darling-JavaScriptCore/assembler/ARMv7Assembler.h

2971 lines
104 KiB
C
Raw Normal View History

2017-08-12 16:48:01 +00:00
/*
2018-01-03 05:16:05 +00:00
* Copyright (C) 2009-2017 Apple Inc. All rights reserved.
2017-08-12 16:48:01 +00:00
* Copyright (C) 2010 University of Szeged
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#pragma once
#if ENABLE(ASSEMBLER) && CPU(ARM_THUMB2)
#include "AssemblerBuffer.h"
#include "AssemblerCommon.h"
#include <limits.h>
#include <wtf/Assertions.h>
#include <wtf/Vector.h>
#include <stdint.h>
namespace JSC {
namespace ARMRegisters {
#define FOR_EACH_CPU_REGISTER(V) \
FOR_EACH_CPU_GPREGISTER(V) \
FOR_EACH_CPU_SPECIAL_REGISTER(V) \
FOR_EACH_CPU_FPREGISTER(V)
// The following are defined as pairs of the following value:
// 1. type of the storage needed to save the register value by the JIT probe.
// 2. name of the register.
#define FOR_EACH_CPU_GPREGISTER(V) \
V(void*, r0) \
V(void*, r1) \
V(void*, r2) \
V(void*, r3) \
V(void*, r4) \
V(void*, r5) \
V(void*, r6) \
V(void*, r7) \
V(void*, r8) \
V(void*, r9) \
V(void*, r10) \
V(void*, r11) \
V(void*, ip) \
V(void*, sp) \
V(void*, lr) \
V(void*, pc)
#define FOR_EACH_CPU_SPECIAL_REGISTER(V) \
V(void*, apsr) \
V(void*, fpscr) \
#define FOR_EACH_CPU_FPREGISTER(V) \
V(double, d0) \
V(double, d1) \
V(double, d2) \
V(double, d3) \
V(double, d4) \
V(double, d5) \
V(double, d6) \
V(double, d7) \
V(double, d8) \
V(double, d9) \
V(double, d10) \
V(double, d11) \
V(double, d12) \
V(double, d13) \
V(double, d14) \
V(double, d15) \
V(double, d16) \
V(double, d17) \
V(double, d18) \
V(double, d19) \
V(double, d20) \
V(double, d21) \
V(double, d22) \
V(double, d23) \
V(double, d24) \
V(double, d25) \
V(double, d26) \
V(double, d27) \
V(double, d28) \
V(double, d29) \
V(double, d30) \
V(double, d31)
typedef enum {
#define DECLARE_REGISTER(_type, _regName) _regName,
FOR_EACH_CPU_GPREGISTER(DECLARE_REGISTER)
#undef DECLARE_REGISTER
fp = r7, // frame pointer
sb = r9, // static base
sl = r10, // stack limit
r12 = ip,
r13 = sp,
r14 = lr,
r15 = pc
} RegisterID;
typedef enum {
s0,
s1,
s2,
s3,
s4,
s5,
s6,
s7,
s8,
s9,
s10,
s11,
s12,
s13,
s14,
s15,
s16,
s17,
s18,
s19,
s20,
s21,
s22,
s23,
s24,
s25,
s26,
s27,
s28,
s29,
s30,
s31,
} FPSingleRegisterID;
typedef enum {
#define DECLARE_REGISTER(_type, _regName) _regName,
FOR_EACH_CPU_FPREGISTER(DECLARE_REGISTER)
#undef DECLARE_REGISTER
} FPDoubleRegisterID;
typedef enum {
q0,
q1,
q2,
q3,
q4,
q5,
q6,
q7,
q8,
q9,
q10,
q11,
q12,
q13,
q14,
q15,
q16,
q17,
q18,
q19,
q20,
q21,
q22,
q23,
q24,
q25,
q26,
q27,
q28,
q29,
q30,
q31,
} FPQuadRegisterID;
inline FPSingleRegisterID asSingle(FPDoubleRegisterID reg)
{
ASSERT(reg < d16);
return (FPSingleRegisterID)(reg << 1);
}
inline FPDoubleRegisterID asDouble(FPSingleRegisterID reg)
{
ASSERT(!(reg & 1));
return (FPDoubleRegisterID)(reg >> 1);
}
} // namespace ARMRegisters
class ARMv7Assembler;
class ARMThumbImmediate {
friend class ARMv7Assembler;
typedef uint8_t ThumbImmediateType;
static const ThumbImmediateType TypeInvalid = 0;
static const ThumbImmediateType TypeEncoded = 1;
static const ThumbImmediateType TypeUInt16 = 2;
typedef union {
int16_t asInt;
struct {
unsigned imm8 : 8;
unsigned imm3 : 3;
unsigned i : 1;
unsigned imm4 : 4;
};
// If this is an encoded immediate, then it may describe a shift, or a pattern.
struct {
unsigned shiftValue7 : 7;
unsigned shiftAmount : 5;
};
struct {
unsigned immediate : 8;
unsigned pattern : 4;
};
} ThumbImmediateValue;
// byte0 contains least significant bit; not using an array to make client code endian agnostic.
typedef union {
int32_t asInt;
struct {
uint8_t byte0;
uint8_t byte1;
uint8_t byte2;
uint8_t byte3;
};
} PatternBytes;
ALWAYS_INLINE static void countLeadingZerosPartial(uint32_t& value, int32_t& zeros, const int N)
{
if (value & ~((1 << N) - 1)) /* check for any of the top N bits (of 2N bits) are set */
value >>= N; /* if any were set, lose the bottom N */
else /* if none of the top N bits are set, */
zeros += N; /* then we have identified N leading zeros */
}
static int32_t countLeadingZeros(uint32_t value)
{
if (!value)
return 32;
int32_t zeros = 0;
countLeadingZerosPartial(value, zeros, 16);
countLeadingZerosPartial(value, zeros, 8);
countLeadingZerosPartial(value, zeros, 4);
countLeadingZerosPartial(value, zeros, 2);
countLeadingZerosPartial(value, zeros, 1);
return zeros;
}
ARMThumbImmediate()
: m_type(TypeInvalid)
{
m_value.asInt = 0;
}
ARMThumbImmediate(ThumbImmediateType type, ThumbImmediateValue value)
: m_type(type)
, m_value(value)
{
}
ARMThumbImmediate(ThumbImmediateType type, uint16_t value)
: m_type(TypeUInt16)
{
// Make sure this constructor is only reached with type TypeUInt16;
// this extra parameter makes the code a little clearer by making it
// explicit at call sites which type is being constructed
ASSERT_UNUSED(type, type == TypeUInt16);
m_value.asInt = value;
}
public:
static ARMThumbImmediate makeEncodedImm(uint32_t value)
{
ThumbImmediateValue encoding;
encoding.asInt = 0;
// okay, these are easy.
if (value < 256) {
encoding.immediate = value;
encoding.pattern = 0;
return ARMThumbImmediate(TypeEncoded, encoding);
}
int32_t leadingZeros = countLeadingZeros(value);
// if there were 24 or more leading zeros, then we'd have hit the (value < 256) case.
ASSERT(leadingZeros < 24);
// Given a number with bit fields Z:B:C, where count(Z)+count(B)+count(C) == 32,
// Z are the bits known zero, B is the 8-bit immediate, C are the bits to check for
// zero. count(B) == 8, so the count of bits to be checked is 24 - count(Z).
int32_t rightShiftAmount = 24 - leadingZeros;
if (value == ((value >> rightShiftAmount) << rightShiftAmount)) {
// Shift the value down to the low byte position. The assign to
// shiftValue7 drops the implicit top bit.
encoding.shiftValue7 = value >> rightShiftAmount;
// The endoded shift amount is the magnitude of a right rotate.
encoding.shiftAmount = 8 + leadingZeros;
return ARMThumbImmediate(TypeEncoded, encoding);
}
PatternBytes bytes;
bytes.asInt = value;
if ((bytes.byte0 == bytes.byte1) && (bytes.byte0 == bytes.byte2) && (bytes.byte0 == bytes.byte3)) {
encoding.immediate = bytes.byte0;
encoding.pattern = 3;
return ARMThumbImmediate(TypeEncoded, encoding);
}
if ((bytes.byte0 == bytes.byte2) && !(bytes.byte1 | bytes.byte3)) {
encoding.immediate = bytes.byte0;
encoding.pattern = 1;
return ARMThumbImmediate(TypeEncoded, encoding);
}
if ((bytes.byte1 == bytes.byte3) && !(bytes.byte0 | bytes.byte2)) {
encoding.immediate = bytes.byte1;
encoding.pattern = 2;
return ARMThumbImmediate(TypeEncoded, encoding);
}
return ARMThumbImmediate();
}
static ARMThumbImmediate makeUInt12(int32_t value)
{
return (!(value & 0xfffff000))
? ARMThumbImmediate(TypeUInt16, (uint16_t)value)
: ARMThumbImmediate();
}
static ARMThumbImmediate makeUInt12OrEncodedImm(int32_t value)
{
// If this is not a 12-bit unsigned it, try making an encoded immediate.
return (!(value & 0xfffff000))
? ARMThumbImmediate(TypeUInt16, (uint16_t)value)
: makeEncodedImm(value);
}
// The 'make' methods, above, return a !isValid() value if the argument
// cannot be represented as the requested type. This methods is called
// 'get' since the argument can always be represented.
static ARMThumbImmediate makeUInt16(uint16_t value)
{
return ARMThumbImmediate(TypeUInt16, value);
}
bool isValid()
{
return m_type != TypeInvalid;
}
uint16_t asUInt16() const { return m_value.asInt; }
// These methods rely on the format of encoded byte values.
bool isUInt3() { return !(m_value.asInt & 0xfff8); }
bool isUInt4() { return !(m_value.asInt & 0xfff0); }
bool isUInt5() { return !(m_value.asInt & 0xffe0); }
bool isUInt6() { return !(m_value.asInt & 0xffc0); }
bool isUInt7() { return !(m_value.asInt & 0xff80); }
bool isUInt8() { return !(m_value.asInt & 0xff00); }
bool isUInt9() { return (m_type == TypeUInt16) && !(m_value.asInt & 0xfe00); }
bool isUInt10() { return (m_type == TypeUInt16) && !(m_value.asInt & 0xfc00); }
bool isUInt12() { return (m_type == TypeUInt16) && !(m_value.asInt & 0xf000); }
bool isUInt16() { return m_type == TypeUInt16; }
uint8_t getUInt3() { ASSERT(isUInt3()); return m_value.asInt; }
uint8_t getUInt4() { ASSERT(isUInt4()); return m_value.asInt; }
uint8_t getUInt5() { ASSERT(isUInt5()); return m_value.asInt; }
uint8_t getUInt6() { ASSERT(isUInt6()); return m_value.asInt; }
uint8_t getUInt7() { ASSERT(isUInt7()); return m_value.asInt; }
uint8_t getUInt8() { ASSERT(isUInt8()); return m_value.asInt; }
uint16_t getUInt9() { ASSERT(isUInt9()); return m_value.asInt; }
uint16_t getUInt10() { ASSERT(isUInt10()); return m_value.asInt; }
uint16_t getUInt12() { ASSERT(isUInt12()); return m_value.asInt; }
uint16_t getUInt16() { ASSERT(isUInt16()); return m_value.asInt; }
bool isEncodedImm() { return m_type == TypeEncoded; }
private:
ThumbImmediateType m_type;
ThumbImmediateValue m_value;
};
typedef enum {
SRType_LSL,
SRType_LSR,
SRType_ASR,
SRType_ROR,
SRType_RRX = SRType_ROR
} ARMShiftType;
class ShiftTypeAndAmount {
friend class ARMv7Assembler;
public:
ShiftTypeAndAmount()
{
m_u.type = (ARMShiftType)0;
m_u.amount = 0;
}
ShiftTypeAndAmount(ARMShiftType type, unsigned amount)
{
m_u.type = type;
m_u.amount = amount & 31;
}
unsigned lo4() { return m_u.lo4; }
unsigned hi4() { return m_u.hi4; }
private:
union {
struct {
unsigned lo4 : 4;
unsigned hi4 : 4;
};
struct {
unsigned type : 2;
unsigned amount : 6;
};
} m_u;
};
class ARMv7Assembler {
public:
typedef ARMRegisters::RegisterID RegisterID;
typedef ARMRegisters::FPSingleRegisterID FPSingleRegisterID;
typedef ARMRegisters::FPDoubleRegisterID FPDoubleRegisterID;
typedef ARMRegisters::FPQuadRegisterID FPQuadRegisterID;
typedef FPDoubleRegisterID FPRegisterID;
static constexpr RegisterID firstRegister() { return ARMRegisters::r0; }
static constexpr RegisterID lastRegister() { return ARMRegisters::r13; }
static constexpr FPRegisterID firstFPRegister() { return ARMRegisters::d0; }
static constexpr FPRegisterID lastFPRegister() { return ARMRegisters::d31; }
// (HS, LO, HI, LS) -> (AE, B, A, BE)
// (VS, VC) -> (O, NO)
typedef enum {
ConditionEQ, // Zero / Equal.
ConditionNE, // Non-zero / Not equal.
ConditionHS, ConditionCS = ConditionHS, // Unsigned higher or same.
ConditionLO, ConditionCC = ConditionLO, // Unsigned lower.
ConditionMI, // Negative.
ConditionPL, // Positive or zero.
ConditionVS, // Overflowed.
ConditionVC, // Not overflowed.
ConditionHI, // Unsigned higher.
ConditionLS, // Unsigned lower or same.
ConditionGE, // Signed greater than or equal.
ConditionLT, // Signed less than.
ConditionGT, // Signed greater than.
ConditionLE, // Signed less than or equal.
ConditionAL, // Unconditional / Always execute.
