cctools-port/cctools/libmacho/arch.c
2020-03-20 13:33:04 +01:00

1331 lines
41 KiB
C

/*
* Copyright (c) 1999 Apple Computer, Inc. All rights reserved.
*
* @APPLE_LICENSE_HEADER_START@
*
* This file contains Original Code and/or Modifications of Original Code
* as defined in and that are subject to the Apple Public Source License
* Version 2.0 (the 'License'). You may not use this file except in
* compliance with the License. Please obtain a copy of the License at
* http://www.opensource.apple.com/apsl/ and read it before using this
* file.
*
* The Original Code and all software distributed under the License are
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
* Please see the License for the specific language governing rights and
* limitations under the License.
*
* @APPLE_LICENSE_HEADER_END@
*/
/*
* Copyright (c) 1993 NeXT Computer, Inc.
*
* Architecture computing functions.
*
* HISTORY
*
* 11 April 1997
* Update m98k to ppc and removed the never supported architectures (mips,
* and vax). Apple Computer, Inc.
*
* 4 February 1993 Lennart Lovstrand <lennart@next.com>
* Redesigned to use NXArchInfo based names and signatures.
*
* Originally written at NeXT, Inc.
*
*/
#ifndef RLD
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <limits.h>
#include "mach/machine.h"
#include "mach/mach.h"
#include "stuff/openstep_mach.h"
#include <mach-o/fat.h>
#include <mach-o/arch.h>
/* The array of all currently know architecture flags (terminated with an entry
* with all zeros). Pointer to this returned with NXGetAllArchInfos().
*/
static const NXArchInfo ArchInfoTable[] = {
/* architecture families */
{"hppa", CPU_TYPE_HPPA, CPU_SUBTYPE_HPPA_ALL, NX_BigEndian,
"HP-PA"},
{"i386", CPU_TYPE_I386, CPU_SUBTYPE_I386_ALL, NX_LittleEndian,
"Intel 80x86"},
{ "x86_64", CPU_TYPE_X86_64, CPU_SUBTYPE_X86_64_ALL, NX_LittleEndian,
"Intel x86-64" },
{ "x86_64h", CPU_TYPE_X86_64, CPU_SUBTYPE_X86_64_H, NX_LittleEndian,
"Intel x86-64h Haswell" },
{"i860", CPU_TYPE_I860, CPU_SUBTYPE_I860_ALL, NX_BigEndian,
"Intel 860"},
{"m68k", CPU_TYPE_MC680x0, CPU_SUBTYPE_MC680x0_ALL, NX_BigEndian,
"Motorola 68K"},
{"m88k", CPU_TYPE_MC88000, CPU_SUBTYPE_MC88000_ALL, NX_BigEndian,
"Motorola 88K"},
{"ppc", CPU_TYPE_POWERPC, CPU_SUBTYPE_POWERPC_ALL, NX_BigEndian,
"PowerPC"},
{"ppc64", CPU_TYPE_POWERPC64, CPU_SUBTYPE_POWERPC_ALL, NX_BigEndian,
"PowerPC 64-bit"},
{"sparc", CPU_TYPE_SPARC, CPU_SUBTYPE_SPARC_ALL, NX_BigEndian,
"SPARC"},
{"arm", CPU_TYPE_ARM, CPU_SUBTYPE_ARM_ALL, NX_LittleEndian,
"ARM"},
{"arm64", CPU_TYPE_ARM64, CPU_SUBTYPE_ARM64_ALL, NX_LittleEndian,
"ARM64"},
{"arm64_32",CPU_TYPE_ARM64_32,CPU_SUBTYPE_ARM64_32_V8, NX_LittleEndian,
"ARM64_32"},
{"arm64e", CPU_TYPE_ARM64, CPU_SUBTYPE_ARM64E, NX_LittleEndian,
"ARM64E"},
{"any", CPU_TYPE_ANY, CPU_SUBTYPE_MULTIPLE, NX_UnknownByteOrder,
"Architecture Independent"},
{"veo", CPU_TYPE_VEO, CPU_SUBTYPE_VEO_ALL, NX_BigEndian,
"veo"},
/* specific architecture implementations */
{"hppa7100LC", CPU_TYPE_HPPA, CPU_SUBTYPE_HPPA_7100LC, NX_BigEndian,
"HP-PA 7100LC"},
{"m68030", CPU_TYPE_MC680x0, CPU_SUBTYPE_MC68030_ONLY, NX_BigEndian,
"Motorola 68030"},
{"m68040", CPU_TYPE_MC680x0, CPU_SUBTYPE_MC68040, NX_BigEndian,
"Motorola 68040"},
{"i486", CPU_TYPE_I386, CPU_SUBTYPE_486, NX_LittleEndian,
"Intel 80486"},
{"i486SX", CPU_TYPE_I386, CPU_SUBTYPE_486SX, NX_LittleEndian,
"Intel 80486SX"},
{"pentium",CPU_TYPE_I386, CPU_SUBTYPE_PENT, NX_LittleEndian,
"Intel Pentium"}, /* same as 586 */
{"i586", CPU_TYPE_I386, CPU_SUBTYPE_586, NX_LittleEndian,
"Intel 80586"},
{"pentpro", CPU_TYPE_I386, CPU_SUBTYPE_PENTPRO, NX_LittleEndian,
"Intel Pentium Pro"}, /* same as 686 */
{"i686", CPU_TYPE_I386, CPU_SUBTYPE_PENTPRO, NX_LittleEndian,
"Intel Pentium Pro"},
{"pentIIm3", CPU_TYPE_I386, CPU_SUBTYPE_PENTII_M3, NX_LittleEndian,
"Intel Pentium II Model 3" },
{"pentIIm5", CPU_TYPE_I386, CPU_SUBTYPE_PENTII_M5, NX_LittleEndian,
"Intel Pentium II Model 5" },
{"pentium4", CPU_TYPE_I386, CPU_SUBTYPE_PENTIUM_4, NX_LittleEndian,
"Intel Pentium 4" },
{ "x86_64h", CPU_TYPE_I386, CPU_SUBTYPE_X86_64_H, NX_LittleEndian,
"Intel x86-64h Haswell" },
{"ppc601", CPU_TYPE_POWERPC, CPU_SUBTYPE_POWERPC_601, NX_BigEndian,
"PowerPC 601" },
{"ppc603", CPU_TYPE_POWERPC, CPU_SUBTYPE_POWERPC_603, NX_BigEndian,
"PowerPC 603" },
{"ppc603e",CPU_TYPE_POWERPC, CPU_SUBTYPE_POWERPC_603e, NX_BigEndian,
"PowerPC 603e" },
{"ppc603ev",CPU_TYPE_POWERPC,CPU_SUBTYPE_POWERPC_603ev,NX_BigEndian,
"PowerPC 603ev" },
