDeclarationForLinker();
|
|
bool DestIsDeclaration = Dest.isDeclarationForLinker();
|
|
|
|
if (isPerformingImport()) {
|
|
if (isa<Function>(&Src)) {
|
|
// For functions, LinkFromSrc iff this is the function requested
|
|
// for importing. For variables, decide below normally.
|
|
LinkFromSrc = ImportFunction->count(&Src);
|
|
return false;
|
|
}
|
|
|
|
// Check if this is an alias with an already existing definition
|
|
// in Dest, which must have come from a prior importing pass from
|
|
// the same Src module. Unlike imported function and variable
|
|
// definitions, which are imported as available_externally and are
|
|
// not definitions for the linker, that is not a valid linkage for
|
|
// imported aliases which must be definitions. Simply use the existing
|
|
// Dest copy.
|
|
if (isa<GlobalAlias>(&Src) && !DestIsDeclaration) {
|
|
assert(isa<GlobalAlias>(&Dest));
|
|
LinkFromSrc = false;
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if (SrcIsDeclaration) {
|
|
// If Src is external or if both Src & Dest are external.. Just link the
|
|
// external globals, we aren't adding anything.
|
|
if (Src.hasDLLImportStorageClass()) {
|
|
// If one of GVs is marked as DLLImport, result should be dllimport'ed.
|
|
LinkFromSrc = DestIsDeclaration;
|
|
return false;
|
|
}
|
|
// If the Dest is weak, use the source linkage.
|
|
if (Dest.hasExternalWeakLinkage()) {
|
|
LinkFromSrc = true;
|
|
return false;
|
|
}
|
|
// Link an available_externally over a declaration.
|
|
LinkFromSrc = !Src.isDeclaration() && Dest.isDeclaration();
|
|
return false;
|
|
}
|
|
|
|
if (DestIsDeclaration) {
|
|
// If Dest is external but Src is not:
|
|
LinkFromSrc = true;
|
|
return false;
|
|
}
|
|
|
|
if (Src.hasCommonLinkage()) {
|
|
if (Dest.hasLinkOnceLinkage() || Dest.hasWeakLinkage()) {
|
|
LinkFromSrc = true;
|
|
return false;
|
|
}
|
|
|
|
if (!Dest.hasCommonLinkage()) {
|
|
LinkFromSrc = false;
|
|
return false;
|
|
}
|
|
|
|
const DataLayout &DL = Dest.getParent()->getDataLayout();
|
|
uint64_t DestSize = DL.getTypeAllocSize(Dest.getType()->getElementType());
|
|
uint64_t SrcSize = DL.getTypeAllocSize(Src.getType()->getElementType());
|
|
LinkFromSrc = SrcSize > DestSize;
|
|
return false;
|
|
}
|
|
|
|
if (Src.isWeakForLinker()) {
|
|
assert(!Dest.hasExternalWeakLinkage());
|
|
assert(!Dest.hasAvailableExternallyLinkage());
|
|
|
|
if (Dest.hasLinkOnceLinkage() && Src.hasWeakLinkage()) {
|
|
LinkFromSrc = true;
|
|
return false;
|
|
}
|
|
|
|
LinkFromSrc = false;
|
|
return false;
|
|
}
|
|
|
|
if (Dest.isWeakForLinker()) {
|
|
assert(Src.hasExternalLinkage());
|
|
LinkFromSrc = true;
|
|
return false;
|
|
}
|
|
|
|
assert(!Src.hasExternalWeakLinkage());
|
|
assert(!Dest.hasExternalWeakLinkage());
|
|
assert(Dest.hasExternalLinkage() && Src.hasExternalLinkage() &&
|
|
"Unexpected linkage type!");
|
|
return emitError("Linking globals named '" + Src.getName() +
|
|
"': symbol multiply defined!");
|
|
}
|
|
|
|
/// Loop over all of the linked values to compute type mappings. For example,
|
|
/// if we link "extern Foo *x" and "Foo *x = NULL", then we have two struct
|
|
/// types 'Foo' but one got renamed when the module was loaded into the same
|
|
/// LLVMContext.
|
|
void ModuleLinker::computeTypeMapping() {
|
|
for (GlobalValue &SGV : SrcM.globals()) {
|
|
GlobalValue *DGV = getLinkedToGlobal(&SGV);
|
|
if (!DGV)
|
|
continue;
|
|
|
|
if (!DGV->hasAppendingLinkage() || !SGV.hasAppendingLinkage()) {
|
|
TypeMap.addTypeMapping(DGV->getType(), SGV.getType());
|
|
continue;
|
|
}
|
|
|
|
// Unify the element type of appending arrays.
|
|
ArrayType *DAT = cast<ArrayType>(DGV->getType()->getElementType());
|
|
ArrayType *SAT = cast<ArrayType>(SGV.getType()->getElementType());
|
|
TypeMap.addTypeMapping(DAT->getElementType(), SAT->getElementType());
|
|
}
|
|
|
|
for (GlobalValue &SGV : SrcM) {
|
|
if (GlobalValue *DGV = getLinkedToGlobal(&SGV))
|
|
TypeMap.addTypeMapping(DGV->getType(), SGV.getType());
|
|
}
|
|
|
|
for (GlobalValue &SGV : SrcM.aliases()) {
|
|
if (GlobalValue *DGV = getLinkedToGlobal(&SGV))
|
|
TypeMap.addTypeMapping(DGV->getType(), SGV.getType());
|
|
}
|
|
|
|
// Incorporate types by name, scanning all the types in the source module.
|
|
// At this point, the destination module may have a type "%foo = { i32 }" for
|
|
// example. When the source module got loaded into the same LLVMContext, if
|
|
// it had the same type, it would have been renamed to "%foo.42 = { i32 }".
|
|
std::vector<StructType *> Types = SrcM.getIdentifiedStructTypes();
|
|
for (StructType *ST : Types) {
|
|
if (!ST->hasName())
|
|
continue;
|
|
|
|
// Check to see if there is a dot in the name followed by a digit.