ConditionInvalid
} Condition;
#define JUMP_ENUM_WITH_SIZE(index, value) (((value) << 3) | (index))
#define JUMP_ENUM_SIZE(jump) ((jump) >> 3)
enum JumpType { JumpFixed = JUMP_ENUM_WITH_SIZE(0, 0),
JumpNoCondition = JUMP_ENUM_WITH_SIZE(1, 5 * sizeof(uint16_t)),
JumpCondition = JUMP_ENUM_WITH_SIZE(2, 6 * sizeof(uint16_t)),
JumpNoConditionFixedSize = JUMP_ENUM_WITH_SIZE(3, 5 * sizeof(uint16_t)),
JumpConditionFixedSize = JUMP_ENUM_WITH_SIZE(4, 6 * sizeof(uint16_t))
};
enum JumpLinkType {
LinkInvalid = JUMP_ENUM_WITH_SIZE(0, 0),
LinkJumpT1 = JUMP_ENUM_WITH_SIZE(1, sizeof(uint16_t)),
LinkJumpT2 = JUMP_ENUM_WITH_SIZE(2, sizeof(uint16_t)),
LinkJumpT3 = JUMP_ENUM_WITH_SIZE(3, 2 * sizeof(uint16_t)),
LinkJumpT4 = JUMP_ENUM_WITH_SIZE(4, 2 * sizeof(uint16_t)),
LinkConditionalJumpT4 = JUMP_ENUM_WITH_SIZE(5, 3 * sizeof(uint16_t)),
LinkBX = JUMP_ENUM_WITH_SIZE(6, 5 * sizeof(uint16_t)),
LinkConditionalBX = JUMP_ENUM_WITH_SIZE(7, 6 * sizeof(uint16_t))
};
class LinkRecord {
public:
LinkRecord(intptr_t from, intptr_t to, JumpType type, Condition condition)
{
data.realTypes.m_from = from;
data.realTypes.m_to = to;
data.realTypes.m_type = type;
data.realTypes.m_linkType = LinkInvalid;
data.realTypes.m_condition = condition;
}
void operator=(const LinkRecord& other)
{
data.copyTypes.content[0] = other.data.copyTypes.content[0];
data.copyTypes.content[1] = other.data.copyTypes.content[1];
data.copyTypes.content[2] = other.data.copyTypes.content[2];
}
intptr_t from() const { return data.realTypes.m_from; }
void setFrom(intptr_t from) { data.realTypes.m_from = from; }
intptr_t to() const { return data.realTypes.m_to; }
JumpType type() const { return data.realTypes.m_type; }
JumpLinkType linkType() const { return data.realTypes.m_linkType; }
void setLinkType(JumpLinkType linkType) { ASSERT(data.realTypes.m_linkType == LinkInvalid); data.realTypes.m_linkType = linkType; }
Condition condition() const { return data.realTypes.m_condition; }
private:
union {
struct RealTypes {
intptr_t m_from : 31;
intptr_t m_to : 31;
JumpType m_type : 8;
JumpLinkType m_linkType : 8;
Condition m_condition : 16;
} realTypes;
struct CopyTypes {
uint32_t content[3];
} copyTypes;
COMPILE_ASSERT(sizeof(RealTypes) == sizeof(CopyTypes), LinkRecordCopyStructSizeEqualsRealStruct);
} data;
};
ARMv7Assembler()
: m_indexOfLastWatchpoint(INT_MIN)
, m_indexOfTailOfLastWatchpoint(INT_MIN)
{
}
AssemblerBuffer& buffer() { return m_formatter.m_buffer; }
private:
// ARMv7, Appx-A.6.3
static bool BadReg(RegisterID reg)
{
return (reg == ARMRegisters::sp) || (reg == ARMRegisters::pc);
}
uint32_t singleRegisterMask(FPSingleRegisterID rdNum, int highBitsShift, int lowBitShift)
{
uint32_t rdMask = (rdNum >> 1) << highBitsShift;
if (rdNum & 1)
rdMask |= 1 << lowBitShift;
return rdMask;
}
uint32_t doubleRegisterMask(FPDoubleRegisterID rdNum, int highBitShift, int lowBitsShift)
{
uint32_t rdMask = (rdNum & 0xf) << lowBitsShift;
if (rdNum & 16)
rdMask |= 1 << highBitShift;
return rdMask;
}
typedef enum {
OP_ADD_reg_T1 = 0x1800,
OP_SUB_reg_T1 = 0x1A00,
OP_ADD_imm_T1 = 0x1C00,
OP_SUB_imm_T1 = 0x1E00,
OP_MOV_imm_T1 = 0x2000,
OP_CMP_imm_T1 = 0x2800,
OP_ADD_imm_T2 = 0x3000,
OP_SUB_imm_T2 = 0x3800,
OP_AND_reg_T1 = 0x4000,
OP_EOR_reg_T1 = 0x4040,
OP_TST_reg_T1 = 0x4200,
OP_RSB_imm_T1 = 0x4240,
OP_CMP_reg_T1 = 0x4280,
OP_ORR_reg_T1 = 0x4300,
OP_MVN_reg_T1 = 0x43C0,
OP_ADD_reg_T2 = 0x4400,
OP_MOV_reg_T1 = 0x4600,
OP_BLX = 0x4700,
OP_BX = 0x4700,
OP_STR_reg_T1 = 0x5000,
OP_STRH_reg_T1 = 0x5200,
OP_STRB_reg_T1 = 0x5400,
OP_LDRSB_reg_T1 = 0x5600,
OP_LDR_reg_T1 = 0x5800,
OP_LDRH_reg_T1 = 0x5A00,
OP_LDRB_reg_T1 = 0x5C00,
OP_LDRSH_reg_T1 = 0x5E00,
OP_STR_imm_T1 = 0x6000,
OP_LDR_imm_T1 = 0x6800,
OP_STRB_imm_T1 = 0x7000,
OP_LDRB_imm_T1 = 0x7800,
OP_STRH_imm_T1 = 0x8000,
OP_LDRH_imm_T1 = 0x8800,
OP_STR_imm_T2 = 0x9000,
OP_LDR_imm_T2 = 0x9800,
OP_ADD_SP_imm_T1 = 0xA800,
OP_ADD_SP_imm_T2 = 0xB000,
OP_SUB_SP_imm_T1 = 0xB080,
OP_PUSH_T1 = 0xB400,
OP_POP_T1 = 0xBC00,
OP_BKPT = 0xBE00,
OP_IT = 0xBF00,
OP_NOP_T1 = 0xBF00,
} OpcodeID;
typedef enum {
OP_B_T1 = 0xD000,
OP_B_T2 = 0xE000,
OP_POP_T2 = 0xE8BD,
OP_PUSH_T2 = 0xE92D,
OP_AND_reg_T2 = 0xEA00,
OP_TST_reg_T2 = 0xEA10,
OP_ORR_reg_T2 = 0xEA40,
OP_ORR_S_reg_T2 = 0xEA50,
OP_ASR_imm_T1 = 0xEA4F,
OP_LSL_imm_T1 = 0xEA4F,
OP_LSR_imm_T1 = 0xEA4F,
OP_ROR_imm_T1 = 0xEA4F,
OP_MVN_reg_T2 = 0xEA6F,
OP_EOR_reg_T2 = 0xEA80,
OP_ADD_reg_T3 = 0xEB00,
OP_ADD_S_reg_T3 = 0xEB10,
OP_SUB_reg_T2 = 0xEBA0,
OP_SUB_S_reg_T2 = 0xEBB0,
OP_CMP_reg_T2 = 0xEBB0,
OP_VMOV_CtoD = 0xEC00,
OP_VMOV_DtoC = 0xEC10,
OP_FSTS = 0xED00,
OP_VSTR = 0xED00,
OP_FLDS = 0xED10,
OP_VLDR = 0xED10,
OP_VMOV_CtoS = 0xEE00,
OP_VMOV_StoC = 0xEE10,
OP_VMUL_T2 = 0xEE20,
OP_VADD_T2 = 0xEE30,
OP_VSUB_T2 = 0xEE30,
OP_VDIV = 0xEE80,
OP_VABS_T2 = 0xEEB0,
OP_VCMP = 0xEEB0,
OP_VCVT_FPIVFP = 0xEEB0,
OP_VMOV_T2 = 0xEEB0,
OP_VMOV_IMM_T2 = 0xEEB0,
OP_VMRS = 0xEEB0,
OP_VNEG_T2 = 0xEEB0,
OP_VSQRT_T1 = 0xEEB0,
OP_VCVTSD_T1 = 0xEEB0,
OP_VCVTDS_T1 = 0xEEB0,
OP_B_T3a = 0xF000,
OP_B_T4a = 0xF000,
OP_AND_imm_T1 = 0xF000,
OP_TST_imm = 0xF010,
OP_ORR_imm_T1 = 0xF040,
OP_MOV_imm_T2 = 0xF040,
OP_MVN_imm = 0xF060,
OP_EOR_imm_T1 = 0xF080,
OP_ADD_imm_T3 = 0xF100,
OP_ADD_S_imm_T3 = 0xF110,
OP_CMN_imm = 0xF110,
OP_ADC_imm = 0xF140,
OP_SUB_imm_T3 = 0xF1A0,
OP_SUB_S_imm_T3 = 0xF1B0,
OP_CMP_imm_T2 = 0xF1B0,
OP_RSB_imm_T2 = 0xF1C0,
OP_RSB_S_imm_T2 = 0xF1D0,
OP_ADD_imm_T4 = 0xF200,
OP_MOV_imm_T3 = 0xF240,
OP_SUB_imm_T4 = 0xF2A0,
OP_MOVT = 0xF2C0,
OP_UBFX_T1 = 0xF3C0,
OP_NOP_T2a = 0xF3AF,
OP_DMB_T1a = 0xF3BF,
OP_STRB_imm_T3 = 0xF800,
OP_STRB_reg_T2 = 0xF800,
OP_LDRB_imm_T3 = 0xF810,
OP_LDRB_reg_T2 = 0xF810,
OP_STRH_imm_T3 = 0xF820,
OP_STRH_reg_T2 = 0xF820,
OP_LDRH_reg_T2 = 0xF830,
OP_LDRH_imm_T3 = 0xF830,
OP_STR_imm_T4 = 0xF840,
OP_STR_reg_T2 = 0xF840,
OP_LDR_imm_T4 = 0xF850,
OP_LDR_reg_T2 = 0xF850,
OP_STRB_imm_T2 = 0xF880,
OP_LDRB_imm_T2 = 0xF890,
OP_STRH_imm_T2 = 0xF8A0,
OP_LDRH_imm_T2 = 0xF8B0,
OP_STR_imm_T3 = 0xF8C0,
OP_LDR_imm_T3 = 0xF8D0,
OP_LDRSB_reg_T2 = 0xF910,
OP_LDRSH_reg_T2 = 0xF930,
OP_LSL_reg_T2 = 0xFA00,
OP_LSR_reg_T2 = 0xFA20,
OP_ASR_reg_T2 = 0xFA40,
OP_ROR_reg_T2 = 0xFA60,
OP_CLZ = 0xFAB0,
OP_SMULL_T1 = 0xFB80,
#if HAVE(ARM_IDIV_INSTRUCTIONS)
OP_SDIV_T1 = 0xFB90,
OP_UDIV_T1 = 0xFBB0,
#endif
} OpcodeID1;
typedef enum {
OP_VADD_T2b = 0x0A00,
OP_VDIVb = 0x0A00,
OP_FLDSb = 0x0A00,
OP_VLDRb = 0x0A00,
OP_VMOV_IMM_T2b = 0x0A00,
OP_VMOV_T2b = 0x0A40,
OP_VMUL_T2b = 0x0A00,
OP_FSTSb = 0x0A00,
OP_VSTRb = 0x0A00,
OP_VMOV_StoCb = 0x0A10,
OP_VMOV_CtoSb = 0x0A10,
OP_VMOV_DtoCb = 0x0A10,
OP_VMOV_CtoDb = 0x0A10,
OP_VMRSb = 0x0A10,
OP_VABS_T2b = 0x0A40,
OP_VCMPb = 0x0A40,
OP_VCVT_FPIVFPb = 0x0A40,
OP_VNEG_T2b = 0x0A40,
OP_VSUB_T2b = 0x0A40,
OP_VSQRT_T1b = 0x0A40,
OP_VCVTSD_T1b = 0x0A40,
OP_VCVTDS_T1b = 0x0A40,
OP_NOP_T2b = 0x8000,
OP_DMB_SY_T1b = 0x8F5F,
OP_DMB_ISHST_T1b = 0x8F5A,
OP_B_T3b = 0x8000,
OP_B_T4b = 0x9000,
} OpcodeID2;
struct FourFours {
FourFours(unsigned f3, unsigned f2, unsigned f1, unsigned f0)
{
m_u.f0 = f0;
m_u.f1 = f1;
m_u.f2 = f2;
m_u.f3 = f3;
}
union {
unsigned value;
struct {
unsigned f0 : 4;
unsigned f1 : 4;
unsigned f2 : 4;
unsigned f3 : 4;
};
} m_u;
};
class ARMInstructionFormatter;
// false means else!
static bool ifThenElseConditionBit(Condition condition, bool isIf)
{
return isIf ? (condition & 1) : !(condition & 1);
}
static uint8_t ifThenElse(Condition condition, bool inst2if, bool inst3if, bool inst4if)
{
int mask = (ifThenElseConditionBit(condition, inst2if) << 3)
| (ifThenElseConditionBit(condition, inst3if) << 2)
| (ifThenElseConditionBit(condition, inst4if) << 1)
| 1;
ASSERT((condition != ConditionAL) || !(mask & (mask - 1)));
return (condition << 4) | mask;
}
static uint8_t ifThenElse(Condition condition, bool inst2if, bool inst3if)
{
int mask = (ifThenElseConditionBit(condition, inst2if) << 3)
| (ifThenElseConditionBit(condition, inst3if) << 2)
| 2;
ASSERT((condition != ConditionAL) || !(mask & (mask - 1)));
return (condition << 4) | mask;
}
static uint8_t ifThenElse(Condition condition, bool inst2if)
{
int mask = (ifThenElseConditionBit(condition, inst2if) << 3)
| 4;
ASSERT((condition != ConditionAL) || !(mask & (mask - 1)));
return (condition << 4) | mask;
}
static uint8_t ifThenElse(Condition condition)
{
int mask = 8;
return (condition << 4) | mask;
}
public:
void adc(RegisterID rd, RegisterID rn, ARMThumbImmediate imm)
{
// Rd can only be SP if Rn is also SP.
ASSERT((rd != ARMRegisters::sp) || (rn == ARMRegisters::sp));
ASSERT(rd != ARMRegisters::pc);
ASSERT(rn != ARMRegisters::pc);
ASSERT(imm.isEncodedImm());
m_formatter.twoWordOp5i6Imm4Reg4EncodedImm(OP_ADC_imm, rn, rd, imm);
}
void add(RegisterID rd, RegisterID rn, ARMThumbImmediate imm)
{
// Rd can only be SP if Rn is also SP.
ASSERT((rd != ARMRegisters::sp) || (rn == ARMRegisters::sp));
ASSERT(rd != ARMRegisters::pc);
ASSERT(rn != ARMRegisters::pc);
ASSERT(imm.isValid());
if (rn == ARMRegisters::sp && imm.isUInt16()) {
ASSERT(!(imm.getUInt16() & 3));
if (!(rd & 8) && imm.isUInt10()) {
m_formatter.oneWordOp5Reg3Imm8(OP_ADD_SP_imm_T1, rd, static_cast<uint8_t>(imm.getUInt10() >> 2));
return;
} else if ((rd == ARMRegisters::sp) && imm.isUInt9()) {
m_formatter.oneWordOp9Imm7(OP_ADD_SP_imm_T2, static_cast<uint8_t>(imm.getUInt9() >> 2));
return;
}
} else if (!((rd | rn) & 8)) {
if (imm.isUInt3()) {
m_formatter.oneWordOp7Reg3Reg3Reg3(OP_ADD_imm_T1, (RegisterID)imm.getUInt3(), rn, rd);
return;
} else if ((rd == rn) && imm.isUInt8()) {
m_formatter.oneWordOp5Reg3Imm8(OP_ADD_imm_T2, rd, imm.getUInt8());
return;
}
}
if (imm.isEncodedImm())
m_formatter.twoWordOp5i6Imm4Reg4EncodedImm(OP_ADD_imm_T3, rn, rd, imm);
else {
ASSERT(imm.isUInt12());
m_formatter.twoWordOp5i6Imm4Reg4EncodedImm(OP_ADD_imm_T4, rn, rd, imm);
}
}
ALWAYS_INLINE void add(RegisterID rd, RegisterID rn, RegisterID rm, ShiftTypeAndAmount shift)
{
ASSERT((rd != ARMRegisters::sp) || (rn == ARMRegisters::sp));
ASSERT(rd != ARMRegisters::pc);
ASSERT(rn != ARMRegisters::pc);
ASSERT(!BadReg(rm));
m_formatter.twoWordOp12Reg4FourFours(OP_ADD_reg_T3, rn, FourFours(shift.hi4(), rd, shift.lo4(), rm));
}
// NOTE: In an IT block, add doesn't modify the flags register.