{"ppc604", CPU_TYPE_POWERPC, CPU_SUBTYPE_POWERPC_604, NX_BigEndian,
"PowerPC 604" },
{"ppc604e",CPU_TYPE_POWERPC, CPU_SUBTYPE_POWERPC_604e, NX_BigEndian,
"PowerPC 604e" },
{"ppc750", CPU_TYPE_POWERPC, CPU_SUBTYPE_POWERPC_750, NX_BigEndian,
"PowerPC 750" },
{"ppc7400",CPU_TYPE_POWERPC, CPU_SUBTYPE_POWERPC_7400, NX_BigEndian,
"PowerPC 7400" },
{"ppc7450",CPU_TYPE_POWERPC, CPU_SUBTYPE_POWERPC_7450, NX_BigEndian,
"PowerPC 7450" },
{"ppc970", CPU_TYPE_POWERPC, CPU_SUBTYPE_POWERPC_970, NX_BigEndian,
"PowerPC 970" },
{"ppc970-64", CPU_TYPE_POWERPC64, CPU_SUBTYPE_POWERPC_970, NX_BigEndian,
"PowerPC 970 64-bit"},
{"armv4t", CPU_TYPE_ARM, CPU_SUBTYPE_ARM_V4T, NX_LittleEndian,
"arm v4t"},
{"armv5", CPU_TYPE_ARM, CPU_SUBTYPE_ARM_V5TEJ, NX_LittleEndian,
"arm v5"},
{"xscale", CPU_TYPE_ARM, CPU_SUBTYPE_ARM_XSCALE, NX_LittleEndian,
"arm xscale"},
{"armv6", CPU_TYPE_ARM, CPU_SUBTYPE_ARM_V6, NX_LittleEndian,
"arm v6"},
{"armv6m", CPU_TYPE_ARM, CPU_SUBTYPE_ARM_V6M, NX_LittleEndian,
"arm v6m"},
{"armv7", CPU_TYPE_ARM, CPU_SUBTYPE_ARM_V7, NX_LittleEndian,
"arm v7"},
{"armv7f", CPU_TYPE_ARM, CPU_SUBTYPE_ARM_V7F, NX_LittleEndian,
"arm v7f"},
{"armv7s", CPU_TYPE_ARM, CPU_SUBTYPE_ARM_V7S, NX_LittleEndian,
"arm v7s"},
{"armv7k", CPU_TYPE_ARM, CPU_SUBTYPE_ARM_V7K, NX_LittleEndian,
"arm v7k"},
{"armv7m", CPU_TYPE_ARM, CPU_SUBTYPE_ARM_V7M, NX_LittleEndian,
"arm v7m"},
{"armv7em",CPU_TYPE_ARM, CPU_SUBTYPE_ARM_V7EM, NX_LittleEndian,
"arm v7em"},
{"armv8", CPU_TYPE_ARM, CPU_SUBTYPE_ARM_V8, NX_LittleEndian,
"arm v8"},
{"arm64",CPU_TYPE_ARM64, CPU_SUBTYPE_ARM64_V8, NX_LittleEndian,
"arm64 v8"},
{"little", CPU_TYPE_ANY, CPU_SUBTYPE_LITTLE_ENDIAN, NX_LittleEndian,
"Little Endian"},
{"big", CPU_TYPE_ANY, CPU_SUBTYPE_BIG_ENDIAN, NX_BigEndian,
"Big Endian"},
{"veo1",CPU_TYPE_VEO, CPU_SUBTYPE_VEO_1, NX_BigEndian,
"veo 1" },
{"veo2",CPU_TYPE_VEO, CPU_SUBTYPE_VEO_2, NX_BigEndian,
"veo 2" },
{NULL, 0, 0, 0,
NULL}
};
/*
* NXGetAllArchInfos() returns a pointer to an array of all currently know
* architecture flags (terminated with an entry with all zeros).
*/
const
NXArchInfo *
NXGetAllArchInfos(void)
{
return(ArchInfoTable);
}
#ifdef HOST_PREFERRED_USER_ARCH
/*
* internal_NXGetHostUserCPU() returns the preferred userspace cputype and
* cpusubtype of the local host. it returns 0 on success, or -1 on error.
*/
static
int32_t
internal_NXGetHostUserCPU(
cpu_type_t* out_cputype,
cpu_subtype_t* out_cpusubtype)
{
struct host_preferred_user_arch hi;
kern_return_t ret;
unsigned int count;
mach_port_t my_mach_host_self;
count = HOST_PREFERRED_USER_ARCH_COUNT;
my_mach_host_self = mach_host_self();
ret = host_info(my_mach_host_self, HOST_PREFERRED_USER_ARCH,
(host_info_t)&hi, &count);
mach_port_deallocate(mach_task_self(), my_mach_host_self);
if(ret != KERN_SUCCESS)
return(-1);
if (out_cputype != NULL)
*out_cputype = hi.cpu_type;
if (out_cpusubtype != NULL)
*out_cpusubtype = hi.cpu_subtype;
return(0);
}
#endif /* defined(HOST_PREFERRED_USER_ARCH) */
/*
* internal_NXGetHostBasicCPU() returns the basic kernelspace cputype and
* cpusubtype of the local host. it returns 0 on success, or -1 on error.
*/
static
kern_return_t
internal_NXGetHostBasicCPU(
cpu_type_t* out_cputype,
cpu_subtype_t* out_cpusubtype)
{
struct host_basic_info hi;
kern_return_t ret;
unsigned int count;
mach_port_t my_mach_host_self;
count = HOST_BASIC_INFO_COUNT;
my_mach_host_self = mach_host_self();
ret = host_info(my_mach_host_self, HOST_BASIC_INFO, (host_info_t)&hi,
&count);
mach_port_deallocate(mach_task_self(), my_mach_host_self);
if(ret != KERN_SUCCESS)
return(-1);
if (out_cputype != NULL)
*out_cputype = hi.cpu_type;
if (out_cpusubtype != NULL)
*out_cpusubtype = hi.cpu_subtype;
return(0);
}
/*
* NXGetLocalArchInfo() returns the NXArchInfo matching the cputype and
* cpusubtype of the local host. NULL is returned if there is no matching
* entry in the ArchInfoTable.
*/
const
NXArchInfo *
NXGetLocalArchInfo(void)
{
cpu_type_t cputype;
cpu_subtype_t cpusubtype;
int32_t ret;
/*
* Attempt to get the preferred user arch values. If the
* call is not available, or if the call fails, fall back
* to the basic arch value. (Radar 40802057)
*/
ret = -1;
#ifdef HOST_PREFERRED_USER_ARCH
ret = internal_NXGetHostUserCPU(&cputype, &cpusubtype);
#endif
if (ret != 0)
ret = internal_NXGetHostBasicCPU(&cputype, &cpusubtype);
if(ret != 0)
return(NULL);
/*
* There is a "bug" in the kernel for compatiblity that on
* an 030 machine host_info() returns cpusubtype
* CPU_SUBTYPE_MC680x0_ALL and not CPU_SUBTYPE_MC68030_ONLY.
