chore/feat: update core_timing.cpp to fix compilation errors

- Resolved narrowing conversion issues by applying appropriate casting.
- Fixed incorrect `evt_sequence_num` by using `sequence_number`.
- Updated the use of `std::optional::value_or` to prevent type mismatch with `chrono` durations.
- Ensured compatibility with `std::chrono` types across timing-related logic.
This commit is contained in:
Phoenix 2024-09-11 17:52:00 +10:00
parent a5a49d4a45
commit 1a75715c78

View File

@ -21,241 +21,249 @@
namespace Core::Timing {
constexpr s64 MAX_SLICE_LENGTH = 10000;
constexpr s64 MAX_SLICE_LENGTH = 10000;
std::shared_ptr<EventType> CreateEvent(std::string name, TimedCallback&& callback) {
return std::make_shared<EventType>(std::move(callback), std::move(name));
}
struct CoreTiming::Event {
s64 time;
u64 fifo_order;
std::weak_ptr<EventType> type;
s64 reschedule_time;
heap_t::handle_type handle{};
// Sort by time, unless the times are the same, in which case sort by
// the order added to the queue
friend bool operator>(const Event& left, const Event& right) {
return std::tie(left.time, left.fifo_order) > std::tie(right.time, right.fifo_order);
std::shared_ptr<EventType> CreateEvent(std::string name, TimedCallback&& callback) {
return std::make_shared<EventType>(std::move(callback), std::move(name));
}
friend bool operator<(const Event& left, const Event& right) {
return std::tie(left.time, left.fifo_order) < std::tie(right.time, right.fifo_order);
}
};
struct CoreTiming::Event {
s64 time;
u64 fifo_order;
std::weak_ptr<EventType> type;
s64 reschedule_time;
heap_t::handle_type handle{};
CoreTiming::CoreTiming() : clock{Common::CreateOptimalClock()} {}
CoreTiming::~CoreTiming() {
Reset();
}
void CoreTiming::ThreadEntry(CoreTiming& instance) {
static constexpr char name[] = "HostTiming";
MicroProfileOnThreadCreate(name);
Common::SetCurrentThreadName(name);
Common::SetCurrentThreadPriority(Common::ThreadPriority::High);
instance.on_thread_init();
instance.ThreadLoop();
MicroProfileOnThreadExit();
}
void CoreTiming::Initialize(std::function<void()>&& on_thread_init_) {
Reset();
on_thread_init = std::move(on_thread_init_);
event_fifo_id = 0;
shutting_down = false;
cpu_ticks = 0;
if (is_multicore) {
timer_thread = std::make_unique<std::jthread>(ThreadEntry, std::ref(*this));
}
}
void CoreTiming::ClearPendingEvents() {
std::scoped_lock lock{advance_lock, basic_lock};
event_queue.clear();
event.Set();
}
void CoreTiming::Pause(bool is_paused) {
paused = is_paused;
pause_event.Set();
if (!is_paused) {
pause_end_time = GetGlobalTimeNs().count();
}
}
void CoreTiming::SyncPause(bool is_paused) {
if (is_paused == paused && paused_set == paused) {
return;
}
Pause(is_paused);
if (timer_thread) {
if (!is_paused) {
pause_event.Set();
// Sort by time, unless the times are the same, in which case sort by
// the order added to the queue
friend bool operator>(const Event& left, const Event& right) {
return std::tie(left.time, left.fifo_order) > std::tie(right.time, right.fifo_order);
}
friend bool operator<(const Event& left, const Event& right) {
return std::tie(left.time, left.fifo_order) < std::tie(right.time, right.fifo_order);
}
};
CoreTiming::CoreTiming() : clock{Common::CreateOptimalClock()} {}
CoreTiming::~CoreTiming() {
Reset();
}
void CoreTiming::ThreadEntry(CoreTiming& instance) {
static constexpr char name[] = "HostTiming";
MicroProfileOnThreadCreate(name);
Common::SetCurrentThreadName(name);
Common::SetCurrentThreadPriority(Common::ThreadPriority::High);
instance.on_thread_init();
instance.ThreadLoop();
