llvm/lib/Target/SparcV9/MachineInstrAnnot.h
Vikram S. Adve f425884e27 Fixed method getReturnValue(): it should return NULL if the
callee does not return a value.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@3968 91177308-0d34-0410-b5e6-96231b3b80d8
2002-09-28 17:03:54 +00:00

87 lines
3.6 KiB
C++

//===-- llvm/CodeGen/MachineInstrAnnot.h ------------------------*- C++ -*-===//
//
// Annotations used to pass information between code generation phases.
//
//===----------------------------------------------------------------------===//
#ifndef MACHINE_INSTR_ANNOT_h
#define MACHINE_INSTR_ANNOT_h
#include "llvm/Annotation.h"
#include "llvm/CodeGen/MachineInstr.h"
class Value;
class TmpInstruction;
class CallInst;
class CallArgInfo {
// Flag values for different argument passing methods
static const unsigned char IntArgReg = 0x1;
static const unsigned char FPArgReg = 0x2;
static const unsigned char StackSlot = 0x4;
const Value* argVal; // this argument
const Value* argValCopy; // second copy of arg. when multiple
// copies must be passed in registers
unsigned char passingMethod; // flags recording passing methods
public:
// Constructors
CallArgInfo(const Value* _argVal)
: argVal(_argVal), argValCopy(NULL), passingMethod(0x0) {}
CallArgInfo(const CallArgInfo& obj)
: argVal(obj.argVal), argValCopy(obj.argValCopy),
passingMethod(obj.passingMethod) {}
// Accessor methods
const Value* getArgVal() { return argVal; }
const Value* getArgCopy() { return argValCopy; }
bool usesIntArgReg() { return (bool) (passingMethod & IntArgReg);}
bool usesFPArgReg() { return (bool) (passingMethod & FPArgReg); }
bool usesStackSlot() { return (bool) (passingMethod & StackSlot);}
// Modifier methods
void replaceArgVal(const Value* newVal) { argVal = newVal; }
void setUseIntArgReg() { passingMethod |= IntArgReg; }
void setUseFPArgReg() { passingMethod |= FPArgReg; }
void setUseStackSlot() { passingMethod |= StackSlot; }
void setArgCopy(const Value* tmp) { argValCopy = tmp; }
};
class CallArgsDescriptor: public Annotation { // Annotation for a MachineInstr
static AnnotationID AID; // AnnotationID for this class
std::vector<CallArgInfo> argInfoVec; // Descriptor for each argument
const CallInst* callInstr; // The call instruction == result value
const Value* funcPtr; // Pointer for indirect calls
TmpInstruction* retAddrReg; // Tmp value for return address reg.
bool isVarArgs; // Is this a varargs call?
bool noPrototype; // Is this a call with no prototype?
public:
CallArgsDescriptor(const CallInst* _callInstr, TmpInstruction* _retAddrReg,
bool _isVarArgs, bool _noPrototype);
// Accessor methods to retrieve information about the call
// Note that operands are numbered 1..#CallArgs
unsigned int getNumArgs() const { return argInfoVec.size(); }
CallArgInfo& getArgInfo(unsigned int op) { assert(op < argInfoVec.size());
return argInfoVec[op]; }
const CallInst* getReturnValue() const;
const Value* getIndirectFuncPtr() const { return funcPtr; }
TmpInstruction* getReturnAddrReg() const { return retAddrReg; }
bool isVarArgsFunc() const { return isVarArgs; }
bool hasNoPrototype() const { return noPrototype; }
// Annotation mechanism to annotate a MachineInstr with the descriptor.
// This is not demand-driven because annotations can only be created
// at restricted points during code generation.
static inline CallArgsDescriptor *get(const MachineInstr* MI) {
return (CallArgsDescriptor *) MI->getAnnotation(AID);
}
};
#endif