*/
if(cputype == CPU_TYPE_MC680x0 && cpusubtype == CPU_SUBTYPE_MC680x0_ALL)
cpusubtype = CPU_SUBTYPE_MC68030_ONLY;
return(NXGetArchInfoFromCpuType(cputype, cpusubtype));
}
/*
* NXGetArchInfoFromName() is passed an architecture name (like "m68k")
* and returns the matching NXArchInfo struct, or NULL if none is found.
*/
const
NXArchInfo *
NXGetArchInfoFromName(
const char *name)
{
const NXArchInfo *ai;
for(ai = ArchInfoTable; ai->name != NULL; ai++)
if(strcmp(ai->name, name) == 0)
return(ai);
return(NULL);
}
/*
* NXGetArchInfoFromName() is passed a cputype and cpusubtype and returns
* the matching NXArchInfo struct, or NULL if none is found. If the
* cpusubtype is given as CPU_SUBTYPE_MULTIPLE, the first entry that
* matches the given cputype is returned. This is the NXArchInfo struct
* describing the CPU "family".
*/
const
NXArchInfo *
NXGetArchInfoFromCpuType(
cpu_type_t cputype,
cpu_subtype_t cpusubtype)
{
const NXArchInfo *ai;
NXArchInfo *q;
for(ai = ArchInfoTable; ai->name != NULL; ai++)
if(ai->cputype == cputype &&
(cpusubtype == CPU_SUBTYPE_MULTIPLE ||
((ai->cpusubtype & ~CPU_SUBTYPE_MASK) ==
(cpusubtype & ~CPU_SUBTYPE_MASK))))
return(ai);
if(cputype == CPU_TYPE_I386){
q = malloc(sizeof(NXArchInfo));
for(ai = ArchInfoTable; ai->name != NULL; ai++){
if(ai->cputype == cputype){
*q = *ai;
break;
}
}
q->cpusubtype = cpusubtype;
q->description = malloc(sizeof("Intel family model ") + 2 + 8);
if(q->description == NULL){
free(q);
return(NULL);
}
sprintf((char *)q->description, "Intel family %u model %u",
CPU_SUBTYPE_INTEL_FAMILY(cpusubtype & ~CPU_SUBTYPE_MASK),
CPU_SUBTYPE_INTEL_MODEL(cpusubtype & ~CPU_SUBTYPE_MASK));
return((const NXArchInfo *)q);
}
else if(cputype == CPU_TYPE_POWERPC){
q = malloc(sizeof(NXArchInfo));
for(ai = ArchInfoTable; ai->name != NULL; ai++){
if(ai->cputype == cputype){
*q = *ai;
break;
}
}
q->cpusubtype = cpusubtype;
q->description = malloc(sizeof("PowerPC cpusubtype ") + 10);
if(q->description == NULL){
free(q);
return(NULL);
}
sprintf((char *)q->description, "PowerPC cpusubtype %u", cpusubtype);
return((const NXArchInfo *)q);
}
return(NULL);
}
/* The above interfaces that return pointers to NXArchInfo structs in normal
* cases returns a pointer from the array returned in NXGetAllArchInfos().
* In some cases when the cputype is CPU_TYPE_I386 or CPU_TYPE_POWERPC it will
* return a malloc(3)'ed NXArchInfo struct which contains a string in the
* description field also a malloc(3)'ed pointer. To allow programs not to
* leak memory they can call NXFreeArchInfo() on pointers returned from the
* above interfaces. Going forward the above interfaces will only return
* pointers from the array returned in NXGetAllArchInfos().
*/
void NXFreeArchInfo(
const NXArchInfo *x)
{
const NXArchInfo *p;
p = NXGetAllArchInfos();
while(p->name != NULL){
if(x == p)
return;
p++;
}
free((char *)x->description);
free((NXArchInfo *)x);
}
/*
* internal_NXFindBestFatArch() is passed a cputype and cpusubtype and a
* either set of fat_arch structs or fat_arch_64 structs and selects the best
* one that matches (if any) and returns an index to the array of structs or
* -1 if none works for the cputype and cpusubtype. The fat_arch structs or
* fat_arch_64 structs must be in the host byte sex and correct such that the
* fat_archs really points to enough memory for nfat_arch structs. It is
* possible that this routine could fail if new cputypes or cpusubtypes are
* added and an old version of this routine is used. But if there is an exact
* match between the cputype and cpusubtype and one of the structs this routine
* will always succeed.
*/
static
int32_t
internal_NXFindBestFatArch(
cpu_type_t cputype,
cpu_subtype_t cpusubtype,
struct fat_arch *fat_archs,
struct fat_arch_64 *fat_archs64,
uint32_t nfat_archs)
{
uint32_t i;
int32_t lowest_family, lowest_model, lowest_index;
cpu_type_t fat_cputype;
cpu_subtype_t fat_cpusubtype;
/*
* Look for the first exact match.
*/
for(i = 0; i < nfat_archs; i++){
if(fat_archs64 != NULL){
fat_cputype = fat_archs64[i].cputype;
fat_cpusubtype = fat_archs64[i].cpusubtype;
}
else{
fat_cputype = fat_archs[i].cputype;
fat_cpusubtype = fat_archs[i].cpusubtype;
}
if(fat_cputype == cputype &&
(fat_cpusubtype & ~CPU_SUBTYPE_MASK) ==
(cpusubtype & ~CPU_SUBTYPE_MASK))
return(i);
}
/*
* An exact match was not found so find the next best match which is
* cputype dependent.
*/
switch(cputype){
case CPU_TYPE_I386:
switch(cpusubtype & ~CPU_SUBTYPE_MASK){
default:
/*
* Intel cpusubtypes after the pentium (same as 586) are handled
* such that they require an exact match or they can use the
* pentium. If that is not found call into the loop for the
* earilier subtypes.
*/
for(i = 0; i < nfat_archs; i++){
if(fat_archs64 != NULL){
fat_cputype = fat_archs64[i].cputype;
fat_cpusubtype = fat_archs64[i].cpusubtype;
}
else{
fat_cputype = fat_archs[i].cputype;
fat_cpusubtype = fat_archs[i].cpusubtype;
}
if(fat_cputype != cputype)
continue;
if((fat_cpusubtype & ~CPU_SUBTYPE_MASK) ==
CPU_SUBTYPE_PENT)
return(i);
}
case CPU_SUBTYPE_PENT:
case CPU_SUBTYPE_486SX:
/*
* Since an exact match as not found look for the i486 else
* break into the loop to look for the i386_ALL.