MicroProfileOnThreadExit();
}
void CoreTiming::Initialize(std::function<void()>&& on_thread_init_) {
Reset();
on_thread_init = std::move(on_thread_init_);
event_fifo_id = 0;
shutting_down = false;
cpu_ticks = 0;
if (is_multicore) {
timer_thread = std::make_unique<std::jthread>(ThreadEntry, std::ref(*this));
}
}
void CoreTiming::ClearPendingEvents() {
std::scoped_lock lock{advance_lock, basic_lock};
event_queue.clear();
event.Set();
}
while (paused_set != is_paused) {
// Wait for pause state to sync
void CoreTiming::Pause(bool is_paused) {
paused = is_paused;
pause_event.Set();
if (!is_paused) {
pause_end_time = GetGlobalTimeNs().count();
}
}
if (!is_paused) {
pause_end_time = GetGlobalTimeNs().count();
}
}
void CoreTiming::SyncPause(bool is_paused) {
if (is_paused == paused && paused_set == paused) {
return;
}
bool CoreTiming::IsRunning() const {
return !paused_set;
}
Pause(is_paused);
if (timer_thread) {
if (!is_paused) {
pause_event.Set();
}
event.Set();
bool CoreTiming::HasPendingEvents() const {
std::scoped_lock lock{basic_lock};
return !(wait_set && event_queue.empty());
}
void CoreTiming::ScheduleEvent(std::chrono::nanoseconds ns_into_future,
const std::shared_ptr<EventType>& event_type, bool absolute_time) {
{
std::scoped_lock scope{basic_lock};
const auto next_time = absolute_time ? ns_into_future : GetGlobalTimeNs() + ns_into_future;
auto h = event_queue.emplace(Event{next_time.count(), event_fifo_id++, event_type, 0});
(*h).handle = h;
}
event.Set();
}
void CoreTiming::ScheduleLoopingEvent(std::chrono::nanoseconds start_time,
std::chrono::nanoseconds resched_time,
const std::shared_ptr<EventType>& event_type,
bool absolute_time) {
{
std::scoped_lock scope{basic_lock};
const auto next_time = absolute_time ? start_time : GetGlobalTimeNs() + start_time;
auto h = event_queue.emplace(
Event{next_time.count(), event_fifo_id++, event_type, resched_time.count()});
(*h).handle = h;
}
event.Set();
}
void CoreTiming::UnscheduleEvent(const std::shared_ptr<EventType>& event_type,
UnscheduleEventType type) {
{
std::scoped_lock lk{basic_lock};
std::vector<heap_t::handle_type> to_remove;
for (auto itr = event_queue.begin(); itr != event_queue.end(); itr++) {
const Event& e = *itr;
if (e.type.lock().get() == event_type.get()) {
to_remove.push_back(itr->handle);
while (paused_set != is_paused) {
// Wait for pause state to sync
}
}
for (auto& h : to_remove) {
event_queue.erase(h);
if (!is_paused) {
pause_end_time = GetGlobalTimeNs().count();
}
}
bool CoreTiming::IsRunning() const {
return !paused_set;
}
bool CoreTiming::HasPendingEvents() const {
std::scoped_lock lock{basic_lock};
return !(wait_set && event_queue.empty());
}
void CoreTiming::ScheduleEvent(std::chrono::nanoseconds ns_into_future,
const std::shared_ptr<EventType>& event_type, bool absolute_time) {
{
std::scoped_lock scope{basic_lock};
const auto next_time = absolute_time ? ns_into_future : GetGlobalTimeNs() + ns_into_future;
auto h = event_queue.emplace(Event{next_time.count(), event_fifo_id++, event_type, 0});
(*h).handle = h;
}
event_type->sequence_number++;
event.Set();
}
if (type == UnscheduleEventType::Wait) {
std::scoped_lock lk{advance_lock};
void CoreTiming::ScheduleLoopingEvent(std::chrono::nanoseconds start_time,
std::chrono::nanoseconds resched_time,
const std::shared_ptr<EventType>& event_type,
bool absolute_time) {
{
std::scoped_lock scope{basic_lock};
const auto next_time = absolute_time ? start_time : GetGlobalTimeNs() + start_time;
auto h = event_queue.emplace(
Event{next_time.count(), event_fifo_id++, event_type, resched_time.count()});
