mirror of
https://github.com/RPCSX/xed.git
synced 2024-11-26 21:10:29 +00:00
e7d734962c
Change-Id: I166833daaa56c33eca01bdf7b9aa6e74a490ba9a (cherry picked from commit 1212ba962dff6dfbfa0bd2469327ff447ce59058)
211 lines
5.9 KiB
Python
Executable File
211 lines
5.9 KiB
Python
Executable File
#!/usr/bin/env python
|
|
# -*- python -*-
|
|
#BEGIN_LEGAL
|
|
#
|
|
#Copyright (c) 2017 Intel Corporation
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
#END_LEGAL
|
|
from __future__ import print_function
|
|
import sys
|
|
import os
|
|
import math
|
|
import xedhash
|
|
|
|
class hashmul_t(xedhash.hash_fun_interface_t):
|
|
"""Implement multiplicative hashing."""
|
|
|
|
def __init__(self, table_size):
|
|
# golden ratio phi is (1+sqrt(5))/2. From Knuth, volume 3, page 516
|
|
# 1/phi = (sqrt(5)-1)/2 (after some arithmetic)
|
|
# We are using 1/phi * 2**n
|
|
# where n is the number of bits in the data type (32)
|
|
|
|
|
|
self.golden_ratio_recip2to32 = 2654435769
|
|
self.table_size = table_size
|
|
|
|
# pow2 is True if the table is a power of 2.
|
|
# ilog2_table_size is only valid if pow2 is True
|
|
self.pow2, self.ilog2_table_size = self.power_of_2()
|
|
|
|
def kind(self):
|
|
return "mult"
|
|
|
|
def power_of_2(self):
|
|
ilog2_table_size = int(math.log(self.table_size,2))
|
|
if pow(2,ilog2_table_size) == self.table_size:
|
|
return (True, ilog2_table_size)
|
|
return (False, -1)
|
|
|
|
def get_table_size(self):
|
|
return self.table_size
|
|
|
|
def __str__(self):
|
|
return "h(x) = hashmul({})".format(self.table_size)
|
|
|
|
def apply(self, k):
|
|
"""Apply the hash function to the key k"""
|
|
#sys.stderr.write("Apply {} --> ".format(k))
|
|
q = self.golden_ratio_recip2to32 * k
|
|
fraction = q & ((1<<32)-1)
|
|
r = fraction * self.table_size
|
|
v = r >> 32
|
|
#sys.stderr.write(" {}\n".format(v))
|
|
return v
|
|
|
|
def apply_pow2(self, k):
|
|
"""Apply the hash function to the key k, for power of 2 table sizes"""
|
|
q = self.golden_ratio_recip2to32 * k
|
|
fraction = q & ((1<<32)-1)
|
|
v = fraction >> (32-self.ilog2_table_size)
|
|
return v
|
|
|
|
def is_perfect(self, key_list):
|
|
values = set()
|
|
for k in key_list:
|
|
#sys.stderr.write("Checking {}\n".format(k))
|
|
v = self.apply(k)
|
|
if v in values:
|
|
# collision - not perfect
|
|
return False
|
|
values.add(v)
|
|
|
|
# no collisions in the output of the hash: perfect
|
|
return True
|
|
|
|
def need_hash_index_validation(self):
|
|
"""Need to validate that we landed on live bucket"""
|
|
return True
|
|
|
|
def add_key_validation(self, strings_dict):
|
|
key_str = strings_dict['key_str']
|
|
hentry_str ='%s[%s]' % (strings_dict['table_name'],
|
|
strings_dict['hidx_str'])
|
|
|
|
return 'if(%s.key == %s)' % (hentry_str, key_str)
|
|
|
|
|
|
def emit_cvar_decl(self):
|
|
if self.pow2:
|
|
return "xed_union64_t t"
|
|
else:
|
|
return "xed_union64_t t, u"
|
|
|
|
|
|
def emit_cexpr(self, key_str="key"):
|
|
"""Emit a C expression for the hash function given a C variable
|
|
key_str."""
|
|
if self.pow2:
|
|
# power of 2 table size can replace the 2nd multiply with a shift
|
|
c_hash_expr = """(t.u64 = {0} * {1}, t.s.lo32 >> (32-{2}))""".format(
|
|
str(self.golden_ratio_recip2to32),
|
|
key_str,
|
|
self.ilog2_table_size)
|
|
else:
|
|
# the ULL cast on the constant is important to get 64b math.
|
|
c_hash_expr = """(t.u64 = {0} * {1}, u.u64 = t.s.lo32 * {2}ULL, u.s.hi32)""".format(
|
|
str(self.golden_ratio_recip2to32),
|
|
key_str,
|
|
str(self.table_size))
|
|
|
|
return c_hash_expr
|
|
|
|
def find_perfect(keylist):
|
|
n = len(keylist)
|
|
for m in range(n,2*n):
|
|
f = hashmul_t(n)
|
|
if f.is_perfect(keylist):
|
|
return f
|
|
return None
|
|
|
|
def test1():
|
|
f = hashmul_t(128)
|
|
|
|
for k in range(0,128):
|
|
v = f.apply(k)
|
|
print("{} -> {}".format(k,v))
|
|
|
|
if f.is_perfect(range(0,128)):
|
|
print("Hash function is perfect")
|
|
else:
|
|
print("Hash function has collisions")
|
|
|
|
print(f.emit_cexpr())
|
|
return 0
|
|
def test2():
|
|
f = hashmul_t(9)
|
|
inputs = [225,2273,737,2785,241,2289,753,2801]
|
|
for k in inputs:
|
|
v = f.apply(k)
|
|
print("{} -> {}".format(k,v))
|
|
|
|
if f.is_perfect(inputs):
|
|
print("Hash function is perfect")
|
|
else:
|
|
print("Hash function has collisions")
|
|
|
|
print(f.emit_cexpr())
|
|
return 0
|
|
def test3():
|
|
f = hashmul_t(16)
|
|
inputs = [225,2273,737,2785,241,2289,753,2801]
|
|
for k in inputs:
|
|
v1 = f.apply(k)
|
|
v2 = f.apply_pow2(k)
|
|
if v1 != v2:
|
|
print("ERROR {} -> {} {}".format(k,v1,v2))
|
|
else:
|
|
print("OK {} -> {} {}".format(k,v1,v2))
|
|
|
|
if f.is_perfect(inputs):
|
|
print("Hash function is perfect")
|
|
else:
|
|
print("Hash function has collisions")
|
|
|
|
print(f.emit_cexpr())
|
|
return 0
|
|
|
|
def test4():
|
|
f = hashmul_t(1)
|
|
inputs = [68002]
|
|
for k in inputs:
|
|
v1 = f.apply(k)
|
|
v2 = f.apply_pow2(k)
|
|
if v1 != v2:
|
|
print("ERROR {} -> {} {}".format(k,v1,v2))
|
|
else:
|
|
print("OK {} -> {} {}".format(k,v1,v2))
|
|
|
|
if f.is_perfect(inputs):
|
|
print("Hash function is perfect")
|
|
else:
|
|
print("Hash function has collisions")
|
|
|
|
print(f.emit_cexpr())
|
|
return 0
|
|
|
|
def test():
|
|
for f in [test1, test2, test3, test4]:
|
|
r = f()
|
|
if r:
|
|
print("FAIL: {}".format(f.__name__))
|
|
else:
|
|
print("PASS: {}".format(f.__name__))
|
|
|
|
if __name__ == "__main__":
|
|
r = test()
|
|
sys.exit(r)
|
|
|