*/
for(i = 0; i < nfat_archs; i++){
if(fat_archs64 != NULL){
fat_cputype = fat_archs64[i].cputype;
fat_cpusubtype = fat_archs64[i].cpusubtype;
}
else{
fat_cputype = fat_archs[i].cputype;
fat_cpusubtype = fat_archs[i].cpusubtype;
}
if(fat_cputype != cputype)
continue;
if((fat_cpusubtype & ~CPU_SUBTYPE_MASK) ==
CPU_SUBTYPE_486)
return(i);
}
break;
case CPU_SUBTYPE_I386_ALL:
/* case CPU_SUBTYPE_I386: same as above */
case CPU_SUBTYPE_486:
break;
}
for(i = 0; i < nfat_archs; i++){
if(fat_archs64 != NULL){
fat_cputype = fat_archs64[i].cputype;
fat_cpusubtype = fat_archs64[i].cpusubtype;
}
else{
fat_cputype = fat_archs[i].cputype;
fat_cpusubtype = fat_archs[i].cpusubtype;
}
if(fat_cputype != cputype)
continue;
if((fat_cpusubtype & ~CPU_SUBTYPE_MASK) ==
CPU_SUBTYPE_I386_ALL)
return(i);
}
/*
* A match failed, promote as little as possible.
*/
for(i = 0; i < nfat_archs; i++){
if(fat_archs64 != NULL){
fat_cputype = fat_archs64[i].cputype;
fat_cpusubtype = fat_archs64[i].cpusubtype;
}
else{
fat_cputype = fat_archs[i].cputype;
fat_cpusubtype = fat_archs[i].cpusubtype;
}
if(fat_cputype != cputype)
continue;
if((fat_cpusubtype & ~CPU_SUBTYPE_MASK) ==
CPU_SUBTYPE_486)
return(i);
}
for(i = 0; i < nfat_archs; i++){
if(fat_archs64 != NULL){
fat_cputype = fat_archs64[i].cputype;
fat_cpusubtype = fat_archs64[i].cpusubtype;
}
else{
fat_cputype = fat_archs[i].cputype;
fat_cpusubtype = fat_archs[i].cpusubtype;
}
if(fat_cputype != cputype)
continue;
if((fat_cpusubtype & ~CPU_SUBTYPE_MASK) ==
CPU_SUBTYPE_486SX)
return(i);
}
for(i = 0; i < nfat_archs; i++){
if(fat_archs64 != NULL){
fat_cputype = fat_archs64[i].cputype;
fat_cpusubtype = fat_archs64[i].cpusubtype;
}
else{
fat_cputype = fat_archs[i].cputype;
fat_cpusubtype = fat_archs[i].cpusubtype;
}
if(fat_cputype != cputype)
continue;
if((fat_cpusubtype & ~CPU_SUBTYPE_MASK) ==
CPU_SUBTYPE_586)
return(i);
}
/*
* Now look for the lowest family and in that the lowest model.
*/
lowest_family = CPU_SUBTYPE_INTEL_FAMILY_MAX + 1;
for(i = 0; i < nfat_archs; i++){
if(fat_archs64 != NULL){
fat_cputype = fat_archs64[i].cputype;
fat_cpusubtype = fat_archs64[i].cpusubtype;
}
else{
fat_cputype = fat_archs[i].cputype;
fat_cpusubtype = fat_archs[i].cpusubtype;
}
if(fat_cputype != cputype)
continue;
if(CPU_SUBTYPE_INTEL_FAMILY(fat_cpusubtype &
~CPU_SUBTYPE_MASK) < lowest_family)
lowest_family = CPU_SUBTYPE_INTEL_FAMILY(
fat_cpusubtype & ~CPU_SUBTYPE_MASK);
}
/* if no intel cputypes found return NULL */
if(lowest_family == CPU_SUBTYPE_INTEL_FAMILY_MAX + 1)
return(-1);
lowest_model = INT_MAX;
lowest_index = -1;
for(i = 0; i < nfat_archs; i++){
if(fat_archs64 != NULL){
fat_cputype = fat_archs64[i].cputype;
fat_cpusubtype = fat_archs64[i].cpusubtype;
}
else{
fat_cputype = fat_archs[i].cputype;
fat_cpusubtype = fat_archs[i].cpusubtype;
}
if(fat_cputype != cputype)
continue;
if(CPU_SUBTYPE_INTEL_FAMILY(fat_cpusubtype &
~CPU_SUBTYPE_MASK) == lowest_family){
if(CPU_SUBTYPE_INTEL_MODEL(fat_cpusubtype &
~CPU_SUBTYPE_MASK) < lowest_model){
lowest_model = CPU_SUBTYPE_INTEL_MODEL(
fat_cpusubtype &
~CPU_SUBTYPE_MASK);
lowest_index = i;
}
}
}
return(lowest_index);
case CPU_TYPE_X86_64:
for(i = 0; i < nfat_archs; i++){
if(fat_archs64 != NULL){
fat_cputype = fat_archs64[i].cputype;
fat_cpusubtype = fat_archs64[i].cpusubtype;
}
else{
fat_cputype = fat_archs[i].cputype;
fat_cpusubtype = fat_archs[i].cpusubtype;
}
if(fat_cputype != cputype)
continue;
if((fat_cpusubtype & ~CPU_SUBTYPE_MASK) ==
CPU_SUBTYPE_X86_64_ALL)
return(i);
}
break;
case CPU_TYPE_MC680x0:
for(i = 0; i < nfat_archs; i++){
if(fat_archs64 != NULL){
fat_cputype = fat_archs64[i].cputype;
fat_cpusubtype = fat_archs64[i].cpusubtype;
}
else{
fat_cputype = fat_archs[i].cputype;
fat_cpusubtype = fat_archs[i].cpusubtype;
}
if(fat_cputype != cputype)
continue;
if((fat_cpusubtype & ~CPU_SUBTYPE_MASK) ==
CPU_SUBTYPE_MC680x0_ALL)
return(i);
}
/*
* Try to promote if starting from CPU_SUBTYPE_MC680x0_ALL and
* favor the CPU_SUBTYPE_MC68040 over the CPU_SUBTYPE_MC68030_ONLY.