|
|
size_t DotPos = ST->getName().rfind('.');
|
|
if (DotPos == 0 || DotPos == StringRef::npos ||
|
|
ST->getName().back() == '.' ||
|
|
!isdigit(static_cast<unsigned char>(ST->getName()[DotPos + 1])))
|
|
continue;
|
|
|
|
// Check to see if the destination module has a struct with the prefix name.
|
|
StructType *DST = DstM.getTypeByName(ST->getName().substr(0, DotPos));
|
|
if (!DST)
|
|
continue;
|
|
|
|
// Don't use it if this actually came from the source module. They're in
|
|
// the same LLVMContext after all. Also don't use it unless the type is
|
|
// actually used in the destination module. This can happen in situations
|
|
// like this:
|
|
//
|
|
// Module A Module B
|
|
// -------- --------
|
|
// %Z = type { %A } %B = type { %C.1 }
|
|
// %A = type { %B.1, [7 x i8] } %C.1 = type { i8* }
|
|
// %B.1 = type { %C } %A.2 = type { %B.3, [5 x i8] }
|
|
// %C = type { i8* } %B.3 = type { %C.1 }
|
|
//
|
|
// When we link Module B with Module A, the '%B' in Module B is
|
|
// used. However, that would then use '%C.1'. But when we process '%C.1',
|
|
// we prefer to take the '%C' version. So we are then left with both
|
|
// '%C.1' and '%C' being used for the same types. This leads to some
|
|
// variables using one type and some using the other.
|
|
if (TypeMap.DstStructTypesSet.hasType(DST))
|
|
TypeMap.addTypeMapping(DST, ST);
|
|
}
|
|
|
|
// Now that we have discovered all of the type equivalences, get a body for
|
|
// any 'opaque' types in the dest module that are now resolved.
|
|
TypeMap.linkDefinedTypeBodies();
|
|
}
|
|
|
|
static void getArrayElements(const Constant *C,
|
|
SmallVectorImpl<Constant *> &Dest) {
|
|
unsigned NumElements = cast<ArrayType>(C->getType())->getNumElements();
|
|
|
|
for (unsigned i = 0; i != NumElements; ++i)
|
|
Dest.push_back(C->getAggregateElement(i));
|
|
}
|
|
|
|
/// If there were any appending global variables, link them together now.
|
|
/// Return true on error.
|
|
Constant *ModuleLinker::linkAppendingVarProto(GlobalVariable *DstGV,
|
|
const GlobalVariable *SrcGV) {
|
|
Type *EltTy = cast<ArrayType>(TypeMap.get(SrcGV->getType()->getElementType()))
|
|
->getElementType();
|
|
|
|
StringRef Name = SrcGV->getName();
|
|
bool IsNewStructor = false;
|
|
bool IsOldStructor = false;
|
|
if (Name == "llvm.global_ctors" || Name == "llvm.global_dtors") {
|
|
if (cast<StructType>(EltTy)->getNumElements() == 3)
|
|
IsNewStructor = true;
|
|
else
|
|
IsOldStructor = true;
|
|
}
|
|
|
|
PointerType *VoidPtrTy = Type::getInt8Ty(SrcGV->getContext())->getPointerTo();
|
|
if (IsOldStructor) {
|
|
auto &ST = *cast<StructType>(EltTy);
|
|
Type *Tys[3] = {ST.getElementType(0), ST.getElementType(1), VoidPtrTy};
|
|
EltTy = StructType::get(SrcGV->getContext(), Tys, false);
|
|
}
|
|
|
|
if (DstGV) {
|
|
ArrayType *DstTy = cast<ArrayType>(DstGV->getType()->getElementType());
|
|
|
|
if (!SrcGV->hasAppendingLinkage() || !DstGV->hasAppendingLinkage()) {
|
|
emitError(
|
|
"Linking globals named '" + SrcGV->getName() +
|
|
"': can only link appending global with another appending global!");
|
|
return nullptr;
|
|
}
|
|
|
|
// Check to see that they two arrays agree on type.
|
|
if (EltTy != DstTy->getElementType()) {
|
|
emitError("Appending variables with different element types!");
|
|
return nullptr;
|
|
}
|
|
if (DstGV->isConstant() != SrcGV->isConstant()) {
|
|
emitError("Appending variables linked with different const'ness!");
|
|
return nullptr;
|
|
}
|
|
|
|
if (DstGV->getAlignment() != SrcGV->getAlignment()) {
|
|
emitError(
|
|
"Appending variables with different alignment need to be linked!");
|
|
return nullptr;
|
|
}
|
|
|
|
if (DstGV->getVisibility() != SrcGV->getVisibility()) {
|
|
emitError(
|
|
"Appending variables with different visibility need to be linked!");
|
|
return nullptr;
|
|
}
|
|
|
|
if (DstGV->hasUnnamedAddr() != SrcGV->hasUnnamedAddr()) {
|
|
emitError(
|
|
"Appending variables with different unnamed_addr need to be linked!");
|
|
return nullptr;
|
|
}
|
|
|
|
if (StringRef(DstGV->getSection()) != SrcGV->getSection()) {
|
|
emitError(
|
|
"Appending variables with different section name need to be linked!");
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
SmallVector<Constant *, 16> DstElements;
|
|
if (DstGV)
|
|
getArrayElements(DstGV->getInitializer(), DstElements);
|
|
|
|
SmallVector<Constant *, 16> SrcElements;
|
|
getArrayElements(SrcGV->getInitializer(), SrcElements);
|
|
|
|
if (IsNewStructor)
|
|
SrcElements.erase(
|
|
std::remove_if(SrcElements.begin(), SrcElements.end(),
|
|
[this](Constant *E) {
|
|
auto *Key = dyn_cast<GlobalValue>(
|
|
E->getAggregateElement(2)->stripPointerCasts());
|
|
return Key && !ValuesToLink.count(Key) &&
|
|
!shouldLazyLink(*Key);
|
|
}),
|
|
SrcElements.end());
|
|
uint64_t NewSize = DstElements.size() + SrcElements.size();
|
|
ArrayType *NewType = ArrayType::get(EltTy, NewSize);
|
|
|
|
// Create the new global variable.