ALWAYS_INLINE void add(RegisterID rd, RegisterID rn, RegisterID rm)
{
if (rd == ARMRegisters::sp) {
mov(rd, rn);
rn = rd;
}
if (rd == rn)
m_formatter.oneWordOp8RegReg143(OP_ADD_reg_T2, rm, rd);
else if (rd == rm)
m_formatter.oneWordOp8RegReg143(OP_ADD_reg_T2, rn, rd);
else if (!((rd | rn | rm) & 8))
m_formatter.oneWordOp7Reg3Reg3Reg3(OP_ADD_reg_T1, rm, rn, rd);
else
add(rd, rn, rm, ShiftTypeAndAmount());
}
// Not allowed in an IT (if then) block.
ALWAYS_INLINE void add_S(RegisterID rd, RegisterID rn, ARMThumbImmediate imm)
{
// Rd can only be SP if Rn is also SP.
ASSERT((rd != ARMRegisters::sp) || (rn == ARMRegisters::sp));
ASSERT(rd != ARMRegisters::pc);
ASSERT(rn != ARMRegisters::pc);
ASSERT(imm.isEncodedImm());
if (!((rd | rn) & 8)) {
if (imm.isUInt3()) {
m_formatter.oneWordOp7Reg3Reg3Reg3(OP_ADD_imm_T1, (RegisterID)imm.getUInt3(), rn, rd);
return;
} else if ((rd == rn) && imm.isUInt8()) {
m_formatter.oneWordOp5Reg3Imm8(OP_ADD_imm_T2, rd, imm.getUInt8());
return;
}
}
m_formatter.twoWordOp5i6Imm4Reg4EncodedImm(OP_ADD_S_imm_T3, rn, rd, imm);
}
// Not allowed in an IT (if then) block?
ALWAYS_INLINE void add_S(RegisterID rd, RegisterID rn, RegisterID rm, ShiftTypeAndAmount shift)
{
ASSERT((rd != ARMRegisters::sp) || (rn == ARMRegisters::sp));
ASSERT(rd != ARMRegisters::pc);
ASSERT(rn != ARMRegisters::pc);
ASSERT(!BadReg(rm));
m_formatter.twoWordOp12Reg4FourFours(OP_ADD_S_reg_T3, rn, FourFours(shift.hi4(), rd, shift.lo4(), rm));
}
// Not allowed in an IT (if then) block.
ALWAYS_INLINE void add_S(RegisterID rd, RegisterID rn, RegisterID rm)
{
if (!((rd | rn | rm) & 8))
m_formatter.oneWordOp7Reg3Reg3Reg3(OP_ADD_reg_T1, rm, rn, rd);
else
add_S(rd, rn, rm, ShiftTypeAndAmount());
}
ALWAYS_INLINE void ARM_and(RegisterID rd, RegisterID rn, ARMThumbImmediate imm)
{
ASSERT(!BadReg(rd));
ASSERT(!BadReg(rn));
ASSERT(imm.isEncodedImm());
m_formatter.twoWordOp5i6Imm4Reg4EncodedImm(OP_AND_imm_T1, rn, rd, imm);
}
ALWAYS_INLINE void ARM_and(RegisterID rd, RegisterID rn, RegisterID rm, ShiftTypeAndAmount shift)
{
ASSERT(!BadReg(rd));
ASSERT(!BadReg(rn));
ASSERT(!BadReg(rm));
m_formatter.twoWordOp12Reg4FourFours(OP_AND_reg_T2, rn, FourFours(shift.hi4(), rd, shift.lo4(), rm));
}
ALWAYS_INLINE void ARM_and(RegisterID rd, RegisterID rn, RegisterID rm)
{
if ((rd == rn) && !((rd | rm) & 8))
m_formatter.oneWordOp10Reg3Reg3(OP_AND_reg_T1, rm, rd);
else if ((rd == rm) && !((rd | rn) & 8))
m_formatter.oneWordOp10Reg3Reg3(OP_AND_reg_T1, rn, rd);
else
ARM_and(rd, rn, rm, ShiftTypeAndAmount());
}
ALWAYS_INLINE void asr(RegisterID rd, RegisterID rm, int32_t shiftAmount)
{
ASSERT(!BadReg(rd));
ASSERT(!BadReg(rm));
ShiftTypeAndAmount shift(SRType_ASR, shiftAmount);
m_formatter.twoWordOp16FourFours(OP_ASR_imm_T1, FourFours(shift.hi4(), rd, shift.lo4(), rm));
}
ALWAYS_INLINE void asr(RegisterID rd, RegisterID rn, RegisterID rm)
{
ASSERT(!BadReg(rd));
ASSERT(!BadReg(rn));
ASSERT(!BadReg(rm));
m_formatter.twoWordOp12Reg4FourFours(OP_ASR_reg_T2, rn, FourFours(0xf, rd, 0, rm));
}
// Only allowed in IT (if then) block if last instruction.
ALWAYS_INLINE AssemblerLabel b()
{
m_formatter.twoWordOp16Op16(OP_B_T4a, OP_B_T4b);
return m_formatter.label();
}
// Only allowed in IT (if then) block if last instruction.
ALWAYS_INLINE AssemblerLabel blx(RegisterID rm)
{
ASSERT(rm != ARMRegisters::pc);
m_formatter.oneWordOp8RegReg143(OP_BLX, rm, (RegisterID)8);
return m_formatter.label();
}
// Only allowed in IT (if then) block if last instruction.
ALWAYS_INLINE AssemblerLabel bx(RegisterID rm)
{
m_formatter.oneWordOp8RegReg143(OP_BX, rm, (RegisterID)0);
return m_formatter.label();
}
void bkpt(uint8_t imm = 0)
{
m_formatter.oneWordOp8Imm8(OP_BKPT, imm);
}
2018-01-03 05:16:05 +00:00
static bool isBkpt(void* address)
{
unsigned short expected = OP_BKPT;
unsigned short immediateMask = 0xff;
unsigned short candidateInstruction = *reinterpret_cast<unsigned short*>(address);
return (candidateInstruction & ~immediateMask) == expected;
}
2017-08-12 16:48:01 +00:00
ALWAYS_INLINE void clz(RegisterID rd, RegisterID rm)
{
ASSERT(!BadReg(rd));
ASSERT(!BadReg(rm));
m_formatter.twoWordOp12Reg4FourFours(OP_CLZ, rm, FourFours(0xf, rd, 8, rm));
}
ALWAYS_INLINE void cmn(RegisterID rn, ARMThumbImmediate imm)
{
ASSERT(rn != ARMRegisters::pc);
ASSERT(imm.isEncodedImm());
m_formatter.twoWordOp5i6Imm4Reg4EncodedImm(OP_CMN_imm, rn, (RegisterID)0xf, imm);
}
ALWAYS_INLINE void cmp(RegisterID rn, ARMThumbImmediate imm)
{
ASSERT(rn != ARMRegisters::pc);
ASSERT(imm.isEncodedImm());
if (!(rn & 8) && imm.isUInt8())
m_formatter.oneWordOp5Reg3Imm8(OP_CMP_imm_T1, rn, imm.getUInt8());
else
m_formatter.twoWordOp5i6Imm4Reg4EncodedImm(OP_CMP_imm_T2, rn, (RegisterID)0xf, imm);
}
ALWAYS_INLINE void cmp(RegisterID rn, RegisterID rm, ShiftTypeAndAmount shift)
{
ASSERT(rn != ARMRegisters::pc);
ASSERT(!BadReg(rm));
m_formatter.twoWordOp12Reg4FourFours(OP_CMP_reg_T2, rn, FourFours(shift.hi4(), 0xf, shift.lo4(), rm));
}
ALWAYS_INLINE void cmp(RegisterID rn, RegisterID rm)
{
if ((rn | rm) & 8)
cmp(rn, rm, ShiftTypeAndAmount());
else
m_formatter.oneWordOp10Reg3Reg3(OP_CMP_reg_T1, rm, rn);
}
// xor is not spelled with an 'e'. :-(
ALWAYS_INLINE void eor(RegisterID rd, RegisterID rn, ARMThumbImmediate imm)
{
ASSERT(!BadReg(rd));
ASSERT(!BadReg(rn));
ASSERT(imm.isEncodedImm());
m_formatter.twoWordOp5i6Imm4Reg4EncodedImm(OP_EOR_imm_T1, rn, rd, imm);
}
// xor is not spelled with an 'e'. :-(
ALWAYS_INLINE void eor(RegisterID rd, RegisterID rn, RegisterID rm, ShiftTypeAndAmount shift)
{
ASSERT(!BadReg(rd));
ASSERT(!BadReg(rn));
ASSERT(!BadReg(rm));
m_formatter.twoWordOp12Reg4FourFours(OP_EOR_reg_T2, rn, FourFours(shift.hi4(), rd, shift.lo4(), rm));
}
// xor is not spelled with an 'e'. :-(
void eor(RegisterID rd, RegisterID rn, RegisterID rm)
{
if ((rd == rn) && !((rd | rm) & 8))
m_formatter.oneWordOp10Reg3Reg3(OP_EOR_reg_T1, rm, rd);
else if ((rd == rm) && !((rd | rn) & 8))
m_formatter.oneWordOp10Reg3Reg3(OP_EOR_reg_T1, rn, rd);
else
eor(rd, rn, rm, ShiftTypeAndAmount());
}
ALWAYS_INLINE void it(Condition cond)
{
m_formatter.oneWordOp8Imm8(OP_IT, ifThenElse(cond));
}
ALWAYS_INLINE void it(Condition cond, bool inst2if)
{
m_formatter.oneWordOp8Imm8(OP_IT, ifThenElse(cond, inst2if));
}
ALWAYS_INLINE void it(Condition cond, bool inst2if, bool inst3if)
{
m_formatter.oneWordOp8Imm8(OP_IT, ifThenElse(cond, inst2if, inst3if));
}
ALWAYS_INLINE void it(Condition cond, bool inst2if, bool inst3if, bool inst4if)
{
m_formatter.oneWordOp8Imm8(OP_IT, ifThenElse(cond, inst2if, inst3if, inst4if));
}
// rt == ARMRegisters::pc only allowed if last instruction in IT (if then) block.
ALWAYS_INLINE void ldr(RegisterID rt, RegisterID rn, ARMThumbImmediate imm)
{
ASSERT(rn != ARMRegisters::pc); // LDR (literal)
ASSERT(imm.isUInt12());
if (!((rt | rn) & 8) && imm.isUInt7())
m_formatter.oneWordOp5Imm5Reg3Reg3(OP_LDR_imm_T1, imm.getUInt7() >> 2, rn, rt);
else if ((rn == ARMRegisters::sp) && !(rt & 8) && imm.isUInt10())
m_formatter.oneWordOp5Reg3Imm8(OP_LDR_imm_T2, rt, static_cast<uint8_t>(imm.getUInt10() >> 2));
else
m_formatter.twoWordOp12Reg4Reg4Imm12(OP_LDR_imm_T3, rn, rt, imm.getUInt12());
}
ALWAYS_INLINE void ldrWide8BitImmediate(RegisterID rt, RegisterID rn, uint8_t immediate)
{
ASSERT(rn != ARMRegisters::pc);
m_formatter.twoWordOp12Reg4Reg4Imm12(OP_LDR_imm_T3, rn, rt, immediate);
}
ALWAYS_INLINE void ldrCompact(RegisterID rt, RegisterID rn, ARMThumbImmediate imm)
{
ASSERT(rn != ARMRegisters::pc); // LDR (literal)
ASSERT(imm.isUInt7());
ASSERT(!((rt | rn) & 8));
m_formatter.oneWordOp5Imm5Reg3Reg3(OP_LDR_imm_T1, imm.getUInt7() >> 2, rn, rt);
}
// If index is set, this is a regular offset or a pre-indexed load;
// if index is not set then is is a post-index load.
//
// If wback is set rn is updated - this is a pre or post index load,
// if wback is not set this is a regular offset memory access.
//
// (-255 <= offset <= 255)
// _reg = REG[rn]
// _tmp = _reg + offset
// MEM[index ? _tmp : _reg] = REG[rt]
// if (wback) REG[rn] = _tmp
ALWAYS_INLINE void ldr(RegisterID rt, RegisterID rn, int offset, bool index, bool wback)
{
ASSERT(rt != ARMRegisters::pc);
ASSERT(rn != ARMRegisters::pc);
ASSERT(index || wback);
ASSERT(!wback | (rt != rn));
bool add = true;
if (offset < 0) {
add = false;
offset = -offset;
}
ASSERT((offset & ~0xff) == 0);
offset |= (wback << 8);
offset |= (add << 9);
offset |= (index << 10);
offset |= (1 << 11);
m_formatter.twoWordOp12Reg4Reg4Imm12(OP_LDR_imm_T4, rn, rt, offset);
}
// rt == ARMRegisters::pc only allowed if last instruction in IT (if then) block.
ALWAYS_INLINE void ldr(RegisterID rt, RegisterID rn, RegisterID rm, unsigned shift = 0)
{
ASSERT(rn != ARMRegisters::pc); // LDR (literal)
ASSERT(!BadReg(rm));
ASSERT(shift <= 3);
if (!shift && !((rt | rn | rm) & 8))
m_formatter.oneWordOp7Reg3Reg3Reg3(OP_LDR_reg_T1, rm, rn, rt);
else
m_formatter.twoWordOp12Reg4FourFours(OP_LDR_reg_T2, rn, FourFours(rt, 0, shift, rm));
}
// rt == ARMRegisters::pc only allowed if last instruction in IT (if then) block.
ALWAYS_INLINE void ldrh(RegisterID rt, RegisterID rn, ARMThumbImmediate imm)
{
ASSERT(rn != ARMRegisters::pc); // LDR (literal)
ASSERT(imm.isUInt12());
ASSERT(!(imm.getUInt12() & 1));
if (!((rt | rn) & 8) && imm.isUInt6())
m_formatter.oneWordOp5Imm5Reg3Reg3(OP_LDRH_imm_T1, imm.getUInt6() >> 1, rn, rt);
else
m_formatter.twoWordOp12Reg4Reg4Imm12(OP_LDRH_imm_T2, rn, rt, imm.getUInt12());
}
// If index is set, this is a regular offset or a pre-indexed load;
// if index is not set then is is a post-index load.
//
// If wback is set rn is updated - this is a pre or post index load,
// if wback is not set this is a regular offset memory access.