*/
if((cpusubtype & ~CPU_SUBTYPE_MASK) == CPU_SUBTYPE_MC680x0_ALL){
for(i = 0; i < nfat_archs; i++){
if(fat_archs64 != NULL){
fat_cputype = fat_archs64[i].cputype;
fat_cpusubtype = fat_archs64[i].cpusubtype;
}
else{
fat_cputype = fat_archs[i].cputype;
fat_cpusubtype = fat_archs[i].cpusubtype;
}
if(fat_cputype != cputype)
continue;
if((fat_cpusubtype & ~CPU_SUBTYPE_MASK) ==
CPU_SUBTYPE_MC68040)
return(i);
}
for(i = 0; i < nfat_archs; i++){
if(fat_archs64 != NULL){
fat_cputype = fat_archs64[i].cputype;
fat_cpusubtype = fat_archs64[i].cpusubtype;
}
else{
fat_cputype = fat_archs[i].cputype;
fat_cpusubtype = fat_archs[i].cpusubtype;
}
if(fat_cputype != cputype)
continue;
if((fat_cpusubtype & ~CPU_SUBTYPE_MASK) ==
CPU_SUBTYPE_MC68030_ONLY)
return(i);
}
}
break;
case CPU_TYPE_POWERPC:
/*
* An exact match as not found. So for all the PowerPC subtypes
* pick the subtype from the following order starting from a subtype
* that will work (contains 64-bit instructions or altivec if
* needed):
* 970, 7450, 7400, 750, 604e, 604, 603ev, 603e, 603, ALL
* Note the 601 is NOT in the list above. It is only picked via
* an exact match. For an unknown subtype pick only the ALL type if
* it exists.
*/
switch(cpusubtype & ~CPU_SUBTYPE_MASK){
case CPU_SUBTYPE_POWERPC_ALL:
/*
* The CPU_SUBTYPE_POWERPC_ALL is only used by the development
* environment tools when building a generic ALL type binary.
* In the case of a non-exact match we pick the most current
* processor.
*/
case CPU_SUBTYPE_POWERPC_970:
for(i = 0; i < nfat_archs; i++){
if(fat_archs64 != NULL){
fat_cputype = fat_archs64[i].cputype;
fat_cpusubtype = fat_archs64[i].cpusubtype;
}
else{
fat_cputype = fat_archs[i].cputype;
fat_cpusubtype = fat_archs[i].cpusubtype;
}
if(fat_cputype != cputype)
continue;
if((fat_cpusubtype & ~CPU_SUBTYPE_MASK) ==
CPU_SUBTYPE_POWERPC_970)
return(i);
}
case CPU_SUBTYPE_POWERPC_7450:
case CPU_SUBTYPE_POWERPC_7400:
for(i = 0; i < nfat_archs; i++){
if(fat_archs64 != NULL){
fat_cputype = fat_archs64[i].cputype;
fat_cpusubtype = fat_archs64[i].cpusubtype;
}
else{
fat_cputype = fat_archs[i].cputype;
fat_cpusubtype = fat_archs[i].cpusubtype;
}
if(fat_cputype != cputype)
continue;
if((fat_cpusubtype & ~CPU_SUBTYPE_MASK) ==
CPU_SUBTYPE_POWERPC_7450)
return(i);
}
for(i = 0; i < nfat_archs; i++){
if(fat_archs64 != NULL){
fat_cputype = fat_archs64[i].cputype;
fat_cpusubtype = fat_archs64[i].cpusubtype;
}
else{
fat_cputype = fat_archs[i].cputype;
fat_cpusubtype = fat_archs[i].cpusubtype;
}
if(fat_cputype != cputype)
continue;
if((fat_cpusubtype & ~CPU_SUBTYPE_MASK) ==
CPU_SUBTYPE_POWERPC_7400)
return(i);
}
case CPU_SUBTYPE_POWERPC_750:
case CPU_SUBTYPE_POWERPC_604e:
case CPU_SUBTYPE_POWERPC_604:
case CPU_SUBTYPE_POWERPC_603ev:
case CPU_SUBTYPE_POWERPC_603e:
case CPU_SUBTYPE_POWERPC_603:
for(i = 0; i < nfat_archs; i++){
if(fat_archs64 != NULL){
fat_cputype = fat_archs64[i].cputype;
fat_cpusubtype = fat_archs64[i].cpusubtype;
}
else{
fat_cputype = fat_archs[i].cputype;
fat_cpusubtype = fat_archs[i].cpusubtype;
}
if(fat_cputype != cputype)
continue;
if((fat_cpusubtype & CPU_SUBTYPE_MASK) ==
CPU_SUBTYPE_POWERPC_750)
return(i);
}
for(i = 0; i < nfat_archs; i++){
if(fat_archs64 != NULL){
fat_cputype = fat_archs64[i].cputype;
fat_cpusubtype = fat_archs64[i].cpusubtype;
}
else{
fat_cputype = fat_archs[i].cputype;
fat_cpusubtype = fat_archs[i].cpusubtype;
}
if(fat_cputype != cputype)
continue;
if((fat_cpusubtype & ~CPU_SUBTYPE_MASK) ==
CPU_SUBTYPE_POWERPC_604e)
return(i);
}
for(i = 0; i < nfat_archs; i++){
if(fat_archs64 != NULL){
fat_cputype = fat_archs64[i].cputype;
fat_cpusubtype = fat_archs64[i].cpusubtype;
}
else{
fat_cputype = fat_archs[i].cputype;
fat_cpusubtype = fat_archs[i].cpusubtype;
}
if(fat_cputype != cputype)
continue;
if((fat_cpusubtype & ~CPU_SUBTYPE_MASK) ==
CPU_SUBTYPE_POWERPC_604)
return(i);
}
for(i = 0; i < nfat_archs; i++){
if(fat_archs64 != NULL){
fat_cputype = fat_archs64[i].cputype;
fat_cpusubtype = fat_archs64[i].cpusubtype;
}
else{
fat_cputype = fat_archs[i].cputype;
fat_cpusubtype = fat_archs[i].cpusubtype;
}
if((fat_cputype & ~CPU_SUBTYPE_MASK) != cputype)
continue;
if((fat_cpusubtype & ~CPU_SUBTYPE_MASK) ==
CPU_SUBTYPE_POWERPC_603ev)
return(i);
}
for(i = 0; i < nfat_archs; i++){
if(fat_archs64 != NULL){
fat_cputype = fat_archs64[i].cputype;
fat_cpusubtype = fat_archs64[i].cpusubtype;
}
else{
fat_cputype = fat_archs[i].cputype;
fat_cpusubtype = fat_archs[i].cpusubtype;
}
if(fat_cputype != cputype)
continue;
if((fat_cpusubtype & ~CPU_SUBTYPE_MASK) ==
CPU_SUBTYPE_POWERPC_603e)
return(i);
}
for(i = 0; i < nfat_archs; i++){
if(fat_archs64 != NULL){
fat_cputype = fat_archs64[i].cputype;
fat_cpusubtype = fat_archs64[i].cpusubtype;
}
else{
fat_cputype = fat_archs[i].cputype;
fat_cpusubtype = fat_archs[i].cpusubtype;
}
if(fat_cputype != cputype)
continue;
if((fat_cpusubtype & ~CPU_SUBTYPE_MASK) ==
CPU_SUBTYPE_POWERPC_603)
return(i);
}
default:
for(i = 0; i < nfat_archs; i++){
if(fat_archs64 != NULL){
fat_cputype = fat_archs64[i].cputype;
fat_cpusubtype = fat_archs64[i].cpusubtype;
}
else{
fat_cputype = fat_archs[i].cputype;
fat_cpusubtype = fat_archs[i].cpusubtype;
}
if(fat_cputype != cputype)
continue;
if((fat_cpusubtype & ~CPU_SUBTYPE_MASK) ==
CPU_SUBTYPE_POWERPC_ALL)
return(i);
}
}
break;
case CPU_TYPE_POWERPC64:
/*
* An exact match as not found. So for all the PowerPC64 subtypes
* pick the subtype from the following order starting from a subtype
* that will work (contains 64-bit instructions or altivec if
* needed):
* 970 (currently only the one 64-bit subtype)
* For an unknown subtype pick only the ALL type if it exists.