|
|
GlobalVariable *NG = new GlobalVariable(
|
|
DstM, NewType, SrcGV->isConstant(), SrcGV->getLinkage(),
|
|
/*init*/ nullptr, /*name*/ "", DstGV, SrcGV->getThreadLocalMode(),
|
|
SrcGV->getType()->getAddressSpace());
|
|
|
|
// Propagate alignment, visibility and section info.
|
|
copyGVAttributes(NG, SrcGV);
|
|
|
|
Constant *Ret = ConstantExpr::getBitCast(NG, TypeMap.get(SrcGV->getType()));
|
|
|
|
// Stop recursion.
|
|
ValueMap[SrcGV] = Ret;
|
|
|
|
for (auto *V : SrcElements) {
|
|
Constant *NewV;
|
|
if (IsOldStructor) {
|
|
auto *S = cast<ConstantStruct>(V);
|
|
auto *E1 = MapValue(S->getOperand(0), ValueMap, RF_MoveDistinctMDs,
|
|
&TypeMap, &ValMaterializer);
|
|
auto *E2 = MapValue(S->getOperand(1), ValueMap, RF_MoveDistinctMDs,
|
|
&TypeMap, &ValMaterializer);
|
|
Value *Null = Constant::getNullValue(VoidPtrTy);
|
|
NewV =
|
|
ConstantStruct::get(cast<StructType>(EltTy), E1, E2, Null, nullptr);
|
|
} else {
|
|
NewV =
|
|
MapValue(V, ValueMap, RF_MoveDistinctMDs, &TypeMap, &ValMaterializer);
|
|
}
|
|
DstElements.push_back(NewV);
|
|
}
|
|
|
|
NG->setInitializer(ConstantArray::get(NewType, DstElements));
|
|
|
|
// Replace any uses of the two global variables with uses of the new
|
|
// global.
|
|
if (DstGV) {
|
|
DstGV->replaceAllUsesWith(ConstantExpr::getBitCast(NG, DstGV->getType()));
|
|
DstGV->eraseFromParent();
|
|
}
|
|
|
|
return Ret;
|
|
}
|
|
|
|
Constant *ModuleLinker::linkGlobalValueProto(GlobalValue *SGV) {
|
|
GlobalValue *DGV = getLinkedToGlobal(SGV);
|
|
|
|
// Handle the ultra special appending linkage case first.
|
|
assert(!DGV || SGV->hasAppendingLinkage() == DGV->hasAppendingLinkage());
|
|
if (SGV->hasAppendingLinkage()) {
|
|
// Should have prevented importing for appending linkage in linkIfNeeded.
|
|
assert(!isPerformingImport());
|
|
return linkAppendingVarProto(cast_or_null<GlobalVariable>(DGV),
|
|
cast<GlobalVariable>(SGV));
|
|
}
|
|
|
|
bool LinkFromSrc = true;
|
|
Comdat *C = nullptr;
|
|
bool HasUnnamedAddr = SGV->hasUnnamedAddr();
|
|
|
|
if (isPerformingImport() && !doImportAsDefinition(SGV)) {
|
|
LinkFromSrc = false;
|
|
} else if (const Comdat *SC = SGV->getComdat()) {
|
|
Comdat::SelectionKind SK;
|
|
std::tie(SK, LinkFromSrc) = ComdatsChosen[SC];
|
|
C = DstM.getOrInsertComdat(SC->getName());
|
|
C->setSelectionKind(SK);
|
|
if (SGV->hasLocalLinkage())
|
|
LinkFromSrc = true;
|
|
} else if (DGV) {
|
|
if (shouldLinkFromSource(LinkFromSrc, *DGV, *SGV))
|
|
return nullptr;
|
|
}
|
|
|
|
if (DGV)
|
|
HasUnnamedAddr = HasUnnamedAddr && DGV->hasUnnamedAddr();
|
|
|
|
GlobalValue *NewGV;
|
|
if (!LinkFromSrc && DGV) {
|
|
NewGV = DGV;
|
|
} else {
|
|
// If we are done linking global value bodies (i.e. we are performing
|
|
// metadata linking), don't link in the global value due to this
|
|
// reference, simply map it to null.
|
|
if (DoneLinkingBodies)
|
|
return nullptr;
|
|
|
|
NewGV = copyGlobalValueProto(SGV, LinkFromSrc);
|
|
}
|
|
|
|
setVisibility(NewGV, SGV, DGV);
|
|
NewGV->setUnnamedAddr(HasUnnamedAddr);
|
|
|
|
if (auto *NewGO = dyn_cast<GlobalObject>(NewGV)) {
|
|
if (C && LinkFromSrc)
|
|
NewGO->setComdat(C);
|
|
|
|
if (DGV && DGV->hasCommonLinkage() && SGV->hasCommonLinkage())
|
|
NewGO->setAlignment(std::max(DGV->getAlignment(), SGV->getAlignment()));
|
|
}
|
|
|
|
if (auto *NewGVar = dyn_cast<GlobalVariable>(NewGV)) {
|
|
auto *DGVar = dyn_cast_or_null<GlobalVariable>(DGV);
|
|
auto *SGVar = dyn_cast<GlobalVariable>(SGV);
|
|
if (DGVar && SGVar && DGVar->isDeclaration() && SGVar->isDeclaration() &&
|
|
(!DGVar->isConstant() || !SGVar->isConstant()))
|
|
NewGVar->setConstant(false);
|
|
}
|
|
|
|
if (NewGV != DGV && DGV) {
|
|
DGV->replaceAllUsesWith(ConstantExpr::getBitCast(NewGV, DGV->getType()));
|
|
DGV->eraseFromParent();
|
|
}
|
|
|
|
return ConstantExpr::getBitCast(NewGV, TypeMap.get(SGV->getType()));
|
|
}
|
|
|
|
/// Update the initializers in the Dest module now that all globals that may be
|
|
/// referenced are in Dest.