//
// (-255 <= offset <= 255)
// _reg = REG[rn]
// _tmp = _reg + offset
// MEM[index ? _tmp : _reg] = REG[rt]
// if (wback) REG[rn] = _tmp
ALWAYS_INLINE void ldrh(RegisterID rt, RegisterID rn, int offset, bool index, bool wback)
{
ASSERT(rt != ARMRegisters::pc);
ASSERT(rn != ARMRegisters::pc);
ASSERT(index || wback);
ASSERT(!wback | (rt != rn));
bool add = true;
if (offset < 0) {
add = false;
offset = -offset;
}
ASSERT((offset & ~0xff) == 0);
offset |= (wback << 8);
offset |= (add << 9);
offset |= (index << 10);
offset |= (1 << 11);
m_formatter.twoWordOp12Reg4Reg4Imm12(OP_LDRH_imm_T3, rn, rt, offset);
}
ALWAYS_INLINE void ldrh(RegisterID rt, RegisterID rn, RegisterID rm, unsigned shift = 0)
{
ASSERT(!BadReg(rt)); // Memory hint
ASSERT(rn != ARMRegisters::pc); // LDRH (literal)
ASSERT(!BadReg(rm));
ASSERT(shift <= 3);
if (!shift && !((rt | rn | rm) & 8))
m_formatter.oneWordOp7Reg3Reg3Reg3(OP_LDRH_reg_T1, rm, rn, rt);
else
m_formatter.twoWordOp12Reg4FourFours(OP_LDRH_reg_T2, rn, FourFours(rt, 0, shift, rm));
}
void ldrb(RegisterID rt, RegisterID rn, ARMThumbImmediate imm)
{
ASSERT(rn != ARMRegisters::pc); // LDR (literal)
ASSERT(imm.isUInt12());
if (!((rt | rn) & 8) && imm.isUInt5())
m_formatter.oneWordOp5Imm5Reg3Reg3(OP_LDRB_imm_T1, imm.getUInt5(), rn, rt);
else
m_formatter.twoWordOp12Reg4Reg4Imm12(OP_LDRB_imm_T2, rn, rt, imm.getUInt12());
}
void ldrb(RegisterID rt, RegisterID rn, int offset, bool index, bool wback)
{
ASSERT(rt != ARMRegisters::pc);
ASSERT(rn != ARMRegisters::pc);
ASSERT(index || wback);
ASSERT(!wback | (rt != rn));
bool add = true;
if (offset < 0) {
add = false;
offset = -offset;
}
ASSERT(!(offset & ~0xff));
offset |= (wback << 8);
offset |= (add << 9);
offset |= (index << 10);
offset |= (1 << 11);
m_formatter.twoWordOp12Reg4Reg4Imm12(OP_LDRB_imm_T3, rn, rt, offset);
}
ALWAYS_INLINE void ldrb(RegisterID rt, RegisterID rn, RegisterID rm, unsigned shift = 0)
{
ASSERT(rn != ARMRegisters::pc); // LDR (literal)
ASSERT(!BadReg(rm));
ASSERT(shift <= 3);
if (!shift && !((rt | rn | rm) & 8))
m_formatter.oneWordOp7Reg3Reg3Reg3(OP_LDRB_reg_T1, rm, rn, rt);
else
m_formatter.twoWordOp12Reg4FourFours(OP_LDRB_reg_T2, rn, FourFours(rt, 0, shift, rm));
}
void ldrsb(RegisterID rt, RegisterID rn, RegisterID rm, unsigned shift = 0)
{
ASSERT(rn != ARMRegisters::pc);
ASSERT(!BadReg(rm));
ASSERT(shift <= 3);
if (!shift && !((rt | rn | rm) & 8))
m_formatter.oneWordOp7Reg3Reg3Reg3(OP_LDRSB_reg_T1, rm, rn, rt);
else
m_formatter.twoWordOp12Reg4FourFours(OP_LDRSB_reg_T2, rn, FourFours(rt, 0, shift, rm));
}
void ldrsh(RegisterID rt, RegisterID rn, RegisterID rm, unsigned shift = 0)
{
ASSERT(rn != ARMRegisters::pc);
ASSERT(!BadReg(rm));
ASSERT(shift <= 3);
if (!shift && !((rt | rn | rm) & 8))
m_formatter.oneWordOp7Reg3Reg3Reg3(OP_LDRSH_reg_T1, rm, rn, rt);
else
m_formatter.twoWordOp12Reg4FourFours(OP_LDRSH_reg_T2, rn, FourFours(rt, 0, shift, rm));
}
void lsl(RegisterID rd, RegisterID rm, int32_t shiftAmount)
{
ASSERT(!BadReg(rd));
ASSERT(!BadReg(rm));
ShiftTypeAndAmount shift(SRType_LSL, shiftAmount);
m_formatter.twoWordOp16FourFours(OP_LSL_imm_T1, FourFours(shift.hi4(), rd, shift.lo4(), rm));
}
ALWAYS_INLINE void lsl(RegisterID rd, RegisterID rn, RegisterID rm)
{
ASSERT(!BadReg(rd));
ASSERT(!BadReg(rn));
ASSERT(!BadReg(rm));
m_formatter.twoWordOp12Reg4FourFours(OP_LSL_reg_T2, rn, FourFours(0xf, rd, 0, rm));
}
ALWAYS_INLINE void lsr(RegisterID rd, RegisterID rm, int32_t shiftAmount)
{
ASSERT(!BadReg(rd));
ASSERT(!BadReg(rm));
ShiftTypeAndAmount shift(SRType_LSR, shiftAmount);
m_formatter.twoWordOp16FourFours(OP_LSR_imm_T1, FourFours(shift.hi4(), rd, shift.lo4(), rm));
}
ALWAYS_INLINE void lsr(RegisterID rd, RegisterID rn, RegisterID rm)
{
ASSERT(!BadReg(rd));
ASSERT(!BadReg(rn));
ASSERT(!BadReg(rm));
m_formatter.twoWordOp12Reg4FourFours(OP_LSR_reg_T2, rn, FourFours(0xf, rd, 0, rm));
}
ALWAYS_INLINE void movT3(RegisterID rd, ARMThumbImmediate imm)
{
ASSERT(imm.isValid());
ASSERT(!imm.isEncodedImm());
ASSERT(!BadReg(rd));
m_formatter.twoWordOp5i6Imm4Reg4EncodedImm(OP_MOV_imm_T3, imm.m_value.imm4, rd, imm);
}
#if OS(LINUX)
static void revertJumpTo_movT3movtcmpT2(void* instructionStart, RegisterID left, RegisterID right, uintptr_t imm)
{
uint16_t* address = static_cast<uint16_t*>(instructionStart);
ARMThumbImmediate lo16 = ARMThumbImmediate::makeUInt16(static_cast<uint16_t>(imm));
ARMThumbImmediate hi16 = ARMThumbImmediate::makeUInt16(static_cast<uint16_t>(imm >> 16));
uint16_t instruction[] = {
twoWordOp5i6Imm4Reg4EncodedImmFirst(OP_MOV_imm_T3, lo16),
twoWordOp5i6Imm4Reg4EncodedImmSecond(right, lo16),
twoWordOp5i6Imm4Reg4EncodedImmFirst(OP_MOVT, hi16),
twoWordOp5i6Imm4Reg4EncodedImmSecond(right, hi16),
static_cast<uint16_t>(OP_CMP_reg_T2 | left)
};
performJITMemcpy(address, instruction, sizeof(uint16_t) * 5);
cacheFlush(address, sizeof(uint16_t) * 5);
}
#else
static void revertJumpTo_movT3(void* instructionStart, RegisterID rd, ARMThumbImmediate imm)
{
ASSERT(imm.isValid());
ASSERT(!imm.isEncodedImm());
ASSERT(!BadReg(rd));
uint16_t* address = static_cast<uint16_t*>(instructionStart);
uint16_t instruction[] = {
twoWordOp5i6Imm4Reg4EncodedImmFirst(OP_MOV_imm_T3, imm),
twoWordOp5i6Imm4Reg4EncodedImmSecond(rd, imm)
};
performJITMemcpy(address, instruction, sizeof(uint16_t) * 2);
cacheFlush(address, sizeof(uint16_t) * 2);
}
#endif
ALWAYS_INLINE void mov(RegisterID rd, ARMThumbImmediate imm)
{
ASSERT(imm.isValid());
ASSERT(!BadReg(rd));
if ((rd < 8) && imm.isUInt8())
m_formatter.oneWordOp5Reg3Imm8(OP_MOV_imm_T1, rd, imm.getUInt8());
else if (imm.isEncodedImm())
m_formatter.twoWordOp5i6Imm4Reg4EncodedImm(OP_MOV_imm_T2, 0xf, rd, imm);
else
movT3(rd, imm);
}
ALWAYS_INLINE void mov(RegisterID rd, RegisterID rm)
{
m_formatter.oneWordOp8RegReg143(OP_MOV_reg_T1, rm, rd);
}
ALWAYS_INLINE void movt(RegisterID rd, ARMThumbImmediate imm)
{
ASSERT(imm.isUInt16());
ASSERT(!BadReg(rd));
m_formatter.twoWordOp5i6Imm4Reg4EncodedImm(OP_MOVT, imm.m_value.imm4, rd, imm);
}
ALWAYS_INLINE void mvn(RegisterID rd, ARMThumbImmediate imm)
{
ASSERT(imm.isEncodedImm());
ASSERT(!BadReg(rd));
m_formatter.twoWordOp5i6Imm4Reg4EncodedImm(OP_MVN_imm, 0xf, rd, imm);
}
ALWAYS_INLINE void mvn(RegisterID rd, RegisterID rm, ShiftTypeAndAmount shift)
{
ASSERT(!BadReg(rd));
ASSERT(!BadReg(rm));
m_formatter.twoWordOp16FourFours(OP_MVN_reg_T2, FourFours(shift.hi4(), rd, shift.lo4(), rm));
}
ALWAYS_INLINE void mvn(RegisterID rd, RegisterID rm)
{
if (!((rd | rm) & 8))
m_formatter.oneWordOp10Reg3Reg3(OP_MVN_reg_T1, rm, rd);
else
mvn(rd, rm, ShiftTypeAndAmount());
}
ALWAYS_INLINE void neg(RegisterID rd, RegisterID rm)
{
ARMThumbImmediate zero = ARMThumbImmediate::makeUInt12(0);
sub(rd, zero, rm);
}
ALWAYS_INLINE void orr(RegisterID rd, RegisterID rn, ARMThumbImmediate imm)
{
ASSERT(!BadReg(rd));
ASSERT(!BadReg(rn));
ASSERT(imm.isEncodedImm());
m_formatter.twoWordOp5i6Imm4Reg4EncodedImm(OP_ORR_imm_T1, rn, rd, imm);
}
ALWAYS_INLINE void orr(RegisterID rd, RegisterID rn, RegisterID rm, ShiftTypeAndAmount shift)
{
ASSERT(!BadReg(rd));
ASSERT(!BadReg(rn));
ASSERT(!BadReg(rm));
m_formatter.twoWordOp12Reg4FourFours(OP_ORR_reg_T2, rn, FourFours(shift.hi4(), rd, shift.lo4(), rm));
}
void orr(RegisterID rd, RegisterID rn, RegisterID rm)
{
if ((rd == rn) && !((rd | rm) & 8))
m_formatter.oneWordOp10Reg3Reg3(OP_ORR_reg_T1, rm, rd);
else if ((rd == rm) && !((rd | rn) & 8))
m_formatter.oneWordOp10Reg3Reg3(OP_ORR_reg_T1, rn, rd);
else
orr(rd, rn, rm, ShiftTypeAndAmount());
}
ALWAYS_INLINE void orr_S(RegisterID rd, RegisterID rn, RegisterID rm, ShiftTypeAndAmount shift)
{
ASSERT(!BadReg(rd));
ASSERT(!BadReg(rn));
ASSERT(!BadReg(rm));
m_formatter.twoWordOp12Reg4FourFours(OP_ORR_S_reg_T2, rn, FourFours(shift.hi4(), rd, shift.lo4(), rm));
}
void orr_S(RegisterID rd, RegisterID rn, RegisterID rm)
{
if ((rd == rn) && !((rd | rm) & 8))
m_formatter.oneWordOp10Reg3Reg3(OP_ORR_reg_T1, rm, rd);
else if ((rd == rm) && !((rd | rn) & 8))
m_formatter.oneWordOp10Reg3Reg3(OP_ORR_reg_T1, rn, rd);
else
orr_S(rd, rn, rm, ShiftTypeAndAmount());
}
ALWAYS_INLINE void ror(RegisterID rd, RegisterID rm, int32_t shiftAmount)
{
ASSERT(!BadReg(rd));
ASSERT(!BadReg(rm));
ShiftTypeAndAmount shift(SRType_ROR, shiftAmount);
m_formatter.twoWordOp16FourFours(OP_ROR_imm_T1, FourFours(shift.hi4(), rd, shift.lo4(), rm));
}
ALWAYS_INLINE void ror(RegisterID rd, RegisterID rn, RegisterID rm)
{
ASSERT(!BadReg(rd));
ASSERT(!BadReg(rn));
ASSERT(!BadReg(rm));
m_formatter.twoWordOp12Reg4FourFours(OP_ROR_reg_T2, rn, FourFours(0xf, rd, 0, rm));
}
ALWAYS_INLINE void pop(RegisterID dest)
{
if (dest < ARMRegisters::r8)
m_formatter.oneWordOp7Imm9(OP_POP_T1, 1 << dest);
else {
// Load postindexed with writeback.
ldr(dest, ARMRegisters::sp, sizeof(void*), false, true);
}
}
ALWAYS_INLINE void pop(uint32_t registerList)
{
ASSERT(WTF::bitCount(registerList) > 1);
ASSERT(!((1 << ARMRegisters::pc) & registerList) || !((1 << ARMRegisters::lr) & registerList));
ASSERT(!((1 << ARMRegisters::sp) & registerList));
m_formatter.twoWordOp16Imm16(OP_POP_T2, registerList);
}
ALWAYS_INLINE void push(RegisterID src)
{
if (src < ARMRegisters::r8)
m_formatter.oneWordOp7Imm9(OP_PUSH_T1, 1 << src);
else if (src == ARMRegisters::lr)
m_formatter.oneWordOp7Imm9(OP_PUSH_T1, 0x100);
else {
// Store preindexed with writeback.
str(src, ARMRegisters::sp, -sizeof(void*), true, true);
}
}
ALWAYS_INLINE void push(uint32_t registerList)
{
ASSERT(WTF::bitCount(registerList) > 1);
ASSERT(!((1 << ARMRegisters::pc) & registerList));
ASSERT(!((1 << ARMRegisters::sp) & registerList));
m_formatter.twoWordOp16Imm16(OP_PUSH_T2, registerList);
}
#if HAVE(ARM_IDIV_INSTRUCTIONS)
template<int datasize>
ALWAYS_INLINE void sdiv(RegisterID rd, RegisterID rn, RegisterID rm)
{
static_assert(datasize == 32, "sdiv datasize must be 32 for armv7s");
ASSERT(!BadReg(rd));
ASSERT(!BadReg(rn));
ASSERT(!BadReg(rm));
m_formatter.twoWordOp12Reg4FourFours(OP_SDIV_T1, rn, FourFours(0xf, rd, 0xf, rm));
}
#endif
ALWAYS_INLINE void smull(RegisterID rdLo, RegisterID rdHi, RegisterID rn, RegisterID rm)
{
ASSERT(!BadReg(rdLo));
ASSERT(!BadReg(rdHi));
ASSERT(!BadReg(rn));
ASSERT(!BadReg(rm));
ASSERT(rdLo != rdHi);
m_formatter.twoWordOp12Reg4FourFours(OP_SMULL_T1, rn, FourFours(rdLo, rdHi, 0, rm));
}
// rt == ARMRegisters::pc only allowed if last instruction in IT (if then) block.