*/
switch(cpusubtype & ~CPU_SUBTYPE_MASK){
case CPU_SUBTYPE_POWERPC_ALL:
/*
* The CPU_SUBTYPE_POWERPC_ALL is only used by the development
* environment tools when building a generic ALL type binary.
* In the case of a non-exact match we pick the most current
* processor.
*/
case CPU_SUBTYPE_POWERPC_970:
for(i = 0; i < nfat_archs; i++){
if(fat_archs64 != NULL){
fat_cputype = fat_archs64[i].cputype;
fat_cpusubtype = fat_archs64[i].cpusubtype;
}
else{
fat_cputype = fat_archs[i].cputype;
fat_cpusubtype = fat_archs[i].cpusubtype;
}
if(fat_cputype != cputype)
continue;
if((fat_cpusubtype & ~CPU_SUBTYPE_MASK) ==
CPU_SUBTYPE_POWERPC_970)
return(i);
}
default:
for(i = 0; i < nfat_archs; i++){
if(fat_archs64 != NULL){
fat_cputype = fat_archs64[i].cputype;
fat_cpusubtype = fat_archs64[i].cpusubtype;
}
else{
fat_cputype = fat_archs[i].cputype;
fat_cpusubtype = fat_archs[i].cpusubtype;
}
if(fat_cputype != cputype)
continue;
if((fat_cpusubtype & ~CPU_SUBTYPE_MASK) ==
CPU_SUBTYPE_POWERPC_ALL)
return(i);
}
}
break;
case CPU_TYPE_MC88000:
for(i = 0; i < nfat_archs; i++){
if(fat_archs64 != NULL){
fat_cputype = fat_archs64[i].cputype;
fat_cpusubtype = fat_archs64[i].cpusubtype;
}
else{
fat_cputype = fat_archs[i].cputype;
fat_cpusubtype = fat_archs[i].cpusubtype;
}
if(fat_cputype != cputype)
continue;
if((fat_cpusubtype & ~CPU_SUBTYPE_MASK) ==
CPU_SUBTYPE_MC88000_ALL)
return(i);
}
break;
case CPU_TYPE_I860:
for(i = 0; i < nfat_archs; i++){
if(fat_archs64 != NULL){
fat_cputype = fat_archs64[i].cputype;
fat_cpusubtype = fat_archs64[i].cpusubtype;
}
else{
fat_cputype = fat_archs[i].cputype;
fat_cpusubtype = fat_archs[i].cpusubtype;
}
if(fat_cputype != cputype)
continue;
if((fat_cpusubtype & ~CPU_SUBTYPE_MASK) ==
CPU_SUBTYPE_I860_ALL)
return(i);
}
break;
case CPU_TYPE_HPPA:
for(i = 0; i < nfat_archs; i++){
if(fat_archs64 != NULL){
fat_cputype = fat_archs64[i].cputype;
fat_cpusubtype = fat_archs64[i].cpusubtype;
}
else{
fat_cputype = fat_archs[i].cputype;
fat_cpusubtype = fat_archs[i].cpusubtype;
}
if(fat_cputype != cputype)
continue;
if((fat_cpusubtype & ~CPU_SUBTYPE_MASK) ==
CPU_SUBTYPE_HPPA_ALL)
return(i);
}
break;
case CPU_TYPE_SPARC:
for(i = 0; i < nfat_archs; i++){
if(fat_archs64 != NULL){
fat_cputype = fat_archs64[i].cputype;
fat_cpusubtype = fat_archs64[i].cpusubtype;
}
else{
fat_cputype = fat_archs[i].cputype;
fat_cpusubtype = fat_archs[i].cpusubtype;
}
if(fat_cputype != cputype)
continue;
if((fat_cpusubtype & ~CPU_SUBTYPE_MASK) ==
CPU_SUBTYPE_SPARC_ALL)
return(i);
}
break;
case CPU_TYPE_ARM64_32:
/* Only exact match is allowed for CPU_TYPE_ARM64_32. */
return(-1);
case CPU_TYPE_ARM:
case CPU_TYPE_ARM64:
{
/*
* ARM is straightforward, since each architecture is backward
* compatible with previous architectures. So, we just take the
* highest that is less than our target.
*/
int fat_match_found = 0;
uint32_t best_fat_arch = 0;
for(i = 0; i < nfat_archs; i++){
if(fat_archs64 != NULL){
fat_cputype = fat_archs64[i].cputype;
fat_cpusubtype = fat_archs64[i].cpusubtype;
}
else{
fat_cputype = fat_archs[i].cputype;
fat_cpusubtype = fat_archs[i].cpusubtype;
}
if(fat_cputype != cputype)
continue;
if(fat_cpusubtype > cpusubtype)
continue;
if(!fat_match_found){
fat_match_found = 1;
best_fat_arch = i;
continue;
}
if(fat_archs64 != NULL){
if(fat_cpusubtype >
fat_archs64[best_fat_arch].cpusubtype)
best_fat_arch = i;
}
else{
if(fat_cpusubtype >
fat_archs[best_fat_arch].cpusubtype)
best_fat_arch = i;
}
}
if(fat_match_found)
return(best_fat_arch);
/*
* For CPU_TYPE_ARM64, we will fall back to a CPU_TYPE_ARM
* with the highest subtype.