|
|
void ModuleLinker::linkGlobalInit(GlobalVariable &Dst, GlobalVariable &Src) {
|
|
// Figure out what the initializer looks like in the dest module.
|
|
Dst.setInitializer(MapValue(Src.getInitializer(), ValueMap,
|
|
RF_MoveDistinctMDs, &TypeMap, &ValMaterializer));
|
|
}
|
|
|
|
/// Copy the source function over into the dest function and fix up references
|
|
/// to values. At this point we know that Dest is an external function, and
|
|
/// that Src is not.
|
|
bool ModuleLinker::linkFunctionBody(Function &Dst, Function &Src) {
|
|
assert(Dst.isDeclaration() && !Src.isDeclaration());
|
|
|
|
// Materialize if needed.
|
|
if (std::error_code EC = Src.materialize())
|
|
return emitError(EC.message());
|
|
|
|
// Link in the prefix data.
|
|
if (Src.hasPrefixData())
|
|
Dst.setPrefixData(MapValue(Src.getPrefixData(), ValueMap,
|
|
RF_MoveDistinctMDs, &TypeMap, &ValMaterializer));
|
|
|
|
// Link in the prologue data.
|
|
if (Src.hasPrologueData())
|
|
Dst.setPrologueData(MapValue(Src.getPrologueData(), ValueMap,
|
|
RF_MoveDistinctMDs, &TypeMap,
|
|
&ValMaterializer));
|
|
|
|
// Link in the personality function.
|
|
if (Src.hasPersonalityFn())
|
|
Dst.setPersonalityFn(MapValue(Src.getPersonalityFn(), ValueMap,
|
|
RF_MoveDistinctMDs, &TypeMap,
|
|
&ValMaterializer));
|
|
|
|
// Go through and convert function arguments over, remembering the mapping.
|
|
Function::arg_iterator DI = Dst.arg_begin();
|
|
for (Argument &Arg : Src.args()) {
|
|
DI->setName(Arg.getName()); // Copy the name over.
|
|
|
|
// Add a mapping to our mapping.
|
|
ValueMap[&Arg] = &*DI;
|
|
++DI;
|
|
}
|
|
|
|
// Copy over the metadata attachments.
|
|
SmallVector<std::pair<unsigned, MDNode *>, 8> MDs;
|
|
Src.getAllMetadata(MDs);
|
|
for (const auto &I : MDs)
|
|
Dst.setMetadata(I.first, MapMetadata(I.second, ValueMap, RF_MoveDistinctMDs,
|
|
&TypeMap, &ValMaterializer));
|
|
|
|
// Splice the body of the source function into the dest function.
|
|
Dst.getBasicBlockList().splice(Dst.end(), Src.getBasicBlockList());
|
|
|
|
// At this point, all of the instructions and values of the function are now
|
|
// copied over. The only problem is that they are still referencing values in
|
|
// the Source function as operands. Loop through all of the operands of the
|
|
// functions and patch them up to point to the local versions.
|
|
for (BasicBlock &BB : Dst)
|
|
for (Instruction &I : BB)
|
|
RemapInstruction(&I, ValueMap,
|
|
RF_IgnoreMissingEntries | RF_MoveDistinctMDs, &TypeMap,
|
|
&ValMaterializer);
|
|
|
|
// There is no need to map the arguments anymore.
|
|
for (Argument &Arg : Src.args())
|
|
ValueMap.erase(&Arg);
|
|
|
|
Src.dematerialize();
|
|
return false;
|
|
}
|
|
|
|
void ModuleLinker::linkAliasBody(GlobalAlias &Dst, GlobalAlias &Src) {
|
|
Constant *Aliasee = Src.getAliasee();
|
|
Constant *Val = MapValue(Aliasee, ValueMap, RF_MoveDistinctMDs, &TypeMap,
|
|
&ValMaterializer);
|
|
Dst.setAliasee(Val);
|
|
}
|
|
|
|
bool ModuleLinker::linkGlobalValueBody(GlobalValue &Dst, GlobalValue &Src) {
|
|
if (const Comdat *SC = Src.getComdat()) {
|
|
// To ensure that we don't generate an incomplete comdat group,
|
|
// we must materialize and map in any other members that are not
|
|
// yet materialized in Dst, which also ensures their definitions
|
|
// are linked in. Otherwise, linkonce and other lazy linked GVs will
|
|
// not be materialized if they aren't referenced.
|
|
for (auto *SGV : ComdatMembers[SC]) {
|
|
auto *DGV = cast_or_null<GlobalValue>(ValueMap.lookup(SGV));
|
|
if (DGV && !DGV->isDeclaration())
|
|
continue;
|
|
MapValue(SGV, ValueMap, RF_MoveDistinctMDs, &TypeMap, &ValMaterializer);
|
|
}
|
|
}
|
|
if (shouldInternalizeLinkedSymbols())
|
|
if (auto *DGV = dyn_cast<GlobalValue>(&Dst))
|
|
DGV->setLinkage(GlobalValue::InternalLinkage);
|
|
if (auto *F = dyn_cast<Function>(&Src))
|
|
return linkFunctionBody(cast<Function>(Dst), *F);
|
|
if (auto *GVar = dyn_cast<GlobalVariable>(&Src)) {
|
|
linkGlobalInit(cast<GlobalVariable>(Dst), *GVar);
|
|
return false;
|
|
}
|
|
linkAliasBody(cast<GlobalAlias>(Dst), cast<GlobalAlias>(Src));
|
|
return false;
|
|
}
|
|
|
|
/// Insert all of the named MDNodes in Src into the Dest module.
|
|
void ModuleLinker::linkNamedMDNodes() {
|
|
const NamedMDNode *SrcModFlags = SrcM.getModuleFlagsMetadata();
|
|
for (const NamedMDNode &NMD : SrcM.named_metadata()) {
|
|
// Don't link module flags here. Do them separately.