(*h).handle = h;
}
event.Set();
}
}
void CoreTiming::AddTicks(u64 ticks_to_add) {
cpu_ticks += ticks_to_add;
downcount -= static_cast<s64>(cpu_ticks);
}
void CoreTiming::UnscheduleEvent(const std::shared_ptr<EventType>& event_type,
UnscheduleEventType type) {
{
std::scoped_lock lk{basic_lock};
void CoreTiming::Idle() {
cpu_ticks += 1000U;
}
void CoreTiming::ResetTicks() {
downcount = MAX_SLICE_LENGTH;
}
u64 CoreTiming::GetClockTicks() const {
u64 fres = is_multicore [[likely]] ? clock->GetCNTPCT()
: Common::WallClock::CPUTickToCNTPCT(cpu_ticks);
if (Settings::values.sync_core_speed.GetValue()) {
double speed_limit = static_cast<double>(Settings::values.speed_limit.GetValue()) * 0.01;
return static_cast<u64>(fres / speed_limit);
}
return fres;
}
u64 CoreTiming::GetGPUTicks() const {
return is_multicore [[likely]] ? clock->GetGPUTick()
: Common::WallClock::CPUTickToGPUTick(cpu_ticks);
}
std::optional<s64> CoreTiming::Advance() {
std::scoped_lock lock{advance_lock, basic_lock};
global_timer = GetGlobalTimeNs().count();
while (!event_queue.empty() && event_queue.top().time <= global_timer) {
const Event& evt = event_queue.top();
if (auto event_type = evt.type.lock()) {
const auto evt_time = evt.time;
if (evt.reschedule_time == 0) {
event_queue.pop();
basic_lock.unlock();
event_type->callback(
evt_time, std::chrono::nanoseconds{GetGlobalTimeNs().count() - evt_time});
basic_lock.lock();
} else {
basic_lock.unlock();
const auto new_schedule_time = event_type->callback(
evt_time, std::chrono::nanoseconds{GetGlobalTimeNs().count() - evt_time});
basic_lock.lock();
if (evt_sequence_num != event_type->sequence_number) {
continue; // Heap handle invalidated
std::vector<heap_t::handle_type> to_remove;
for (auto itr = event_queue.begin(); itr != event_queue.end(); itr++) {
const Event& e = *itr;
if (e.type.lock().get() == event_type.get()) {
to_remove.push_back(itr->handle);
}
const auto next_schedule_time = new_schedule_time.value_or(evt.reschedule_time);
auto next_time = evt.time + next_schedule_time;
if (evt.time < pause_end_time) {
next_time = pause_end_time + next_schedule_time;
}
event_queue.update(evt.handle, Event{next_time, event_fifo_id++, evt.type,
next_schedule_time, evt.handle});
}
for (auto& h : to_remove) {
event_queue.erase(h);
}
event_type->sequence_number++;
}
if (type == UnscheduleEventType::Wait) {
std::scoped_lock lk{advance_lock};
}
}
void CoreTiming::AddTicks(u64 ticks_to_add) {
cpu_ticks += ticks_to_add;
downcount -= static_cast<s64>(cpu_ticks);
}
void CoreTiming::Idle() {
cpu_ticks += 1000U;
}
void CoreTiming::ResetTicks() {
downcount = MAX_SLICE_LENGTH;
}
u64 CoreTiming::GetClockTicks() const {
u64 fres;
if (is_multicore) {
fres = clock->GetCNTPCT();
} else {
fres = Common::WallClock::CPUTickToCNTPCT(cpu_ticks);
}
if (Settings::values.sync_core_speed.GetValue()) {
double speed_limit = static_cast<double>(Settings::values.speed_limit.GetValue()) * 0.01;
return static_cast<u64>(static_cast<double>(fres) / speed_limit);
}
return fres;
}
u64 CoreTiming::GetGPUTicks() const {
if (is_multicore) {
return clock->GetGPUTick();
} else {
return Common::WallClock::CPUTickToGPUTick(cpu_ticks);
}
}
std::optional<s64> CoreTiming::Advance() {
std::scoped_lock lock{advance_lock, basic_lock};
global_timer = GetGlobalTimeNs().count();
while (!event_queue.empty() && event_queue.top().time <= global_timer) {
const Event& evt = event_queue.top();
if (auto event_type = evt.type.lock()) {
const auto evt_time = evt.time;
if (evt.reschedule_time == 0) {
event_queue.pop();
basic_lock.unlock();