ALWAYS_INLINE void str(RegisterID rt, RegisterID rn, ARMThumbImmediate imm)
{
ASSERT(rt != ARMRegisters::pc);
ASSERT(rn != ARMRegisters::pc);
ASSERT(imm.isUInt12());
if (!((rt | rn) & 8) && imm.isUInt7())
m_formatter.oneWordOp5Imm5Reg3Reg3(OP_STR_imm_T1, imm.getUInt7() >> 2, rn, rt);
else if ((rn == ARMRegisters::sp) && !(rt & 8) && imm.isUInt10())
m_formatter.oneWordOp5Reg3Imm8(OP_STR_imm_T2, rt, static_cast<uint8_t>(imm.getUInt10() >> 2));
else
m_formatter.twoWordOp12Reg4Reg4Imm12(OP_STR_imm_T3, rn, rt, imm.getUInt12());
}
// If index is set, this is a regular offset or a pre-indexed store;
// if index is not set then is is a post-index store.
//
// If wback is set rn is updated - this is a pre or post index store,
// if wback is not set this is a regular offset memory access.
//
// (-255 <= offset <= 255)
// _reg = REG[rn]
// _tmp = _reg + offset
// MEM[index ? _tmp : _reg] = REG[rt]
// if (wback) REG[rn] = _tmp
ALWAYS_INLINE void str(RegisterID rt, RegisterID rn, int offset, bool index, bool wback)
{
ASSERT(rt != ARMRegisters::pc);
ASSERT(rn != ARMRegisters::pc);
ASSERT(index || wback);
ASSERT(!wback | (rt != rn));
bool add = true;
if (offset < 0) {
add = false;
offset = -offset;
}
ASSERT((offset & ~0xff) == 0);
offset |= (wback << 8);
offset |= (add << 9);
offset |= (index << 10);
offset |= (1 << 11);
m_formatter.twoWordOp12Reg4Reg4Imm12(OP_STR_imm_T4, rn, rt, offset);
}
// rt == ARMRegisters::pc only allowed if last instruction in IT (if then) block.
ALWAYS_INLINE void str(RegisterID rt, RegisterID rn, RegisterID rm, unsigned shift = 0)
{
ASSERT(rn != ARMRegisters::pc);
ASSERT(!BadReg(rm));
ASSERT(shift <= 3);
if (!shift && !((rt | rn | rm) & 8))
m_formatter.oneWordOp7Reg3Reg3Reg3(OP_STR_reg_T1, rm, rn, rt);
else
m_formatter.twoWordOp12Reg4FourFours(OP_STR_reg_T2, rn, FourFours(rt, 0, shift, rm));
}
// rt == ARMRegisters::pc only allowed if last instruction in IT (if then) block.
ALWAYS_INLINE void strb(RegisterID rt, RegisterID rn, ARMThumbImmediate imm)
{
ASSERT(rt != ARMRegisters::pc);
ASSERT(rn != ARMRegisters::pc);
ASSERT(imm.isUInt12());
if (!((rt | rn) & 8) && imm.isUInt7())
m_formatter.oneWordOp5Imm5Reg3Reg3(OP_STRB_imm_T1, imm.getUInt7() >> 2, rn, rt);
else
m_formatter.twoWordOp12Reg4Reg4Imm12(OP_STRB_imm_T2, rn, rt, imm.getUInt12());
}
// If index is set, this is a regular offset or a pre-indexed store;
// if index is not set then is is a post-index store.
//
// If wback is set rn is updated - this is a pre or post index store,
// if wback is not set this is a regular offset memory access.
//
// (-255 <= offset <= 255)
// _reg = REG[rn]
// _tmp = _reg + offset
// MEM[index ? _tmp : _reg] = REG[rt]
// if (wback) REG[rn] = _tmp
ALWAYS_INLINE void strb(RegisterID rt, RegisterID rn, int offset, bool index, bool wback)
{
ASSERT(rt != ARMRegisters::pc);
ASSERT(rn != ARMRegisters::pc);
ASSERT(index || wback);
ASSERT(!wback | (rt != rn));
bool add = true;
if (offset < 0) {
add = false;
offset = -offset;
}
ASSERT((offset & ~0xff) == 0);
offset |= (wback << 8);
offset |= (add << 9);
offset |= (index << 10);
offset |= (1 << 11);
m_formatter.twoWordOp12Reg4Reg4Imm12(OP_STRB_imm_T3, rn, rt, offset);
}
// rt == ARMRegisters::pc only allowed if last instruction in IT (if then) block.
ALWAYS_INLINE void strb(RegisterID rt, RegisterID rn, RegisterID rm, unsigned shift = 0)
{
ASSERT(rn != ARMRegisters::pc);
ASSERT(!BadReg(rm));
ASSERT(shift <= 3);
if (!shift && !((rt | rn | rm) & 8))
m_formatter.oneWordOp7Reg3Reg3Reg3(OP_STRB_reg_T1, rm, rn, rt);
else
m_formatter.twoWordOp12Reg4FourFours(OP_STRB_reg_T2, rn, FourFours(rt, 0, shift, rm));
}
// rt == ARMRegisters::pc only allowed if last instruction in IT (if then) block.
ALWAYS_INLINE void strh(RegisterID rt, RegisterID rn, ARMThumbImmediate imm)
{
ASSERT(rt != ARMRegisters::pc);
ASSERT(rn != ARMRegisters::pc);
ASSERT(imm.isUInt12());
if (!((rt | rn) & 8) && imm.isUInt6())
m_formatter.oneWordOp5Imm5Reg3Reg3(OP_STRH_imm_T1, imm.getUInt6() >> 1, rn, rt);
else
m_formatter.twoWordOp12Reg4Reg4Imm12(OP_STRH_imm_T2, rn, rt, imm.getUInt12());
}
// If index is set, this is a regular offset or a pre-indexed store;
// if index is not set then is is a post-index store.
//
// If wback is set rn is updated - this is a pre or post index store,
// if wback is not set this is a regular offset memory access.
//
// (-255 <= offset <= 255)
// _reg = REG[rn]
// _tmp = _reg + offset
// MEM[index ? _tmp : _reg] = REG[rt]
// if (wback) REG[rn] = _tmp
ALWAYS_INLINE void strh(RegisterID rt, RegisterID rn, int offset, bool index, bool wback)
{
ASSERT(rt != ARMRegisters::pc);
ASSERT(rn != ARMRegisters::pc);
ASSERT(index || wback);
ASSERT(!wback | (rt != rn));
bool add = true;
if (offset < 0) {
add = false;
offset = -offset;
}
ASSERT(!(offset & ~0xff));
offset |= (wback << 8);
offset |= (add << 9);
offset |= (index << 10);
offset |= (1 << 11);
m_formatter.twoWordOp12Reg4Reg4Imm12(OP_STRH_imm_T3, rn, rt, offset);
}
// rt == ARMRegisters::pc only allowed if last instruction in IT (if then) block.
ALWAYS_INLINE void strh(RegisterID rt, RegisterID rn, RegisterID rm, unsigned shift = 0)
{
ASSERT(rn != ARMRegisters::pc);
ASSERT(!BadReg(rm));
ASSERT(shift <= 3);
if (!shift && !((rt | rn | rm) & 8))
m_formatter.oneWordOp7Reg3Reg3Reg3(OP_STRH_reg_T1, rm, rn, rt);
else
m_formatter.twoWordOp12Reg4FourFours(OP_STRH_reg_T2, rn, FourFours(rt, 0, shift, rm));
}
ALWAYS_INLINE void sub(RegisterID rd, RegisterID rn, ARMThumbImmediate imm)
{
// Rd can only be SP if Rn is also SP.
ASSERT((rd != ARMRegisters::sp) || (rn == ARMRegisters::sp));
ASSERT(rd != ARMRegisters::pc);
ASSERT(rn != ARMRegisters::pc);
ASSERT(imm.isValid());
if ((rn == ARMRegisters::sp) && (rd == ARMRegisters::sp) && imm.isUInt9()) {
ASSERT(!(imm.getUInt16() & 3));
m_formatter.oneWordOp9Imm7(OP_SUB_SP_imm_T1, static_cast<uint8_t>(imm.getUInt9() >> 2));
return;
} else if (!((rd | rn) & 8)) {
if (imm.isUInt3()) {
m_formatter.oneWordOp7Reg3Reg3Reg3(OP_SUB_imm_T1, (RegisterID)imm.getUInt3(), rn, rd);
return;
} else if ((rd == rn) && imm.isUInt8()) {
m_formatter.oneWordOp5Reg3Imm8(OP_SUB_imm_T2, rd, imm.getUInt8());
return;
}
}
if (imm.isEncodedImm())
m_formatter.twoWordOp5i6Imm4Reg4EncodedImm(OP_SUB_imm_T3, rn, rd, imm);
else {
ASSERT(imm.isUInt12());
m_formatter.twoWordOp5i6Imm4Reg4EncodedImm(OP_SUB_imm_T4, rn, rd, imm);
}
}
ALWAYS_INLINE void sub(RegisterID rd, ARMThumbImmediate imm, RegisterID rn)
{
ASSERT(rd != ARMRegisters::pc);
ASSERT(rn != ARMRegisters::pc);
ASSERT(imm.isValid());
ASSERT(imm.isUInt12());
if (!((rd | rn) & 8) && !imm.getUInt12())
m_formatter.oneWordOp10Reg3Reg3(OP_RSB_imm_T1, rn, rd);
else
m_formatter.twoWordOp5i6Imm4Reg4EncodedImm(OP_RSB_imm_T2, rn, rd, imm);
}
ALWAYS_INLINE void sub(RegisterID rd, RegisterID rn, RegisterID rm, ShiftTypeAndAmount shift)
{
ASSERT((rd != ARMRegisters::sp) || (rn == ARMRegisters::sp));
ASSERT(rd != ARMRegisters::pc);
ASSERT(rn != ARMRegisters::pc);
ASSERT(!BadReg(rm));
m_formatter.twoWordOp12Reg4FourFours(OP_SUB_reg_T2, rn, FourFours(shift.hi4(), rd, shift.lo4(), rm));
}
// NOTE: In an IT block, add doesn't modify the flags register.
ALWAYS_INLINE void sub(RegisterID rd, RegisterID rn, RegisterID rm)
{
if (!((rd | rn | rm) & 8))
m_formatter.oneWordOp7Reg3Reg3Reg3(OP_SUB_reg_T1, rm, rn, rd);
else
sub(rd, rn, rm, ShiftTypeAndAmount());
}
// Not allowed in an IT (if then) block.
void sub_S(RegisterID rd, RegisterID rn, ARMThumbImmediate imm)
{
// Rd can only be SP if Rn is also SP.
ASSERT((rd != ARMRegisters::sp) || (rn == ARMRegisters::sp));
ASSERT(rd != ARMRegisters::pc);
ASSERT(rn != ARMRegisters::pc);
ASSERT(imm.isValid());
if ((rn == ARMRegisters::sp) && (rd == ARMRegisters::sp) && imm.isUInt9()) {
ASSERT(!(imm.getUInt16() & 3));
m_formatter.oneWordOp9Imm7(OP_SUB_SP_imm_T1, static_cast<uint8_t>(imm.getUInt9() >> 2));
return;
} else if (!((rd | rn) & 8)) {
if (imm.isUInt3()) {
m_formatter.oneWordOp7Reg3Reg3Reg3(OP_SUB_imm_T1, (RegisterID)imm.getUInt3(), rn, rd);
return;
} else if ((rd == rn) && imm.isUInt8()) {
m_formatter.oneWordOp5Reg3Imm8(OP_SUB_imm_T2, rd, imm.getUInt8());
return;
}
}
m_formatter.twoWordOp5i6Imm4Reg4EncodedImm(OP_SUB_S_imm_T3, rn, rd, imm);
}
ALWAYS_INLINE void sub_S(RegisterID rd, ARMThumbImmediate imm, RegisterID rn)
{
ASSERT(rd != ARMRegisters::pc);
ASSERT(rn != ARMRegisters::pc);
ASSERT(imm.isValid());
ASSERT(imm.isUInt12());
m_formatter.twoWordOp5i6Imm4Reg4EncodedImm(OP_RSB_S_imm_T2, rn, rd, imm);
}
// Not allowed in an IT (if then) block?
ALWAYS_INLINE void sub_S(RegisterID rd, RegisterID rn, RegisterID rm, ShiftTypeAndAmount shift)
{
ASSERT((rd != ARMRegisters::sp) || (rn == ARMRegisters::sp));
ASSERT(rd != ARMRegisters::pc);
ASSERT(rn != ARMRegisters::pc);
ASSERT(!BadReg(rm));
m_formatter.twoWordOp12Reg4FourFours(OP_SUB_S_reg_T2, rn, FourFours(shift.hi4(), rd, shift.lo4(), rm));
}
// Not allowed in an IT (if then) block.