|
|
if (&NMD == SrcModFlags)
|
|
continue;
|
|
NamedMDNode *DestNMD = DstM.getOrInsertNamedMetadata(NMD.getName());
|
|
// Add Src elements into Dest node.
|
|
for (const MDNode *op : NMD.operands())
|
|
DestNMD->addOperand(MapMetadata(
|
|
op, ValueMap, RF_MoveDistinctMDs | RF_NullMapMissingGlobalValues,
|
|
&TypeMap, &ValMaterializer));
|
|
}
|
|
}
|
|
|
|
/// Merge the linker flags in Src into the Dest module.
|
|
bool ModuleLinker::linkModuleFlagsMetadata() {
|
|
// If the source module has no module flags, we are done.
|
|
const NamedMDNode *SrcModFlags = SrcM.getModuleFlagsMetadata();
|
|
if (!SrcModFlags)
|
|
return false;
|
|
|
|
// If the destination module doesn't have module flags yet, then just copy
|
|
// over the source module's flags.
|
|
NamedMDNode *DstModFlags = DstM.getOrInsertModuleFlagsMetadata();
|
|
if (DstModFlags->getNumOperands() == 0) {
|
|
for (unsigned I = 0, E = SrcModFlags->getNumOperands(); I != E; ++I)
|
|
DstModFlags->addOperand(SrcModFlags->getOperand(I));
|
|
|
|
return false;
|
|
}
|
|
|
|
// First build a map of the existing module flags and requirements.
|
|
DenseMap<MDString *, std::pair<MDNode *, unsigned>> Flags;
|
|
SmallSetVector<MDNode *, 16> Requirements;
|
|
for (unsigned I = 0, E = DstModFlags->getNumOperands(); I != E; ++I) {
|
|
MDNode *Op = DstModFlags->getOperand(I);
|
|
ConstantInt *Behavior = mdconst::extract<ConstantInt>(Op->getOperand(0));
|
|
MDString *ID = cast<MDString>(Op->getOperand(1));
|
|
|
|
if (Behavior->getZExtValue() == Module::Require) {
|
|
Requirements.insert(cast<MDNode>(Op->getOperand(2)));
|
|
} else {
|
|
Flags[ID] = std::make_pair(Op, I);
|
|
}
|
|
}
|
|
|
|
// Merge in the flags from the source module, and also collect its set of
|
|
// requirements.
|
|
for (unsigned I = 0, E = SrcModFlags->getNumOperands(); I != E; ++I) {
|
|
MDNode *SrcOp = SrcModFlags->getOperand(I);
|
|
ConstantInt *SrcBehavior =
|
|
mdconst::extract<ConstantInt>(SrcOp->getOperand(0));
|
|
MDString *ID = cast<MDString>(SrcOp->getOperand(1));
|
|
MDNode *DstOp;
|
|
unsigned DstIndex;
|
|
std::tie(DstOp, DstIndex) = Flags.lookup(ID);
|
|
unsigned SrcBehaviorValue = SrcBehavior->getZExtValue();
|
|
|
|
// If this is a requirement, add it and continue.
|
|
if (SrcBehaviorValue == Module::Require) {
|
|
// If the destination module does not already have this requirement, add
|
|
// it.
|
|
if (Requirements.insert(cast<MDNode>(SrcOp->getOperand(2)))) {
|
|
DstModFlags->addOperand(SrcOp);
|
|
}
|
|
continue;
|
|
}
|
|
|
|
// If there is no existing flag with this ID, just add it.
|
|
if (!DstOp) {
|
|
Flags[ID] = std::make_pair(SrcOp, DstModFlags->getNumOperands());
|
|
DstModFlags->addOperand(SrcOp);
|
|
continue;
|
|
}
|
|
|
|
// Otherwise, perform a merge.
|
|
ConstantInt *DstBehavior =
|
|
mdconst::extract<ConstantInt>(DstOp->getOperand(0));
|
|
unsigned DstBehaviorValue = DstBehavior->getZExtValue();
|
|
|
|
// If either flag has override behavior, handle it first.
|
|
if (DstBehaviorValue == Module::Override) {
|
|
// Diagnose inconsistent flags which both have override behavior.
|
|
if (SrcBehaviorValue == Module::Override &&
|
|
SrcOp->getOperand(2) != DstOp->getOperand(2)) {
|
|
emitError("linking module flags '" + ID->getString() +
|
|
"': IDs have conflicting override values");
|
|
}
|
|
continue;
|
|
} else if (SrcBehaviorValue == Module::Override) {
|
|
// Update the destination flag to that of the source.
|
|
DstModFlags->setOperand(DstIndex, SrcOp);
|
|
Flags[ID].first = SrcOp;
|
|
continue;
|
|
}
|
|
|
|
// Diagnose inconsistent merge behavior types.
|
|
if (SrcBehaviorValue != DstBehaviorValue) {
|
|
emitError("linking module flags '" + ID->getString() +
|
|
"': IDs have conflicting behaviors");
|
|
continue;
|
|
}
|
|
|
|
auto replaceDstValue = [&](MDNode *New) {
|
|
Metadata *FlagOps[] = {DstOp->getOperand(0), ID, New};
|
|
MDNode *Flag = MDNode::get(DstM.getContext(), FlagOps);
|
|
DstModFlags->setOperand(DstIndex, Flag);
|
|
Flags[ID].first = Flag;
|
|
};
|
|
|
|
// Perform the merge for standard behavior types.
|
|
switch (SrcBehaviorValue) {
|
|
case Module::Require:
|
|
case Module::Override:
|
|
llvm_unreachable("not possible");
|
|
case Module::Error: {
|
|
// Emit an error if the values differ.
|
|
if (SrcOp->getOperand(2) != DstOp->getOperand(2)) {
|
|
emitError("linking module flags '" + ID->getString() +
|
|
"': IDs have conflicting values");
|
|
}
|
|
continue;
|
|
}
|
|
case Module::Warning: {
|
|
// Emit a warning if the values differ.