*/
if(cputype == CPU_TYPE_ARM64){
int fat_match_found = 0;
uint32_t best_fat_arch = 0;
for(i = 0; i < nfat_archs; i++){
if(fat_archs64 != NULL){
fat_cputype = fat_archs64[i].cputype;
fat_cpusubtype = fat_archs64[i].cpusubtype;
}
else{
fat_cputype = fat_archs[i].cputype;
fat_cpusubtype = fat_archs[i].cpusubtype;
}
if(fat_cputype != CPU_TYPE_ARM)
continue;
if(!fat_match_found){
fat_match_found = 1;
best_fat_arch = i;
continue;
}
if(fat_archs64 != NULL){
if(fat_cpusubtype >
fat_archs64[best_fat_arch].cpusubtype)
best_fat_arch = i;
}
else{
if(fat_cpusubtype >
fat_archs[best_fat_arch].cpusubtype)
best_fat_arch = i;
}
}
if(fat_match_found)
return(best_fat_arch);
}
}
break;
default:
return(-1);
}
return(-1);
}
/*
* NXFindBestFatArch() is passed a cputype and cpusubtype and a set of
* fat_arch structs and selects the best one that matches (if any) and returns
* a pointer to that fat_arch struct (or NULL). The fat_arch structs must be
* in the host byte order and correct such that the fat_archs really points to
* enough memory for nfat_arch structs. It is possible that this routine could
* fail if new cputypes or cpusubtypes are added and an old version of this
* routine is used. But if there is an exact match between the cputype and
* cpusubtype and one of the fat_arch structs this routine will always succeed.
*/
struct fat_arch *
NXFindBestFatArch(
cpu_type_t cputype,
cpu_subtype_t cpusubtype,
struct fat_arch *fat_archs,
uint32_t nfat_archs)
{
int32_t i;
i = internal_NXFindBestFatArch(cputype, cpusubtype, fat_archs, NULL,
nfat_archs);
if(i == -1)
return(NULL);
return(fat_archs + i);
}
/* NXFindBestFatArch_64() is passed a cputype and cpusubtype and a set of
* fat_arch_64 structs and selects the best one that matches (if any) and
* returns a pointer to that fat_arch_64 struct (or NULL). The fat_arch_64
* structs must be in the host byte order and correct such that the fat_archs64
* really points to enough memory for nfat_arch structs. It is possible that
* this routine could fail if new cputypes or cpusubtypes are added and an old
* version of this routine is used. But if there is an exact match between the
* cputype and cpusubtype and one of the fat_arch_64 structs this routine will
* always succeed.
*/
struct fat_arch_64 *
NXFindBestFatArch_64(
cpu_type_t cputype,
cpu_subtype_t cpusubtype,
struct fat_arch_64 *fat_archs64,
uint32_t nfat_archs)
{
int32_t i;
i = internal_NXFindBestFatArch(cputype, cpusubtype, NULL,
fat_archs64, nfat_archs);
if(i == -1)
return(NULL);
return(fat_archs64 + i);
}
/*
* NXCombineCpuSubtypes() returns the resulting cpusubtype when combining two
* different cpusubtypes for the specified cputype. If the two cpusubtypes
* can't be combined (the specific subtypes are mutually exclusive) -1 is
* returned indicating it is an error to combine them. This can also fail and
* return -1 if new cputypes or cpusubtypes are added and an old version of
* this routine is used. But if the cpusubtypes are the same they can always
* be combined and this routine will return the cpusubtype pass in.
*/
cpu_subtype_t
NXCombineCpuSubtypes(
cpu_type_t cputype,
cpu_subtype_t cpusubtype1,
cpu_subtype_t cpusubtype2)
{
/*
* If this is an x86_64 cputype and either subtype is the
* "Haswell and compatible" it does not combine with anything else.
*/
if(cputype == CPU_TYPE_X86_64 &&
(cpusubtype1 == CPU_SUBTYPE_X86_64_H ||
cpusubtype2 == CPU_SUBTYPE_X86_64_H))
return((cpu_subtype_t)-1);
/*
* We now combine any i386 or x86-64 subtype to the ALL subtype.
*/
if(cputype == CPU_TYPE_I386)
return(CPU_SUBTYPE_I386_ALL);
if(cputype == CPU_TYPE_X86_64)
return(CPU_SUBTYPE_X86_64_ALL);
/*
* The same cpusubtypes for any cputype returns that cpusubtype. For
* some cputypes like CPU_TYPE_ARM64_32 there is no combining of
* cpusubtypes so there is no code for those cputypes below.
*/
if((cpusubtype1 & ~CPU_SUBTYPE_MASK) ==
(cpusubtype2 & ~CPU_SUBTYPE_MASK))
return(cpusubtype1);
switch(cputype){
case CPU_TYPE_MC680x0:
if((cpusubtype1 & ~CPU_SUBTYPE_MASK) != CPU_SUBTYPE_MC680x0_ALL &&
(cpusubtype1 & ~CPU_SUBTYPE_MASK) != CPU_SUBTYPE_MC68030_ONLY &&
(cpusubtype1 & ~CPU_SUBTYPE_MASK) != CPU_SUBTYPE_MC68040)
return((cpu_subtype_t)-1);
if((cpusubtype2 & ~CPU_SUBTYPE_MASK) != CPU_SUBTYPE_MC680x0_ALL &&
(cpusubtype2 & ~CPU_SUBTYPE_MASK) != CPU_SUBTYPE_MC68030_ONLY &&
(cpusubtype2 & ~CPU_SUBTYPE_MASK) != CPU_SUBTYPE_MC68040)
return((cpu_subtype_t)-1);
if((cpusubtype1 & ~CPU_SUBTYPE_MASK) == CPU_SUBTYPE_MC68030_ONLY &&
(cpusubtype2 & ~CPU_SUBTYPE_MASK) == CPU_SUBTYPE_MC68040)
return((cpu_subtype_t)-1);
if((cpusubtype1 & ~CPU_SUBTYPE_MASK) == CPU_SUBTYPE_MC68040 &&
(cpusubtype2 & ~CPU_SUBTYPE_MASK) == CPU_SUBTYPE_MC68030_ONLY)
return((cpu_subtype_t)-1);
if((cpusubtype1 & ~CPU_SUBTYPE_MASK) == CPU_SUBTYPE_MC68030_ONLY ||
(cpusubtype2 & ~CPU_SUBTYPE_MASK) == CPU_SUBTYPE_MC68030_ONLY)
return(CPU_SUBTYPE_MC68030_ONLY);
if((cpusubtype1 & ~CPU_SUBTYPE_MASK) == CPU_SUBTYPE_MC68040 ||
(cpusubtype2 & ~CPU_SUBTYPE_MASK) == CPU_SUBTYPE_MC68040)
return(CPU_SUBTYPE_MC68040);
break; /* logically can't get here */
case CPU_TYPE_POWERPC:
/*
* Combining with the ALL type becomes the other type. Combining
* anything with the 601 becomes 601. All other non exact matches
* combine to the higher value subtype.