ALWAYS_INLINE void sub_S(RegisterID rd, RegisterID rn, RegisterID rm)
{
if (!((rd | rn | rm) & 8))
m_formatter.oneWordOp7Reg3Reg3Reg3(OP_SUB_reg_T1, rm, rn, rd);
else
sub_S(rd, rn, rm, ShiftTypeAndAmount());
}
ALWAYS_INLINE void tst(RegisterID rn, ARMThumbImmediate imm)
{
ASSERT(!BadReg(rn));
ASSERT(imm.isEncodedImm());
m_formatter.twoWordOp5i6Imm4Reg4EncodedImm(OP_TST_imm, rn, (RegisterID)0xf, imm);
}
ALWAYS_INLINE void tst(RegisterID rn, RegisterID rm, ShiftTypeAndAmount shift)
{
ASSERT(!BadReg(rn));
ASSERT(!BadReg(rm));
m_formatter.twoWordOp12Reg4FourFours(OP_TST_reg_T2, rn, FourFours(shift.hi4(), 0xf, shift.lo4(), rm));
}
ALWAYS_INLINE void tst(RegisterID rn, RegisterID rm)
{
if ((rn | rm) & 8)
tst(rn, rm, ShiftTypeAndAmount());
else
m_formatter.oneWordOp10Reg3Reg3(OP_TST_reg_T1, rm, rn);
}
ALWAYS_INLINE void ubfx(RegisterID rd, RegisterID rn, unsigned lsb, unsigned width)
{
ASSERT(lsb < 32);
ASSERT((width >= 1) && (width <= 32));
ASSERT((lsb + width) <= 32);
m_formatter.twoWordOp12Reg40Imm3Reg4Imm20Imm5(OP_UBFX_T1, rd, rn, (lsb & 0x1c) << 10, (lsb & 0x3) << 6, (width - 1) & 0x1f);
}
#if HAVE(ARM_IDIV_INSTRUCTIONS)
ALWAYS_INLINE void udiv(RegisterID rd, RegisterID rn, RegisterID rm)
{
ASSERT(!BadReg(rd));
ASSERT(!BadReg(rn));
ASSERT(!BadReg(rm));
m_formatter.twoWordOp12Reg4FourFours(OP_UDIV_T1, rn, FourFours(0xf, rd, 0xf, rm));
}
#endif
void vadd(FPDoubleRegisterID rd, FPDoubleRegisterID rn, FPDoubleRegisterID rm)
{
m_formatter.vfpOp(OP_VADD_T2, OP_VADD_T2b, true, rn, rd, rm);
}
void vcmp(FPDoubleRegisterID rd, FPDoubleRegisterID rm)
{
m_formatter.vfpOp(OP_VCMP, OP_VCMPb, true, VFPOperand(4), rd, rm);
}
void vcmpz(FPDoubleRegisterID rd)
{
m_formatter.vfpOp(OP_VCMP, OP_VCMPb, true, VFPOperand(5), rd, VFPOperand(0));
}
void vcvt_signedToFloatingPoint(FPDoubleRegisterID rd, FPSingleRegisterID rm)
{
// boolean values are 64bit (toInt, unsigned, roundZero)
m_formatter.vfpOp(OP_VCVT_FPIVFP, OP_VCVT_FPIVFPb, true, vcvtOp(false, false, false), rd, rm);
}
void vcvt_floatingPointToSigned(FPSingleRegisterID rd, FPDoubleRegisterID rm)
{
// boolean values are 64bit (toInt, unsigned, roundZero)
m_formatter.vfpOp(OP_VCVT_FPIVFP, OP_VCVT_FPIVFPb, true, vcvtOp(true, false, true), rd, rm);
}
void vcvt_floatingPointToUnsigned(FPSingleRegisterID rd, FPDoubleRegisterID rm)
{
// boolean values are 64bit (toInt, unsigned, roundZero)
m_formatter.vfpOp(OP_VCVT_FPIVFP, OP_VCVT_FPIVFPb, true, vcvtOp(true, true, true), rd, rm);
}
void vdiv(FPDoubleRegisterID rd, FPDoubleRegisterID rn, FPDoubleRegisterID rm)
{
m_formatter.vfpOp(OP_VDIV, OP_VDIVb, true, rn, rd, rm);
}
void vldr(FPDoubleRegisterID rd, RegisterID rn, int32_t imm)
{
m_formatter.vfpMemOp(OP_VLDR, OP_VLDRb, true, rn, rd, imm);
}
void flds(FPSingleRegisterID rd, RegisterID rn, int32_t imm)
{
m_formatter.vfpMemOp(OP_FLDS, OP_FLDSb, false, rn, rd, imm);
}
void vmov(RegisterID rd, FPSingleRegisterID rn)
{
ASSERT(!BadReg(rd));
m_formatter.vfpOp(OP_VMOV_StoC, OP_VMOV_StoCb, false, rn, rd, VFPOperand(0));
}
void vmov(FPSingleRegisterID rd, RegisterID rn)
{
ASSERT(!BadReg(rn));
m_formatter.vfpOp(OP_VMOV_CtoS, OP_VMOV_CtoSb, false, rd, rn, VFPOperand(0));
}
void vmov(RegisterID rd1, RegisterID rd2, FPDoubleRegisterID rn)
{
ASSERT(!BadReg(rd1));
ASSERT(!BadReg(rd2));
m_formatter.vfpOp(OP_VMOV_DtoC, OP_VMOV_DtoCb, true, rd2, VFPOperand(rd1 | 16), rn);
}
void vmov(FPDoubleRegisterID rd, RegisterID rn1, RegisterID rn2)
{
ASSERT(!BadReg(rn1));
ASSERT(!BadReg(rn2));
m_formatter.vfpOp(OP_VMOV_CtoD, OP_VMOV_CtoDb, true, rn2, VFPOperand(rn1 | 16), rd);
}
void vmov(FPDoubleRegisterID rd, FPDoubleRegisterID rn)
{
m_formatter.vfpOp(OP_VMOV_T2, OP_VMOV_T2b, true, VFPOperand(0), rd, rn);
}
void vmrs(RegisterID reg = ARMRegisters::pc)
{
ASSERT(reg != ARMRegisters::sp);
m_formatter.vfpOp(OP_VMRS, OP_VMRSb, false, VFPOperand(1), VFPOperand(0x10 | reg), VFPOperand(0));
}
void vmul(FPDoubleRegisterID rd, FPDoubleRegisterID rn, FPDoubleRegisterID rm)
{
m_formatter.vfpOp(OP_VMUL_T2, OP_VMUL_T2b, true, rn, rd, rm);
}
void vstr(FPDoubleRegisterID rd, RegisterID rn, int32_t imm)
{
m_formatter.vfpMemOp(OP_VSTR, OP_VSTRb, true, rn, rd, imm);
}
void fsts(FPSingleRegisterID rd, RegisterID rn, int32_t imm)
{
m_formatter.vfpMemOp(OP_FSTS, OP_FSTSb, false, rn, rd, imm);
}
void vsub(FPDoubleRegisterID rd, FPDoubleRegisterID rn, FPDoubleRegisterID rm)
{
m_formatter.vfpOp(OP_VSUB_T2, OP_VSUB_T2b, true, rn, rd, rm);
}
void vabs(FPDoubleRegisterID rd, FPDoubleRegisterID rm)
{
m_formatter.vfpOp(OP_VABS_T2, OP_VABS_T2b, true, VFPOperand(16), rd, rm);
}
void vneg(FPDoubleRegisterID rd, FPDoubleRegisterID rm)
{
m_formatter.vfpOp(OP_VNEG_T2, OP_VNEG_T2b, true, VFPOperand(1), rd, rm);
}
void vsqrt(FPDoubleRegisterID rd, FPDoubleRegisterID rm)
{
m_formatter.vfpOp(OP_VSQRT_T1, OP_VSQRT_T1b, true, VFPOperand(17), rd, rm);
}
void vcvtds(FPDoubleRegisterID rd, FPSingleRegisterID rm)
{
m_formatter.vfpOp(OP_VCVTDS_T1, OP_VCVTDS_T1b, false, VFPOperand(23), rd, rm);
}
void vcvtsd(FPSingleRegisterID rd, FPDoubleRegisterID rm)
{
m_formatter.vfpOp(OP_VCVTSD_T1, OP_VCVTSD_T1b, true, VFPOperand(23), rd, rm);
}
void nop()
{
m_formatter.oneWordOp8Imm8(OP_NOP_T1, 0);
}
void nopw()
{
m_formatter.twoWordOp16Op16(OP_NOP_T2a, OP_NOP_T2b);
}
static constexpr int16_t nopPseudo16()
{
return OP_NOP_T1;
}
static constexpr int32_t nopPseudo32()
{
return OP_NOP_T2a | (OP_NOP_T2b << 16);
}
static void fillNops(void* base, size_t size, bool isCopyingToExecutableMemory)
{
RELEASE_ASSERT(!(size % sizeof(int16_t)));
char* ptr = static_cast<char*>(base);
const size_t num32s = size / sizeof(int32_t);
for (size_t i = 0; i < num32s; i++) {
const int32_t insn = nopPseudo32();
if (isCopyingToExecutableMemory)
performJITMemcpy(ptr, &insn, sizeof(int32_t));
else
memcpy(ptr, &insn, sizeof(int32_t));
ptr += sizeof(int32_t);
}
const size_t num16s = (size % sizeof(int32_t)) / sizeof(int16_t);
ASSERT(num16s == 0 || num16s == 1);
ASSERT(num16s * sizeof(int16_t) + num32s * sizeof(int32_t) == size);
if (num16s) {
const int16_t insn = nopPseudo16();
if (isCopyingToExecutableMemory)
performJITMemcpy(ptr, &insn, sizeof(int16_t));
else
memcpy(ptr, &insn, sizeof(int16_t));
}
}
void dmbSY()
{
m_formatter.twoWordOp16Op16(OP_DMB_T1a, OP_DMB_SY_T1b);
}
void dmbISHST()
{
m_formatter.twoWordOp16Op16(OP_DMB_T1a, OP_DMB_ISHST_T1b);
}
AssemblerLabel labelIgnoringWatchpoints()
{
return m_formatter.label();
}
AssemblerLabel labelForWatchpoint()
{
AssemblerLabel result = m_formatter.label();
if (static_cast<int>(result.m_offset) != m_indexOfLastWatchpoint)
result = label();
m_indexOfLastWatchpoint = result.m_offset;
m_indexOfTailOfLastWatchpoint = result.m_offset + maxJumpReplacementSize();
return result;
}
AssemblerLabel label()
{
AssemblerLabel result = m_formatter.label();
while (UNLIKELY(static_cast<int>(result.m_offset) < m_indexOfTailOfLastWatchpoint)) {
if (UNLIKELY(static_cast<int>(result.m_offset) + 4 <= m_indexOfTailOfLastWatchpoint))
nopw();
else
nop();
result = m_formatter.label();
}
return result;
}
AssemblerLabel align(int alignment)
{
while (!m_formatter.isAligned(alignment))
bkpt();
return label();
}
static void* getRelocatedAddress(void* code, AssemblerLabel label)
{
ASSERT(label.isSet());
return reinterpret_cast<void*>(reinterpret_cast<ptrdiff_t>(code) + label.m_offset);
}
static int getDifferenceBetweenLabels(AssemblerLabel a, AssemblerLabel b)
{
return b.m_offset - a.m_offset;
}
static int jumpSizeDelta(JumpType jumpType, JumpLinkType jumpLinkType) { return JUMP_ENUM_SIZE(jumpType) - JUMP_ENUM_SIZE(jumpLinkType); }
// Assembler admin methods:
static ALWAYS_INLINE bool linkRecordSourceComparator(const LinkRecord& a, const LinkRecord& b)
{
return a.from() < b.from();
}
static bool canCompact(JumpType jumpType)
{
// The following cannot be compacted:
// JumpFixed: represents custom jump sequence
// JumpNoConditionFixedSize: represents unconditional jump that must remain a fixed size
// JumpConditionFixedSize: represents conditional jump that must remain a fixed size
return (jumpType == JumpNoCondition) || (jumpType == JumpCondition);
}
static JumpLinkType computeJumpType(JumpType jumpType, const uint8_t* from, const uint8_t* to)
{
if (jumpType == JumpFixed)
return LinkInvalid;
// for patchable jump we must leave space for the longest code sequence
if (jumpType == JumpNoConditionFixedSize)
return LinkBX;
if (jumpType == JumpConditionFixedSize)
return LinkConditionalBX;
const int paddingSize = JUMP_ENUM_SIZE(jumpType);
if (jumpType == JumpCondition) {
// 2-byte conditional T1
const uint16_t* jumpT1Location = reinterpret_cast_ptr<const uint16_t*>(from - (paddingSize - JUMP_ENUM_SIZE(LinkJumpT1)));
if (canBeJumpT1(jumpT1Location, to))
return LinkJumpT1;
// 4-byte conditional T3
const uint16_t* jumpT3Location = reinterpret_cast_ptr<const uint16_t*>(from - (paddingSize - JUMP_ENUM_SIZE(LinkJumpT3)));
if (canBeJumpT3(jumpT3Location, to))
return LinkJumpT3;
// 4-byte conditional T4 with IT
const uint16_t* conditionalJumpT4Location =
reinterpret_cast_ptr<const uint16_t*>(from - (paddingSize - JUMP_ENUM_SIZE(LinkConditionalJumpT4)));
if (canBeJumpT4(conditionalJumpT4Location, to))
return LinkConditionalJumpT4;
} else {
// 2-byte unconditional T2
const uint16_t* jumpT2Location = reinterpret_cast_ptr<const uint16_t*>(from - (paddingSize - JUMP_ENUM_SIZE(LinkJumpT2)));
if (canBeJumpT2(jumpT2Location, to))
return LinkJumpT2;
// 4-byte unconditional T4
const uint16_t* jumpT4Location = reinterpret_cast_ptr<const uint16_t*>(from - (paddingSize - JUMP_ENUM_SIZE(LinkJumpT4)));
if (canBeJumpT4(jumpT4Location, to))
return LinkJumpT4;
// use long jump sequence
return LinkBX;
}
ASSERT(jumpType == JumpCondition);
return LinkConditionalBX;
}
static JumpLinkType computeJumpType(LinkRecord& record, const uint8_t* from, const uint8_t* to)
{
JumpLinkType linkType = computeJumpType(record.type(), from, to);
record.setLinkType(linkType);
return linkType;
}
Vector<LinkRecord, 0, UnsafeVectorOverflow>& jumpsToLink()
{
std::sort(m_jumpsToLink.begin(), m_jumpsToLink.end(), linkRecordSourceComparator);
return m_jumpsToLink;
}
static void ALWAYS_INLINE link(LinkRecord& record, uint8_t* from, const uint8_t* fromInstruction8, uint8_t* to)
{
const uint16_t* fromInstruction = reinterpret_cast_ptr<const uint16_t*>(fromInstruction8);
switch (record.linkType()) {
case LinkJumpT1:
linkJumpT1(record.condition(), reinterpret_cast_ptr<uint16_t*>(from), fromInstruction, to);
break;
case LinkJumpT2:
linkJumpT2(reinterpret_cast_ptr<uint16_t*>(from), fromInstruction, to);
break;
case LinkJumpT3:
linkJumpT3(record.condition(), reinterpret_cast_ptr<uint16_t*>(from), fromInstruction, to);
break;
case LinkJumpT4:
linkJumpT4(reinterpret_cast_ptr<uint16_t*>(from), fromInstruction, to);
break;
case LinkConditionalJumpT4:
linkConditionalJumpT4(record.condition(), reinterpret_cast_ptr<uint16_t*>(from), fromInstruction, to);
break;
case LinkConditionalBX:
linkConditionalBX(record.condition(), reinterpret_cast_ptr<uint16_t*>(from), fromInstruction, to);
break;
case LinkBX:
linkBX(reinterpret_cast_ptr<uint16_t*>(from), fromInstruction, to);
break;
default:
RELEASE_ASSERT_NOT_REACHED();
break;
}
}
void* unlinkedCode() { return m_formatter.data(); }
size_t codeSize() const { return m_formatter.codeSize(); }
static unsigned getCallReturnOffset(AssemblerLabel call)
{
ASSERT(call.isSet());
return call.m_offset;
}
// Linking & patching:
//
// 'link' and 'patch' methods are for use on unprotected code - such as the code
// within the AssemblerBuffer, and code being patched by the patch buffer. Once
// code has been finalized it is (platform support permitting) within a non-
// writable region of memory; to modify the code in an execute-only execuable
// pool the 'repatch' and 'relink' methods should be used.
void linkJump(AssemblerLabel from, AssemblerLabel to, JumpType type, Condition condition)
{
ASSERT(to.isSet());
ASSERT(from.isSet());
m_jumpsToLink.append(LinkRecord(from.m_offset, to.m_offset, type, condition));
}
static void linkJump(void* code, AssemblerLabel from, void* to)
{
ASSERT(from.isSet());
uint16_t* location = reinterpret_cast<uint16_t*>(reinterpret_cast<intptr_t>(code) + from.m_offset);
linkJumpAbsolute(location, location, to);
}
static void linkCall(void* code, AssemblerLabel from, void* to)
{
ASSERT(!(reinterpret_cast<intptr_t>(code) & 1));
ASSERT(from.isSet());
setPointer(reinterpret_cast<uint16_t*>(reinterpret_cast<intptr_t>(code) + from.m_offset) - 1, to, false);
}
static void linkPointer(void* code, AssemblerLabel where, void* value)
{
setPointer(reinterpret_cast<char*>(code) + where.m_offset, value, false);
}
// The static relink and replace methods can use can use |from| for both
// the write and executable address for call and jump patching
// as they're modifying existing (linked) code, so the address being
// provided is correct for relative address computation.