|
|
if (SrcOp->getOperand(2) != DstOp->getOperand(2)) {
|
|
emitWarning("linking module flags '" + ID->getString() +
|
|
"': IDs have conflicting values");
|
|
}
|
|
continue;
|
|
}
|
|
case Module::Append: {
|
|
MDNode *DstValue = cast<MDNode>(DstOp->getOperand(2));
|
|
MDNode *SrcValue = cast<MDNode>(SrcOp->getOperand(2));
|
|
SmallVector<Metadata *, 8> MDs;
|
|
MDs.reserve(DstValue->getNumOperands() + SrcValue->getNumOperands());
|
|
MDs.append(DstValue->op_begin(), DstValue->op_end());
|
|
MDs.append(SrcValue->op_begin(), SrcValue->op_end());
|
|
|
|
replaceDstValue(MDNode::get(DstM.getContext(), MDs));
|
|
break;
|
|
}
|
|
case Module::AppendUnique: {
|
|
SmallSetVector<Metadata *, 16> Elts;
|
|
MDNode *DstValue = cast<MDNode>(DstOp->getOperand(2));
|
|
MDNode *SrcValue = cast<MDNode>(SrcOp->getOperand(2));
|
|
Elts.insert(DstValue->op_begin(), DstValue->op_end());
|
|
Elts.insert(SrcValue->op_begin(), SrcValue->op_end());
|
|
|
|
replaceDstValue(MDNode::get(DstM.getContext(),
|
|
makeArrayRef(Elts.begin(), Elts.end())));
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Check all of the requirements.
|
|
for (unsigned I = 0, E = Requirements.size(); I != E; ++I) {
|
|
MDNode *Requirement = Requirements[I];
|
|
MDString *Flag = cast<MDString>(Requirement->getOperand(0));
|
|
Metadata *ReqValue = Requirement->getOperand(1);
|
|
|
|
MDNode *Op = Flags[Flag].first;
|
|
if (!Op || Op->getOperand(2) != ReqValue) {
|
|
emitError("linking module flags '" + Flag->getString() +
|
|
"': does not have the required value");
|
|
continue;
|
|
}
|
|
}
|
|
|
|
return HasError;
|
|
}
|
|
|
|
// This function returns true if the triples match.
|
|
static bool triplesMatch(const Triple &T0, const Triple &T1) {
|
|
// If vendor is apple, ignore the version number.
|
|
if (T0.getVendor() == Triple::Apple)
|
|
return T0.getArch() == T1.getArch() && T0.getSubArch() == T1.getSubArch() &&
|
|
T0.getVendor() == T1.getVendor() && T0.getOS() == T1.getOS();
|
|
|
|
return T0 == T1;
|
|
}
|
|
|
|
// This function returns the merged triple.
|
|
static std::string mergeTriples(const Triple &SrcTriple,
|
|
const Triple &DstTriple) {
|
|
// If vendor is apple, pick the triple with the larger version number.
|
|
if (SrcTriple.getVendor() == Triple::Apple)
|
|
if (DstTriple.isOSVersionLT(SrcTriple))
|
|
return SrcTriple.str();
|
|
|
|
return DstTriple.str();
|
|
}
|
|
|
|
bool ModuleLinker::linkIfNeeded(GlobalValue &GV) {
|
|
GlobalValue *DGV = getLinkedToGlobal(&GV);
|
|
|
|
if (shouldLinkOnlyNeeded() && !(DGV && DGV->isDeclaration()))
|
|
return false;
|
|
|
|
if (DGV && !GV.hasLocalLinkage() && !GV.hasAppendingLinkage()) {
|
|
auto *DGVar = dyn_cast<GlobalVariable>(DGV);
|
|
auto *SGVar = dyn_cast<GlobalVariable>(&GV);
|
|
if (DGVar && SGVar) {
|
|
if (DGVar->isDeclaration() && SGVar->isDeclaration() &&
|
|
(!DGVar->isConstant() || !SGVar->isConstant())) {
|
|
DGVar->setConstant(false);
|
|
SGVar->setConstant(false);
|
|
}
|
|
if (DGVar->hasCommonLinkage() && SGVar->hasCommonLinkage()) {
|
|
unsigned Align = std::max(DGVar->getAlignment(), SGVar->getAlignment());
|
|
SGVar->setAlignment(Align);
|
|
DGVar->setAlignment(Align);
|
|
}
|
|
}
|
|
|
|
GlobalValue::VisibilityTypes Visibility =
|
|
getMinVisibility(DGV->getVisibility(), GV.getVisibility());
|
|
DGV->setVisibility(Visibility);
|
|
GV.setVisibility(Visibility);
|
|
|
|
bool HasUnnamedAddr = GV.hasUnnamedAddr() && DGV->hasUnnamedAddr();
|
|
DGV->setUnnamedAddr(HasUnnamedAddr);
|
|
GV.setUnnamedAddr(HasUnnamedAddr);
|
|
}
|
|
|
|
// Don't want to append to global_ctors list, for example, when we
|
|
// are importing for ThinLTO, otherwise the global ctors and dtors
|
|
// get executed multiple times for local variables (the latter causing
|
|
// double frees).
|
|
if (GV.hasAppendingLinkage() && isPerformingImport())
|
|
return false;
|
|
|
|
if (isPerformingImport() && !doImportAsDefinition(&GV))
|
|
return false;
|
|
|
|
if (!DGV && !shouldOverrideFromSrc() &&
|
|
(GV.hasLocalLinkage() || GV.hasLinkOnceLinkage() ||
|
|
GV.hasAvailableExternallyLinkage()))
|
|
return false;
|
|
|
|
if (GV.isDeclaration())
|
|
return false;
|
|
|
|
if (const Comdat *SC = GV.getComdat()) {
|
|
bool LinkFromSrc;
|
|
Comdat::SelectionKind SK;
|
|
std::tie(SK, LinkFromSrc) = ComdatsChosen[SC];
|
|
if (LinkFromSrc)
|
|
ValuesToLink.insert(&GV);
|
|
return false;
|
|
}
|
|
|
|
bool LinkFromSrc = true;
|
|
if (DGV && shouldLinkFromSource(LinkFromSrc, *DGV, GV))
|
|
return true;
|
|
if (LinkFromSrc)
|
|
ValuesToLink.insert(&GV);
|
|
return false;
|
|
}
|
|
|
|
bool ModuleLinker::run() {
|
|
// Inherit the target data from the source module if the destination module
|
|
// doesn't have one already.
