llvm/lib/CodeGen/OptimizePHIs.cpp
Bob Wilson fe61fb1e10 Add a new pass on machine instructions to optimize away PHI cycles that
reduce down to a single value.  InstCombine already does this transformation
but DAG legalization may introduce new opportunities.  This has turned out to
be important for ARM where 64-bit values are split up during type legalization:
InstCombine is not able to remove the PHI cycles on the 64-bit values but
the separate 32-bit values can be optimized.  I measured the compile time 
impact of this (running llc on 176.gcc) and it was not significant.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@95951 91177308-0d34-0410-b5e6-96231b3b80d8
2010-02-12 01:30:21 +00:00

142 lines
4.6 KiB
C++

//===-- OptimizePHIs.cpp - Optimize machine instruction PHIs --------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass optimizes machine instruction PHIs to take advantage of
// opportunities created during DAG legalization.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "phi-opt"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Function.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/Statistic.h"
using namespace llvm;
STATISTIC(NumPHICycles, "Number of PHI cycles replaced");
namespace {
class OptimizePHIs : public MachineFunctionPass {
MachineRegisterInfo *MRI;
const TargetInstrInfo *TII;
public:
static char ID; // Pass identification
OptimizePHIs() : MachineFunctionPass(&ID) {}
virtual bool runOnMachineFunction(MachineFunction &MF);
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesCFG();
MachineFunctionPass::getAnalysisUsage(AU);
}
private:
bool IsSingleValuePHICycle(const MachineInstr *MI, unsigned &SingleValReg,
SmallSet<unsigned, 16> &RegsInCycle);
bool ReplacePHICycles(MachineBasicBlock &MBB);
};
}
char OptimizePHIs::ID = 0;
static RegisterPass<OptimizePHIs>
X("opt-phis", "Optimize machine instruction PHIs");
FunctionPass *llvm::createOptimizePHIsPass() { return new OptimizePHIs(); }
bool OptimizePHIs::runOnMachineFunction(MachineFunction &Fn) {
MRI = &Fn.getRegInfo();
TII = Fn.getTarget().getInstrInfo();
// Find PHI cycles that can be replaced by a single value. InstCombine
// does this, but DAG legalization may introduce new opportunities, e.g.,
// when i64 values are split up for 32-bit targets.
bool Changed = false;
for (MachineFunction::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
Changed |= ReplacePHICycles(*I);
return Changed;
}
/// IsSingleValuePHICycle - Check if MI is a PHI where all the source operands
/// are copies of SingleValReg, possibly via copies through other PHIs. If
/// SingleValReg is zero on entry, it is set to the register with the single
/// non-copy value. RegsInCycle is a set used to keep track of the PHIs that
/// have been scanned.
bool OptimizePHIs::IsSingleValuePHICycle(const MachineInstr *MI,
unsigned &SingleValReg,
SmallSet<unsigned, 16> &RegsInCycle) {
assert(MI->isPHI() && "IsSingleValuePHICycle expects a PHI instruction");
unsigned DstReg = MI->getOperand(0).getReg();
// See if we already saw this register.
if (!RegsInCycle.insert(DstReg))
return true;
// Don't scan crazily complex things.
if (RegsInCycle.size() == 16)
return false;
// Scan the PHI operands.
for (unsigned i = 1; i != MI->getNumOperands(); i += 2) {
unsigned SrcReg = MI->getOperand(i).getReg();
if (SrcReg == DstReg)
continue;
const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
// Skip over register-to-register moves.
unsigned MvSrcReg, MvDstReg, SrcSubIdx, DstSubIdx;
if (SrcMI &&
TII->isMoveInstr(*SrcMI, MvSrcReg, MvDstReg, SrcSubIdx, DstSubIdx) &&
SrcSubIdx == 0 && DstSubIdx == 0 &&
TargetRegisterInfo::isVirtualRegister(MvSrcReg))
SrcMI = MRI->getVRegDef(MvSrcReg);
if (!SrcMI)
return false;
if (SrcMI->isPHI()) {
if (!IsSingleValuePHICycle(SrcMI, SingleValReg, RegsInCycle))
return false;
} else {
// Fail if there is more than one non-phi/non-move register.
if (SingleValReg != 0)
return false;
SingleValReg = SrcReg;
}
}
return true;
}
/// ReplacePHICycles - Find PHI cycles that can be replaced by a single
/// value and remove them.
bool OptimizePHIs::ReplacePHICycles(MachineBasicBlock &MBB) {
bool Changed = false;
for (MachineBasicBlock::iterator
MII = MBB.begin(), E = MBB.end(); MII != E; ) {
MachineInstr *MI = &*MII++;
if (!MI->isPHI())
break;
unsigned SingleValReg = 0;
SmallSet<unsigned, 16> RegsInCycle;
if (IsSingleValuePHICycle(MI, SingleValReg, RegsInCycle) &&
SingleValReg != 0) {
MRI->replaceRegWith(MI->getOperand(0).getReg(), SingleValReg);
MI->eraseFromParent();
++NumPHICycles;
Changed = true;
}
}
return Changed;
}