static void relinkJump(void* from, void* to)
{
ASSERT(!(reinterpret_cast<intptr_t>(from) & 1));
ASSERT(!(reinterpret_cast<intptr_t>(to) & 1));
linkJumpAbsolute(reinterpret_cast<uint16_t*>(from), reinterpret_cast<uint16_t*>(from), to);
cacheFlush(reinterpret_cast<uint16_t*>(from) - 5, 5 * sizeof(uint16_t));
}
static void relinkJumpToNop(void* from)
{
relinkJump(from, from);
}
static void relinkCall(void* from, void* to)
{
ASSERT(!(reinterpret_cast<intptr_t>(from) & 1));
setPointer(reinterpret_cast<uint16_t*>(from) - 1, to, true);
}
static void* readCallTarget(void* from)
{
return readPointer(reinterpret_cast<uint16_t*>(from) - 1);
}
static void repatchInt32(void* where, int32_t value)
{
ASSERT(!(reinterpret_cast<intptr_t>(where) & 1));
setInt32(where, value, true);
}
static void repatchCompact(void* where, int32_t offset)
{
ASSERT(offset >= -255 && offset <= 255);
bool add = true;
if (offset < 0) {
add = false;
offset = -offset;
}
offset |= (add << 9);
offset |= (1 << 10);
offset |= (1 << 11);
uint16_t* location = reinterpret_cast<uint16_t*>(where);
uint16_t instruction = location[1] & ~((1 << 12) - 1);
instruction |= offset;
performJITMemcpy(location + 1, &instruction, sizeof(uint16_t));
cacheFlush(location, sizeof(uint16_t) * 2);
}
static void repatchPointer(void* where, void* value)
{
ASSERT(!(reinterpret_cast<intptr_t>(where) & 1));
setPointer(where, value, true);
}
static void* readPointer(void* where)
{
return reinterpret_cast<void*>(readInt32(where));
}
2018-01-03 05:16:05 +00:00
2017-08-12 16:48:01 +00:00
static void replaceWithJump(void* instructionStart, void* to)
{
ASSERT(!(bitwise_cast<uintptr_t>(instructionStart) & 1));
ASSERT(!(bitwise_cast<uintptr_t>(to) & 1));
#if OS(LINUX)
if (canBeJumpT4(reinterpret_cast<uint16_t*>(instructionStart), to)) {
uint16_t* ptr = reinterpret_cast<uint16_t*>(instructionStart) + 2;
linkJumpT4(ptr, ptr, to);
cacheFlush(ptr - 2, sizeof(uint16_t) * 2);
} else {
uint16_t* ptr = reinterpret_cast<uint16_t*>(instructionStart) + 5;
linkBX(ptr, ptr, to);
cacheFlush(ptr - 5, sizeof(uint16_t) * 5);
}
#else
uint16_t* ptr = reinterpret_cast<uint16_t*>(instructionStart) + 2;
linkJumpT4(ptr, ptr, to);
cacheFlush(ptr - 2, sizeof(uint16_t) * 2);
#endif
}
static ptrdiff_t maxJumpReplacementSize()
{
#if OS(LINUX)
return 10;
#else
return 4;
#endif
}
static constexpr ptrdiff_t patchableJumpSize()
{
return 10;
}
static void replaceWithLoad(void* instructionStart)
{
ASSERT(!(bitwise_cast<uintptr_t>(instructionStart) & 1));
uint16_t* ptr = reinterpret_cast<uint16_t*>(instructionStart);
switch (ptr[0] & 0xFFF0) {
case OP_LDR_imm_T3:
break;
case OP_ADD_imm_T3: {
ASSERT(!(ptr[1] & 0xF000));
uint16_t instructions[2];
instructions[0] = ptr[0] & 0x000F;
instructions[0] |= OP_LDR_imm_T3;
instructions[1] = ptr[1] | (ptr[1] & 0x0F00) << 4;
instructions[1] &= 0xF0FF;
performJITMemcpy(ptr, instructions, sizeof(uint16_t) * 2);
cacheFlush(ptr, sizeof(uint16_t) * 2);
break;
}
default:
RELEASE_ASSERT_NOT_REACHED();
}
}
static void replaceWithAddressComputation(void* instructionStart)
{
ASSERT(!(bitwise_cast<uintptr_t>(instructionStart) & 1));
uint16_t* ptr = reinterpret_cast<uint16_t*>(instructionStart);
switch (ptr[0] & 0xFFF0) {
case OP_LDR_imm_T3: {
ASSERT(!(ptr[1] & 0x0F00));
uint16_t instructions[2];
instructions[0] = ptr[0] & 0x000F;
instructions[0] |= OP_ADD_imm_T3;
instructions[1] = ptr[1] | (ptr[1] & 0xF000) >> 4;
instructions[1] &= 0x0FFF;
performJITMemcpy(ptr, instructions, sizeof(uint16_t) * 2);
cacheFlush(ptr, sizeof(uint16_t) * 2);
break;
}
case OP_ADD_imm_T3:
break;
default:
RELEASE_ASSERT_NOT_REACHED();
}
}
unsigned debugOffset() { return m_formatter.debugOffset(); }
#if OS(LINUX)
static inline void linuxPageFlush(uintptr_t begin, uintptr_t end)
{
asm volatile(
"push {r7}\n"
"mov r0, %0\n"
"mov r1, %1\n"
"movw r7, #0x2\n"
"movt r7, #0xf\n"
"movs r2, #0x0\n"
"svc 0x0\n"
"pop {r7}\n"
:
: "r" (begin), "r" (end)
: "r0", "r1", "r2");
}
#endif
static void cacheFlush(void* code, size_t size)
{
#if OS(IOS)
sys_cache_control(kCacheFunctionPrepareForExecution, code, size);
#elif OS(LINUX)
size_t page = pageSize();
uintptr_t current = reinterpret_cast<uintptr_t>(code);
uintptr_t end = current + size;
uintptr_t firstPageEnd = (current & ~(page - 1)) + page;
if (end <= firstPageEnd) {
linuxPageFlush(current, end);
return;
}
linuxPageFlush(current, firstPageEnd);
for (current = firstPageEnd; current + page < end; current += page)
linuxPageFlush(current, current + page);
linuxPageFlush(current, end);
#else
#error "The cacheFlush support is missing on this platform."
#endif
}
private:
// VFP operations commonly take one or more 5-bit operands, typically representing a
// floating point register number. This will commonly be encoded in the instruction
// in two parts, with one single bit field, and one 4-bit field. In the case of
// double precision operands the high bit of the register number will be encoded
// separately, and for single precision operands the high bit of the register number
// will be encoded individually.
// VFPOperand encapsulates a 5-bit VFP operand, with bits 0..3 containing the 4-bit
// field to be encoded together in the instruction (the low 4-bits of a double
// register number, or the high 4-bits of a single register number), and bit 4
// contains the bit value to be encoded individually.
struct VFPOperand {
explicit VFPOperand(uint32_t value)
: m_value(value)
{
ASSERT(!(m_value & ~0x1f));
}
VFPOperand(FPDoubleRegisterID reg)
: m_value(reg)
{
}
VFPOperand(RegisterID reg)
: m_value(reg)
{
}
VFPOperand(FPSingleRegisterID reg)
: m_value(((reg & 1) << 4) | (reg >> 1)) // rotate the lowest bit of 'reg' to the top.
{
}
uint32_t bits1()
{
return m_value >> 4;
}
uint32_t bits4()
{
return m_value & 0xf;
}
uint32_t m_value;
};
VFPOperand vcvtOp(bool toInteger, bool isUnsigned, bool isRoundZero)
{
// Cannot specify rounding when converting to float.
ASSERT(toInteger || !isRoundZero);
uint32_t op = 0x8;
if (toInteger) {
// opc2 indicates both toInteger & isUnsigned.
op |= isUnsigned ? 0x4 : 0x5;
// 'op' field in instruction is isRoundZero
if (isRoundZero)
op |= 0x10;
} else {
ASSERT(!isRoundZero);
// 'op' field in instruction is isUnsigned
if (!isUnsigned)
op |= 0x10;
}
return VFPOperand(op);
}
static void setInt32(void* code, uint32_t value, bool flush)
{
uint16_t* location = reinterpret_cast<uint16_t*>(code);
ASSERT(isMOV_imm_T3(location - 4) && isMOVT(location - 2));
ARMThumbImmediate lo16 = ARMThumbImmediate::makeUInt16(static_cast<uint16_t>(value));
ARMThumbImmediate hi16 = ARMThumbImmediate::makeUInt16(static_cast<uint16_t>(value >> 16));
uint16_t instructions[4];
instructions[0] = twoWordOp5i6Imm4Reg4EncodedImmFirst(OP_MOV_imm_T3, lo16);
instructions[1] = twoWordOp5i6Imm4Reg4EncodedImmSecond((location[-3] >> 8) & 0xf, lo16);
instructions[2] = twoWordOp5i6Imm4Reg4EncodedImmFirst(OP_MOVT, hi16);
instructions[3] = twoWordOp5i6Imm4Reg4EncodedImmSecond((location[-1] >> 8) & 0xf, hi16);
performJITMemcpy(location - 4, instructions, 4 * sizeof(uint16_t));
if (flush)
cacheFlush(location - 4, 4 * sizeof(uint16_t));
}
static int32_t readInt32(void* code)
{
uint16_t* location = reinterpret_cast<uint16_t*>(code);
ASSERT(isMOV_imm_T3(location - 4) && isMOVT(location - 2));
ARMThumbImmediate lo16;
ARMThumbImmediate hi16;
decodeTwoWordOp5i6Imm4Reg4EncodedImmFirst(lo16, location[-4]);
decodeTwoWordOp5i6Imm4Reg4EncodedImmSecond(lo16, location[-3]);
decodeTwoWordOp5i6Imm4Reg4EncodedImmFirst(hi16, location[-2]);
decodeTwoWordOp5i6Imm4Reg4EncodedImmSecond(hi16, location[-1]);
uint32_t result = hi16.asUInt16();
result <<= 16;
result |= lo16.asUInt16();
return static_cast<int32_t>(result);
}
static void setUInt7ForLoad(void* code, ARMThumbImmediate imm)
{
// Requires us to have planted a LDR_imm_T1
ASSERT(imm.isValid());
ASSERT(imm.isUInt7());
uint16_t* location = reinterpret_cast<uint16_t*>(code);
uint16_t instruction;
instruction = location[0] & ~((static_cast<uint16_t>(0x7f) >> 2) << 6);
instruction |= (imm.getUInt7() >> 2) << 6;
performJITMemcpy(location, &instruction, sizeof(uint16_t));
cacheFlush(location, sizeof(uint16_t));
}
static void setPointer(void* code, void* value, bool flush)
{
setInt32(code, reinterpret_cast<uint32_t>(value), flush);
}
static bool isB(const void* address)
{
const uint16_t* instruction = static_cast<const uint16_t*>(address);
return ((instruction[0] & 0xf800) == OP_B_T4a) && ((instruction[1] & 0xd000) == OP_B_T4b);
}
static bool isBX(const void* address)
{
const uint16_t* instruction = static_cast<const uint16_t*>(address);
return (instruction[0] & 0xff87) == OP_BX;
}
static bool isMOV_imm_T3(const void* address)
{
const uint16_t* instruction = static_cast<const uint16_t*>(address);
return ((instruction[0] & 0xFBF0) == OP_MOV_imm_T3) && ((instruction[1] & 0x8000) == 0);
}
static bool isMOVT(const void* address)
{
const uint16_t* instruction = static_cast<const uint16_t*>(address);
return ((instruction[0] & 0xFBF0) == OP_MOVT) && ((instruction[1] & 0x8000) == 0);
}
static bool isNOP_T1(const void* address)
{
const uint16_t* instruction = static_cast<const uint16_t*>(address);
return instruction[0] == OP_NOP_T1;
}
static bool isNOP_T2(const void* address)
{
const uint16_t* instruction = static_cast<const uint16_t*>(address);
return (instruction[0] == OP_NOP_T2a) && (instruction[1] == OP_NOP_T2b);
}
static bool canBeJumpT1(const uint16_t* instruction, const void* target)
{
ASSERT(!(reinterpret_cast<intptr_t>(instruction) & 1));
ASSERT(!(reinterpret_cast<intptr_t>(target) & 1));
intptr_t relative = reinterpret_cast<intptr_t>(target) - (reinterpret_cast<intptr_t>(instruction));
// It does not appear to be documented in the ARM ARM (big surprise), but
// for OP_B_T1 the branch displacement encoded in the instruction is 2
// less than the actual displacement.
relative -= 2;
return ((relative << 23) >> 23) == relative;
}
static bool canBeJumpT2(const uint16_t* instruction, const void* target)
{
ASSERT(!(reinterpret_cast<intptr_t>(instruction) & 1));
ASSERT(!(reinterpret_cast<intptr_t>(target) & 1));
intptr_t relative = reinterpret_cast<intptr_t>(target) - (reinterpret_cast<intptr_t>(instruction));
// It does not appear to be documented in the ARM ARM (big surprise), but
// for OP_B_T2 the branch displacement encoded in the instruction is 2
// less than the actual displacement.
relative -= 2;
return ((relative << 20) >> 20) == relative;
}
static bool canBeJumpT3(const uint16_t* instruction, const void* target)
{
ASSERT(!(reinterpret_cast<intptr_t>(instruction) & 1));
ASSERT(!(reinterpret_cast<intptr_t>(target) & 1));
intptr_t relative = reinterpret_cast<intptr_t>(target) - (reinterpret_cast<intptr_t>(instruction));
return ((relative << 11) >> 11) == relative;
}
static bool canBeJumpT4(const uint16_t* instruction, const void* target)
{
ASSERT(!(reinterpret_cast<intptr_t>(instruction) & 1));
ASSERT(!(reinterpret_cast<intptr_t>(target) & 1));
intptr_t relative = reinterpret_cast<intptr_t>(target) - (reinterpret_cast<intptr_t>(instruction));
return ((relative << 7) >> 7) == relative;
}
static void linkJumpT1(Condition cond, uint16_t* writeTarget, const uint16_t* instruction, void* target)
{
// FIMXE: this should be up in the MacroAssembler layer. :-(
ASSERT(!(reinterpret_cast<intptr_t>(instruction) & 1));
ASSERT(!(reinterpret_cast<intptr_t>(target) & 1));
ASSERT(canBeJumpT1(instruction, target));
intptr_t relative = reinterpret_cast<intptr_t>(target) - (reinterpret_cast<intptr_t>(instruction));
// It does not appear to be documented in the ARM ARM (big surprise), but
// for OP_B_T1 the branch displacement encoded in the instruction is 2
// less than the actual displacement.
relative -= 2;
// All branch offsets should be an even distance.