|
|
if (DstM.getDataLayout().isDefault())
|
|
DstM.setDataLayout(SrcM.getDataLayout());
|
|
|
|
if (SrcM.getDataLayout() != DstM.getDataLayout()) {
|
|
emitWarning("Linking two modules of different data layouts: '" +
|
|
SrcM.getModuleIdentifier() + "' is '" +
|
|
SrcM.getDataLayoutStr() + "' whereas '" +
|
|
DstM.getModuleIdentifier() + "' is '" +
|
|
DstM.getDataLayoutStr() + "'\n");
|
|
}
|
|
|
|
// Copy the target triple from the source to dest if the dest's is empty.
|
|
if (DstM.getTargetTriple().empty() && !SrcM.getTargetTriple().empty())
|
|
DstM.setTargetTriple(SrcM.getTargetTriple());
|
|
|
|
Triple SrcTriple(SrcM.getTargetTriple()), DstTriple(DstM.getTargetTriple());
|
|
|
|
if (!SrcM.getTargetTriple().empty() && !triplesMatch(SrcTriple, DstTriple))
|
|
emitWarning("Linking two modules of different target triples: " +
|
|
SrcM.getModuleIdentifier() + "' is '" + SrcM.getTargetTriple() +
|
|
"' whereas '" + DstM.getModuleIdentifier() + "' is '" +
|
|
DstM.getTargetTriple() + "'\n");
|
|
|
|
DstM.setTargetTriple(mergeTriples(SrcTriple, DstTriple));
|
|
|
|
// Append the module inline asm string.
|
|
if (!SrcM.getModuleInlineAsm().empty()) {
|
|
if (DstM.getModuleInlineAsm().empty())
|
|
DstM.setModuleInlineAsm(SrcM.getModuleInlineAsm());
|
|
else
|
|
DstM.setModuleInlineAsm(DstM.getModuleInlineAsm() + "\n" +
|
|
SrcM.getModuleInlineAsm());
|
|
}
|
|
|
|
// Loop over all of the linked values to compute type mappings.
|
|
computeTypeMapping();
|
|
|
|
ComdatsChosen.clear();
|
|
for (const auto &SMEC : SrcM.getComdatSymbolTable()) {
|
|
const Comdat &C = SMEC.getValue();
|
|
if (ComdatsChosen.count(&C))
|
|
continue;
|
|
Comdat::SelectionKind SK;
|
|
bool LinkFromSrc;
|
|
if (getComdatResult(&C, SK, LinkFromSrc))
|
|
return true;
|
|
ComdatsChosen[&C] = std::make_pair(SK, LinkFromSrc);
|
|
}
|
|
|
|
for (GlobalVariable &GV : SrcM.globals())
|
|
if (const Comdat *SC = GV.getComdat())
|
|
ComdatMembers[SC].push_back(&GV);
|
|
|
|
for (Function &SF : SrcM)
|
|
if (const Comdat *SC = SF.getComdat())
|
|
ComdatMembers[SC].push_back(&SF);
|
|
|
|
for (GlobalAlias &GA : SrcM.aliases())
|
|
if (const Comdat *SC = GA.getComdat())
|
|
ComdatMembers[SC].push_back(&GA);
|
|
|
|
// Insert all of the globals in src into the DstM module... without linking
|
|
// initializers (which could refer to functions not yet mapped over).
|
|
for (GlobalVariable &GV : SrcM.globals())
|
|
if (linkIfNeeded(GV))
|
|
return true;
|
|
|
|
for (Function &SF : SrcM)
|
|
if (linkIfNeeded(SF))
|
|
return true;
|
|
|
|
for (GlobalAlias &GA : SrcM.aliases())
|
|
if (linkIfNeeded(GA))
|
|
return true;
|
|
|
|
for (GlobalValue *GV : ValuesToLink) {
|
|
MapValue(GV, ValueMap, RF_MoveDistinctMDs, &TypeMap, &ValMaterializer);
|
|
if (HasError)
|
|
return true;
|
|
}
|
|
|
|
// Note that we are done linking global value bodies. This prevents
|
|
// metadata linking from creating new references.
|
|
DoneLinkingBodies = true;
|
|
|
|
// Remap all of the named MDNodes in Src into the DstM module. We do this
|
|
// after linking GlobalValues so that MDNodes that reference GlobalValues
|
|
// are properly remapped.
|
|
linkNamedMDNodes();
|
|
|
|
// Merge the module flags into the DstM module.