*/
if((cpusubtype1 & ~CPU_SUBTYPE_MASK) == CPU_SUBTYPE_POWERPC_ALL)
return(cpusubtype2);
if((cpusubtype2 & ~CPU_SUBTYPE_MASK) == CPU_SUBTYPE_POWERPC_ALL)
return(cpusubtype1);
if((cpusubtype1 & ~CPU_SUBTYPE_MASK) == CPU_SUBTYPE_POWERPC_601 ||
(cpusubtype2 & ~CPU_SUBTYPE_MASK) == CPU_SUBTYPE_POWERPC_601)
return(CPU_SUBTYPE_POWERPC_601);
if((cpusubtype1 & ~CPU_SUBTYPE_MASK) >
(cpusubtype2 & ~CPU_SUBTYPE_MASK))
return(cpusubtype1);
else
return(cpusubtype2);
break; /* logically can't get here */
case CPU_TYPE_MC88000:
if((cpusubtype1 & ~CPU_SUBTYPE_MASK) != CPU_SUBTYPE_MC88000_ALL &&
(cpusubtype1 & ~CPU_SUBTYPE_MASK) != CPU_SUBTYPE_MC88110)
return((cpu_subtype_t)-1);
if((cpusubtype2 & ~CPU_SUBTYPE_MASK) != CPU_SUBTYPE_MC88000_ALL &&
(cpusubtype2 & ~CPU_SUBTYPE_MASK) != CPU_SUBTYPE_MC88110)
return((cpu_subtype_t)-1);
if((cpusubtype1 & ~CPU_SUBTYPE_MASK) == CPU_SUBTYPE_MC88110 ||
(cpusubtype2 & ~CPU_SUBTYPE_MASK) == CPU_SUBTYPE_MC88110)
return(CPU_SUBTYPE_MC88110);
break; /* logically can't get here */
case CPU_TYPE_I860:
if((cpusubtype1 & ~CPU_SUBTYPE_MASK) != CPU_SUBTYPE_I860_ALL &&
(cpusubtype1 & ~CPU_SUBTYPE_MASK) != CPU_SUBTYPE_I860_860)
return((cpu_subtype_t)-1);
if((cpusubtype2 & ~CPU_SUBTYPE_MASK) != CPU_SUBTYPE_I860_ALL &&
(cpusubtype2 & ~CPU_SUBTYPE_MASK) != CPU_SUBTYPE_I860_860)
return((cpu_subtype_t)-1);
if((cpusubtype1 & ~CPU_SUBTYPE_MASK) == CPU_SUBTYPE_I860_860 ||
(cpusubtype2 & ~CPU_SUBTYPE_MASK) == CPU_SUBTYPE_I860_860)
return(CPU_SUBTYPE_I860_860);
break; /* logically can't get here */
case CPU_TYPE_HPPA:
if((cpusubtype1 & ~CPU_SUBTYPE_MASK) != CPU_SUBTYPE_HPPA_ALL &&
(cpusubtype1 & ~CPU_SUBTYPE_MASK) != CPU_SUBTYPE_HPPA_7100LC)
return((cpu_subtype_t)-1);
if((cpusubtype2 & ~CPU_SUBTYPE_MASK) != CPU_SUBTYPE_HPPA_ALL &&
(cpusubtype2 & ~CPU_SUBTYPE_MASK) != CPU_SUBTYPE_HPPA_7100LC)
return((cpu_subtype_t)-1);
return(CPU_SUBTYPE_HPPA_7100LC);
break; /* logically can't get here */
case CPU_TYPE_SPARC:
if((cpusubtype1 & ~CPU_SUBTYPE_MASK) != CPU_SUBTYPE_SPARC_ALL)
return((cpu_subtype_t)-1);
if((cpusubtype2 & ~CPU_SUBTYPE_MASK) != CPU_SUBTYPE_SPARC_ALL)
return((cpu_subtype_t)-1);
break; /* logically can't get here */
case CPU_TYPE_ARM:
/*
* Combinability matrix for ARM:
* V4T V5 XSCALE V6 V7 ALL
* ~~~ ~~ ~~~~~~ ~~ ~~ ~~~
* V4T V4T V5 XSCALE V6 V7 ALL
* V5 V5 V5 -- V6 V7 ALL
* XSCALE XSCALE -- XSCALE -- -- ALL
* V6 V6 V6 -- V6 V7 ALL
* V7 V7 V7 -- V7 V7 ALL
* ALL ALL ALL ALL ALL ALL ALL
*/
if((cpusubtype1 & ~CPU_SUBTYPE_MASK) == CPU_SUBTYPE_ARM_ALL)
return(cpusubtype2);
if((cpusubtype2 & ~CPU_SUBTYPE_MASK) == CPU_SUBTYPE_ARM_ALL)
return(cpusubtype1);
switch((cpusubtype1 & ~CPU_SUBTYPE_MASK)){
case CPU_SUBTYPE_ARM_V7:
switch((cpusubtype2 & ~CPU_SUBTYPE_MASK)){
case CPU_SUBTYPE_ARM_XSCALE:
return((cpu_subtype_t)-1);
default:
return(CPU_SUBTYPE_ARM_V7);
}
case CPU_SUBTYPE_ARM_V6:
switch((cpusubtype2 & ~CPU_SUBTYPE_MASK)){
case CPU_SUBTYPE_ARM_XSCALE:
return((cpu_subtype_t)-1);
default:
return(CPU_SUBTYPE_ARM_V6);
}
case CPU_SUBTYPE_ARM_XSCALE:
switch((cpusubtype2 & ~CPU_SUBTYPE_MASK)){
case CPU_SUBTYPE_ARM_V7:
case CPU_SUBTYPE_ARM_V6:
case CPU_SUBTYPE_ARM_V5TEJ:
return((cpu_subtype_t)-1);
default:
return(CPU_SUBTYPE_ARM_XSCALE);
}
case CPU_SUBTYPE_ARM_V5TEJ:
switch((cpusubtype2 & ~CPU_SUBTYPE_MASK)){
case CPU_SUBTYPE_ARM_XSCALE:
return((cpu_subtype_t)-1);
case CPU_SUBTYPE_ARM_V7:
return(CPU_SUBTYPE_ARM_V7);
case CPU_SUBTYPE_ARM_V6:
return(CPU_SUBTYPE_ARM_V6);
default:
return(CPU_SUBTYPE_ARM_V5TEJ);
}
case CPU_SUBTYPE_ARM_V4T:
return((cpusubtype2 & ~CPU_SUBTYPE_MASK));
default:
return((cpu_subtype_t)-1);
}
case CPU_TYPE_ARM64:
if((cpusubtype1 & ~CPU_SUBTYPE_MASK) != CPU_SUBTYPE_ARM64_ALL)
return((cpu_subtype_t)-1);
if((cpusubtype2 & ~CPU_SUBTYPE_MASK) != CPU_SUBTYPE_ARM64_ALL)
return((cpu_subtype_t)-1);
break; /* logically can't get here */
default:
return((cpu_subtype_t)-1);
}
return((cpu_subtype_t)-1); /* logically can't get here */
}
#endif /* !defined(RLD) */