ASSERT(!(relative & 1));
uint16_t newInstruction = OP_B_T1 | ((cond & 0xf) << 8) | ((relative & 0x1fe) >> 1);
performJITMemcpy(writeTarget - 1, &newInstruction, sizeof(uint16_t));
}
static void linkJumpT2(uint16_t* writeTarget, const uint16_t* instruction, void* target)
{
// FIMXE: this should be up in the MacroAssembler layer. :-(
ASSERT(!(reinterpret_cast<intptr_t>(instruction) & 1));
ASSERT(!(reinterpret_cast<intptr_t>(target) & 1));
ASSERT(canBeJumpT2(instruction, target));
intptr_t relative = reinterpret_cast<intptr_t>(target) - (reinterpret_cast<intptr_t>(instruction));
// It does not appear to be documented in the ARM ARM (big surprise), but
// for OP_B_T2 the branch displacement encoded in the instruction is 2
// less than the actual displacement.
relative -= 2;
// All branch offsets should be an even distance.
ASSERT(!(relative & 1));
uint16_t newInstruction = OP_B_T2 | ((relative & 0xffe) >> 1);
performJITMemcpy(writeTarget - 1, &newInstruction, sizeof(uint16_t));
}
static void linkJumpT3(Condition cond, uint16_t* writeTarget, const uint16_t* instruction, void* target)
{
// FIMXE: this should be up in the MacroAssembler layer. :-(
ASSERT(!(reinterpret_cast<intptr_t>(instruction) & 1));
ASSERT(!(reinterpret_cast<intptr_t>(target) & 1));
ASSERT(canBeJumpT3(instruction, target));
intptr_t relative = reinterpret_cast<intptr_t>(target) - (reinterpret_cast<intptr_t>(instruction));
// All branch offsets should be an even distance.
ASSERT(!(relative & 1));
uint16_t instructions[2];
instructions[0] = OP_B_T3a | ((relative & 0x100000) >> 10) | ((cond & 0xf) << 6) | ((relative & 0x3f000) >> 12);
instructions[1] = OP_B_T3b | ((relative & 0x80000) >> 8) | ((relative & 0x40000) >> 5) | ((relative & 0xffe) >> 1);
performJITMemcpy(writeTarget - 2, instructions, 2 * sizeof(uint16_t));
}
static void linkJumpT4(uint16_t* writeTarget, const uint16_t* instruction, void* target)
{
// FIMXE: this should be up in the MacroAssembler layer. :-(
ASSERT(!(reinterpret_cast<intptr_t>(instruction) & 1));
ASSERT(!(reinterpret_cast<intptr_t>(target) & 1));
ASSERT(canBeJumpT4(instruction, target));
intptr_t relative = reinterpret_cast<intptr_t>(target) - (reinterpret_cast<intptr_t>(instruction));
// ARM encoding for the top two bits below the sign bit is 'peculiar'.
if (relative >= 0)
relative ^= 0xC00000;
// All branch offsets should be an even distance.
ASSERT(!(relative & 1));
uint16_t instructions[2];
instructions[0] = OP_B_T4a | ((relative & 0x1000000) >> 14) | ((relative & 0x3ff000) >> 12);
instructions[1] = OP_B_T4b | ((relative & 0x800000) >> 10) | ((relative & 0x400000) >> 11) | ((relative & 0xffe) >> 1);
performJITMemcpy(writeTarget - 2, instructions, 2 * sizeof(uint16_t));
}
static void linkConditionalJumpT4(Condition cond, uint16_t* writeTarget, const uint16_t* instruction, void* target)
{
// FIMXE: this should be up in the MacroAssembler layer. :-(
ASSERT(!(reinterpret_cast<intptr_t>(instruction) & 1));
ASSERT(!(reinterpret_cast<intptr_t>(target) & 1));
uint16_t newInstruction = ifThenElse(cond) | OP_IT;
performJITMemcpy(writeTarget - 3, &newInstruction, sizeof(uint16_t));
linkJumpT4(writeTarget, instruction, target);
}
static void linkBX(uint16_t* writeTarget, const uint16_t* instruction, void* target)
{
// FIMXE: this should be up in the MacroAssembler layer. :-(
ASSERT_UNUSED(instruction, !(reinterpret_cast<intptr_t>(instruction) & 1));
ASSERT(!(reinterpret_cast<intptr_t>(writeTarget) & 1));
ASSERT(!(reinterpret_cast<intptr_t>(target) & 1));
const uint16_t JUMP_TEMPORARY_REGISTER = ARMRegisters::ip;
ARMThumbImmediate lo16 = ARMThumbImmediate::makeUInt16(static_cast<uint16_t>(reinterpret_cast<uint32_t>(target) + 1));
ARMThumbImmediate hi16 = ARMThumbImmediate::makeUInt16(static_cast<uint16_t>(reinterpret_cast<uint32_t>(target) >> 16));
uint16_t instructions[5];
instructions[0] = twoWordOp5i6Imm4Reg4EncodedImmFirst(OP_MOV_imm_T3, lo16);
instructions[1] = twoWordOp5i6Imm4Reg4EncodedImmSecond(JUMP_TEMPORARY_REGISTER, lo16);
instructions[2] = twoWordOp5i6Imm4Reg4EncodedImmFirst(OP_MOVT, hi16);
instructions[3] = twoWordOp5i6Imm4Reg4EncodedImmSecond(JUMP_TEMPORARY_REGISTER, hi16);
instructions[4] = OP_BX | (JUMP_TEMPORARY_REGISTER << 3);
performJITMemcpy(writeTarget - 5, instructions, 5 * sizeof(uint16_t));
}
static void linkConditionalBX(Condition cond, uint16_t* writeTarget, const uint16_t* instruction, void* target)
{
// FIMXE: this should be up in the MacroAssembler layer. :-(
ASSERT(!(reinterpret_cast<intptr_t>(instruction) & 1));
ASSERT(!(reinterpret_cast<intptr_t>(target) & 1));
linkBX(writeTarget, instruction, target);
uint16_t newInstruction = ifThenElse(cond, true, true) | OP_IT;
performJITMemcpy(writeTarget - 6, &newInstruction, sizeof(uint16_t));
}
static void linkJumpAbsolute(uint16_t* writeTarget, const uint16_t* instruction, void* target)
{
// FIMXE: this should be up in the MacroAssembler layer. :-(
ASSERT(!(reinterpret_cast<intptr_t>(instruction) & 1));
ASSERT(!(reinterpret_cast<intptr_t>(target) & 1));
ASSERT((isMOV_imm_T3(instruction - 5) && isMOVT(instruction - 3) && isBX(instruction - 1))
|| (isNOP_T1(instruction - 5) && isNOP_T2(instruction - 4) && isB(instruction - 2)));
if (canBeJumpT4(instruction, target)) {
// There may be a better way to fix this, but right now put the NOPs first, since in the
// case of an conditional branch this will be coming after an ITTT predicating *three*
// instructions! Looking backwards to modify the ITTT to an IT is not easy, due to
// variable wdith encoding - the previous instruction might *look* like an ITTT but
// actually be the second half of a 2-word op.
uint16_t instructions[3];
instructions[0] = OP_NOP_T1;
instructions[1] = OP_NOP_T2a;
instructions[2] = OP_NOP_T2b;
performJITMemcpy(writeTarget - 5, instructions, 3 * sizeof(uint16_t));
linkJumpT4(writeTarget, instruction, target);
} else {
const uint16_t JUMP_TEMPORARY_REGISTER = ARMRegisters::ip;
ARMThumbImmediate lo16 = ARMThumbImmediate::makeUInt16(static_cast<uint16_t>(reinterpret_cast<uint32_t>(target) + 1));
ARMThumbImmediate hi16 = ARMThumbImmediate::makeUInt16(static_cast<uint16_t>(reinterpret_cast<uint32_t>(target) >> 16));
uint16_t instructions[5];
instructions[0] = twoWordOp5i6Imm4Reg4EncodedImmFirst(OP_MOV_imm_T3, lo16);
instructions[1] = twoWordOp5i6Imm4Reg4EncodedImmSecond(JUMP_TEMPORARY_REGISTER, lo16);
instructions[2] = twoWordOp5i6Imm4Reg4EncodedImmFirst(OP_MOVT, hi16);
instructions[3] = twoWordOp5i6Imm4Reg4EncodedImmSecond(JUMP_TEMPORARY_REGISTER, hi16);
instructions[4] = OP_BX | (JUMP_TEMPORARY_REGISTER << 3);
performJITMemcpy(writeTarget - 5, instructions, 5 * sizeof(uint16_t));
}
}
static uint16_t twoWordOp5i6Imm4Reg4EncodedImmFirst(uint16_t op, ARMThumbImmediate imm)
{
return op | (imm.m_value.i << 10) | imm.m_value.imm4;
}
static void decodeTwoWordOp5i6Imm4Reg4EncodedImmFirst(ARMThumbImmediate& result, uint16_t value)
{
result.m_value.i = (value >> 10) & 1;
result.m_value.imm4 = value & 15;
}
static uint16_t twoWordOp5i6Imm4Reg4EncodedImmSecond(uint16_t rd, ARMThumbImmediate imm)
{
return (imm.m_value.imm3 << 12) | (rd << 8) | imm.m_value.imm8;
}
static void decodeTwoWordOp5i6Imm4Reg4EncodedImmSecond(ARMThumbImmediate& result, uint16_t value)
{
result.m_value.imm3 = (value >> 12) & 7;
result.m_value.imm8 = value & 255;
}
class ARMInstructionFormatter {
public:
ALWAYS_INLINE void oneWordOp5Reg3Imm8(OpcodeID op, RegisterID rd, uint8_t imm)
{
m_buffer.putShort(op | (rd << 8) | imm);
}
ALWAYS_INLINE void oneWordOp5Imm5Reg3Reg3(OpcodeID op, uint8_t imm, RegisterID reg1, RegisterID reg2)
{
m_buffer.putShort(op | (imm << 6) | (reg1 << 3) | reg2);
}
ALWAYS_INLINE void oneWordOp7Reg3Reg3Reg3(OpcodeID op, RegisterID reg1, RegisterID reg2, RegisterID reg3)
{
m_buffer.putShort(op | (reg1 << 6) | (reg2 << 3) | reg3);
}
ALWAYS_INLINE void oneWordOp7Imm9(OpcodeID op, uint16_t imm)
{
m_buffer.putShort(op | imm);
}
ALWAYS_INLINE void oneWordOp8Imm8(OpcodeID op, uint8_t imm)
{
m_buffer.putShort(op | imm);
}
ALWAYS_INLINE void oneWordOp8RegReg143(OpcodeID op, RegisterID reg1, RegisterID reg2)
{
m_buffer.putShort(op | ((reg2 & 8) << 4) | (reg1 << 3) | (reg2 & 7));
}
ALWAYS_INLINE void oneWordOp9Imm7(OpcodeID op, uint8_t imm)
{
m_buffer.putShort(op | imm);
}
ALWAYS_INLINE void oneWordOp10Reg3Reg3(OpcodeID op, RegisterID reg1, RegisterID reg2)
{
m_buffer.putShort(op | (reg1 << 3) | reg2);
}
ALWAYS_INLINE void twoWordOp12Reg4FourFours(OpcodeID1 op, RegisterID reg, FourFours ff)
{
m_buffer.putShort(op | reg);
m_buffer.putShort(ff.m_u.value);
}
ALWAYS_INLINE void twoWordOp16FourFours(OpcodeID1 op, FourFours ff)
{
m_buffer.putShort(op);
m_buffer.putShort(ff.m_u.value);
}
ALWAYS_INLINE void twoWordOp16Op16(OpcodeID1 op1, OpcodeID2 op2)
{
m_buffer.putShort(op1);
m_buffer.putShort(op2);
}
ALWAYS_INLINE void twoWordOp16Imm16(OpcodeID1 op1, uint16_t imm)
{
m_buffer.putShort(op1);
m_buffer.putShort(imm);
}
ALWAYS_INLINE void twoWordOp5i6Imm4Reg4EncodedImm(OpcodeID1 op, int imm4, RegisterID rd, ARMThumbImmediate imm)
{
ARMThumbImmediate newImm = imm;
newImm.m_value.imm4 = imm4;
m_buffer.putShort(ARMv7Assembler::twoWordOp5i6Imm4Reg4EncodedImmFirst(op, newImm));
m_buffer.putShort(ARMv7Assembler::twoWordOp5i6Imm4Reg4EncodedImmSecond(rd, newImm));
}
ALWAYS_INLINE void twoWordOp12Reg4Reg4Imm12(OpcodeID1 op, RegisterID reg1, RegisterID reg2, uint16_t imm)
{
m_buffer.putShort(op | reg1);
m_buffer.putShort((reg2 << 12) | imm);
}
ALWAYS_INLINE void twoWordOp12Reg40Imm3Reg4Imm20Imm5(OpcodeID1 op, RegisterID reg1, RegisterID reg2, uint16_t imm1, uint16_t imm2, uint16_t imm3)
{
m_buffer.putShort(op | reg1);
m_buffer.putShort((imm1 << 12) | (reg2 << 8) | (imm2 << 6) | imm3);
}
// Formats up instructions of the pattern:
// 111111111B11aaaa:bbbb222SA2C2cccc
// Where 1s in the pattern come from op1, 2s in the pattern come from op2, S is the provided size bit.
// Operands provide 5 bit values of the form Aaaaa, Bbbbb, Ccccc.
ALWAYS_INLINE void vfpOp(OpcodeID1 op1, OpcodeID2 op2, bool size, VFPOperand a, VFPOperand b, VFPOperand c)
{
ASSERT(!(op1 & 0x004f));
ASSERT(!(op2 & 0xf1af));
m_buffer.putShort(op1 | b.bits1() << 6 | a.bits4());
m_buffer.putShort(op2 | b.bits4() << 12 | size << 8 | a.bits1() << 7 | c.bits1() << 5 | c.bits4());
}
// Arm vfp addresses can be offset by a 9-bit ones-comp immediate, left shifted by 2.
// (i.e. +/-(0..255) 32-bit words)
ALWAYS_INLINE void vfpMemOp(OpcodeID1 op1, OpcodeID2 op2, bool size, RegisterID rn, VFPOperand rd, int32_t imm)
{
bool up = true;
if (imm < 0) {
imm = -imm;
up = false;
}
uint32_t offset = imm;
ASSERT(!(offset & ~0x3fc));
offset >>= 2;
m_buffer.putShort(op1 | (up << 7) | rd.bits1() << 6 | rn);
m_buffer.putShort(op2 | rd.bits4() << 12 | size << 8 | offset);
}
// Administrative methods:
size_t codeSize() const { return m_buffer.codeSize(); }
AssemblerLabel label() const { return m_buffer.label(); }
bool isAligned(int alignment) const { return m_buffer.isAligned(alignment); }
void* data() const { return m_buffer.data(); }
unsigned debugOffset() { return m_buffer.debugOffset(); }
AssemblerBuffer m_buffer;
} m_formatter;
Vector<LinkRecord, 0, UnsafeVectorOverflow> m_jumpsToLink;
int m_indexOfLastWatchpoint;
int m_indexOfTailOfLastWatchpoint;
};
} // namespace JSC
#endif // ENABLE(ASSEMBLER) && CPU(ARM_THUMB2)