|
|
if (linkModuleFlagsMetadata())
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
Linker::StructTypeKeyInfo::KeyTy::KeyTy(ArrayRef<Type *> E, bool P)
|
|
: ETypes(E), IsPacked(P) {}
|
|
|
|
Linker::StructTypeKeyInfo::KeyTy::KeyTy(const StructType *ST)
|
|
: ETypes(ST->elements()), IsPacked(ST->isPacked()) {}
|
|
|
|
bool Linker::StructTypeKeyInfo::KeyTy::operator==(const KeyTy &That) const {
|
|
if (IsPacked != That.IsPacked)
|
|
return false;
|
|
if (ETypes != That.ETypes)
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
bool Linker::StructTypeKeyInfo::KeyTy::operator!=(const KeyTy &That) const {
|
|
return !this->operator==(That);
|
|
}
|
|
|
|
StructType *Linker::StructTypeKeyInfo::getEmptyKey() {
|
|
return DenseMapInfo<StructType *>::getEmptyKey();
|
|
}
|
|
|
|
StructType *Linker::StructTypeKeyInfo::getTombstoneKey() {
|
|
return DenseMapInfo<StructType *>::getTombstoneKey();
|
|
}
|
|
|
|
unsigned Linker::StructTypeKeyInfo::getHashValue(const KeyTy &Key) {
|
|
return hash_combine(hash_combine_range(Key.ETypes.begin(), Key.ETypes.end()),
|
|
Key.IsPacked);
|
|
}
|
|
|
|
unsigned Linker::StructTypeKeyInfo::getHashValue(const StructType *ST) {
|
|
return getHashValue(KeyTy(ST));
|
|
}
|
|
|
|
bool Linker::StructTypeKeyInfo::isEqual(const KeyTy &LHS,
|
|
const StructType *RHS) {
|
|
if (RHS == getEmptyKey() || RHS == getTombstoneKey())
|
|
return false;
|
|
return LHS == KeyTy(RHS);
|
|
}
|
|
|
|
bool Linker::StructTypeKeyInfo::isEqual(const StructType *LHS,
|
|
const StructType *RHS) {
|
|
if (RHS == getEmptyKey())
|
|
return LHS == getEmptyKey();
|
|
|
|
if (RHS == getTombstoneKey())
|
|
return LHS == getTombstoneKey();
|
|
|
|
return KeyTy(LHS) == KeyTy(RHS);
|
|
}
|
|
|
|
void Linker::IdentifiedStructTypeSet::addNonOpaque(StructType *Ty) {
|
|
assert(!Ty->isOpaque());
|
|
NonOpaqueStructTypes.insert(Ty);
|
|
}
|
|
|
|
void Linker::IdentifiedStructTypeSet::switchToNonOpaque(StructType *Ty) {
|
|
assert(!Ty->isOpaque());
|
|
NonOpaqueStructTypes.insert(Ty);
|
|
bool Removed = OpaqueStructTypes.erase(Ty);
|
|
(void)Removed;
|
|
assert(Removed);
|
|
}
|
|
|
|
void Linker::IdentifiedStructTypeSet::addOpaque(StructType *Ty) {
|
|
assert(Ty->isOpaque());
|
|
OpaqueStructTypes.insert(Ty);
|
|
}
|
|
|
|
StructType *
|
|
Linker::IdentifiedStructTypeSet::findNonOpaque(ArrayRef<Type *> ETypes,
|
|
bool IsPacked) {
|
|
Linker::StructTypeKeyInfo::KeyTy Key(ETypes, IsPacked);
|
|
auto I = NonOpaqueStructTypes.find_as(Key);
|
|
if (I == NonOpaqueStructTypes.end())
|
|
return nullptr;
|
|
return *I;
|
|
}
|
|
|
|
bool Linker::IdentifiedStructTypeSet::hasType(StructType *Ty) {
|
|
if (Ty->isOpaque())
|
|
return OpaqueStructTypes.count(Ty);
|
|
auto I = NonOpaqueStructTypes.find(Ty);
|
|
if (I == NonOpaqueStructTypes.end())
|
|
return false;
|
|
return *I == Ty;
|
|
}
|
|
|
|
Linker::Linker(Module &M, DiagnosticHandlerFunction DiagnosticHandler)
|
|
: Composite(M), DiagnosticHandler(DiagnosticHandler) {
|
|
TypeFinder StructTypes;
|
|
StructTypes.run(M, true);
|
|
for (StructType *Ty : StructTypes) {
|
|
if (Ty->isOpaque())
|
|
IdentifiedStructTypes.addOpaque(Ty);
|
|
else
|
|
IdentifiedStructTypes.addNonOpaque(Ty);
|
|
}
|
|
}
|
|
|
|
bool Linker::linkInModule(Module &Src, unsigned Flags,
|
|
const FunctionInfoIndex *Index,
|
|
DenseSet<const GlobalValue *> *FunctionsToImport) {
|
|
ModuleLinker TheLinker(Composite, IdentifiedStructTypes, Src,
|
|
DiagnosticHandler, Flags, Index, FunctionsToImport);
|
|
bool RetCode = TheLinker.run();
|
|
Composite.dropTriviallyDeadConstantArrays();
|
|
return RetCode;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// LinkModules entrypoint.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// This function links two modules together, with the resulting Dest module
|
|
/// modified to be the composite of the two input modules. If an error occurs,
|
|
/// true is returned and ErrorMsg (if not null) is set to indicate the problem.
|
|
/// Upon failure, the Dest module could be in a modified state, and shouldn't be
|
|
/// relied on to be consistent.
|
|
bool Linker::linkModules(Module &Dest, Module &Src,
|
|
DiagnosticHandlerFunction DiagnosticHandler,
|
|
unsigned Flags) {
|
|
Linker L(Dest, DiagnosticHandler);
|
|
return L.linkInModule(Src, Flags);
|
|
}
|
|
|
|
std::unique_ptr<Module>
|
|
llvm::renameModuleForThinLTO(std::unique_ptr<Module> &M,
|
|
const FunctionInfoIndex *Index,
|
|
DiagnosticHandlerFunction DiagnosticHandler) {
|
|
std::unique_ptr<llvm::Module> RenamedModule(
|
|
new llvm::Module(M->getModuleIdentifier(), M->getContext()));
|
|
Linker L(*RenamedModule.get(), DiagnosticHandler);
|
|
if (L.linkInModule(*M.get(), llvm::Linker::Flags::None, Index))
|
|
return nullptr;
|
|
return RenamedModule;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// C API.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
LLVMBool LLVMLinkModules(LLVMModuleRef Dest, LLVMModuleRef Src,
|
|
LLVMLinkerMode Unused, char **OutMessages) {
|
|
Module *D = unwrap(Dest);
|
|
std::string Message;
|
|
raw_string_ostream Stream(Message);
|
|
DiagnosticPrinterRawOStream DP(Stream);
|
|
|
|
LLVMBool Result = Linker::linkModules(
|
|
*D, *unwrap(Src), [&](const DiagnosticInfo &DI) { DI.print(DP); });
|
|
|
|
if (OutMessages && Result) {
|
|
Stream.flush();
|
|
*OutMessages = strdup(Message.c_str());
|
|
}
|
|
return Result;
|
|
}
|