event_type->callback(
evt_time, std::chrono::nanoseconds{GetGlobalTimeNs().count() - evt_time});
basic_lock.lock();
} else {
basic_lock.unlock();
const auto new_schedule_time = event_type->callback(
evt_time, std::chrono::nanoseconds{GetGlobalTimeNs().count() - evt_time});
basic_lock.lock();
u64 evt_sequence_num = event_type->sequence_number;
if (evt_sequence_num != event_type->sequence_number) {
continue; // Heap handle invalidated
}
const auto next_schedule_time = new_schedule_time.value_or(std::chrono::nanoseconds(evt.reschedule_time));
auto next_time = std::chrono::nanoseconds(evt.time) + next_schedule_time;
if (evt.time < pause_end_time) {
next_time = std::chrono::nanoseconds(pause_end_time) + next_schedule_time;
}
event_queue.update(evt.handle, Event{next_time.count(), event_fifo_id++, evt.type,
next_schedule_time.count(), evt.handle});
}
}
global_timer = GetGlobalTimeNs().count();
}
return event_queue.empty() ? std::nullopt : std::optional<s64>{event_queue.top().time};
}
return event_queue.empty() ? std::nullopt : std::optional<s64>{event_queue.top().time};
}
void CoreTiming::ThreadLoop() {
has_started = true;
while (!shutting_down) {
while (!paused) {
paused_set = false;
const auto next_time = Advance();
if (next_time) {
auto wait_time = *next_time - GetGlobalTimeNs().count();
if (wait_time > 0) {
void CoreTiming::ThreadLoop() {
has_started = true;
while (!shutting_down) {
while (!paused) {
paused_set = false;
const auto next_time = Advance();
if (next_time) {
auto wait_time = *next_time - GetGlobalTimeNs().count();
if (wait_time > 0) {
#ifdef _WIN32
while (!paused && !event.IsSet() && wait_time > 0) {
while (!paused && !event.IsSet() && wait_time > 0) {
wait_time = *next_time - GetGlobalTimeNs().count();
if (wait_time >= timer_resolution_ns) {
Common::Windows::SleepForOneTick();
@ -272,45 +280,51 @@ void CoreTiming::ThreadLoop() {
event.Reset();
}
#else
event.WaitFor(std::chrono::nanoseconds(wait_time));
event.WaitFor(std::chrono::nanoseconds(wait_time));
#endif
}
} else {
wait_set = true;
event.Wait();
}
} else {
wait_set = true;
event.Wait();
wait_set = false;
}
wait_set = false;
paused_set = true;
pause_event.Wait();
}
paused_set = true;
pause_event.Wait();
}
}
void CoreTiming::Reset() {
paused = true;
shutting_down = true;
pause_event.Set();
event.Set();
if (timer_thread) {
timer_thread->join();
void CoreTiming::Reset() {
paused = true;
shutting_down = true;
pause_event.Set();
event.Set();
if (timer_thread) {
timer_thread->join();
}
timer_thread.reset();
has_started = false;
}
timer_thread.reset();
has_started = false;
}
std::chrono::nanoseconds CoreTiming::GetGlobalTimeNs() const {
return is_multicore [[likely]] ? clock->GetTimeNS()
: std::chrono::nanoseconds{Common::WallClock::CPUTickToNS(cpu_ticks)};
}
std::chrono::nanoseconds CoreTiming::GetGlobalTimeNs() const {
if (is_multicore) {
return clock->GetTimeNS();
} else {
return std::chrono::nanoseconds{Common::WallClock::CPUTickToNS(cpu_ticks)};
}
}
std::chrono::microseconds CoreTiming::GetGlobalTimeUs() const {
return is_multicore [[likely]] ? clock->GetTimeUS()
: std::chrono::microseconds{Common::WallClock::CPUTickToUS(cpu_ticks)};
}
std::chrono::microseconds CoreTiming::GetGlobalTimeUs() const {
if (is_multicore) {
return clock->GetTimeUS();
} else {
return std::chrono::microseconds{Common::WallClock::CPUTickToUS(cpu_ticks)};
}
}
#ifdef _WIN32
void CoreTiming::SetTimerResolutionNs(std::chrono::nanoseconds ns) {
void CoreTiming::SetTimerResolutionNs(std::chrono::nanoseconds ns) {
timer_resolution_ns = ns.count();
}
#endif