/* * Copyright (C) 2015-2019 Apple Inc. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "config.h" #include "AbstractModuleRecord.h" #include "Error.h" #include "JSCInlines.h" #include "JSMap.h" #include "JSModuleEnvironment.h" #include "JSModuleNamespaceObject.h" #include "JSModuleRecord.h" #include "WebAssemblyModuleRecord.h" #include <wtf/Optional.h> namespace JSC { namespace AbstractModuleRecordInternal { static constexpr bool verbose = false; } // namespace AbstractModuleRecordInternal const ClassInfo AbstractModuleRecord::s_info = { "AbstractModuleRecord", &Base::s_info, nullptr, nullptr, CREATE_METHOD_TABLE(AbstractModuleRecord) }; AbstractModuleRecord::AbstractModuleRecord(VM& vm, Structure* structure, const Identifier& moduleKey) : Base(vm, structure) , m_moduleKey(moduleKey) { } void AbstractModuleRecord::finishCreation(JSGlobalObject* globalObject, VM& vm) { Base::finishCreation(vm); ASSERT(inherits(vm, info())); auto scope = DECLARE_THROW_SCOPE(vm); JSMap* map = JSMap::create(globalObject, vm, globalObject->mapStructure()); scope.releaseAssertNoException(); m_dependenciesMap.set(vm, this, map); putDirect(vm, Identifier::fromString(vm, "dependenciesMap"_s), m_dependenciesMap.get()); } void AbstractModuleRecord::visitChildren(JSCell* cell, SlotVisitor& visitor) { AbstractModuleRecord* thisObject = jsCast<AbstractModuleRecord*>(cell); ASSERT_GC_OBJECT_INHERITS(thisObject, info()); Base::visitChildren(thisObject, visitor); visitor.append(thisObject->m_moduleEnvironment); visitor.append(thisObject->m_moduleNamespaceObject); visitor.append(thisObject->m_dependenciesMap); } void AbstractModuleRecord::appendRequestedModule(const Identifier& moduleName) { m_requestedModules.add(moduleName.impl()); } void AbstractModuleRecord::addStarExportEntry(const Identifier& moduleName) { m_starExportEntries.add(moduleName.impl()); } void AbstractModuleRecord::addImportEntry(const ImportEntry& entry) { bool isNewEntry = m_importEntries.add(entry.localName.impl(), entry).isNewEntry; ASSERT_UNUSED(isNewEntry, isNewEntry); // This is guaranteed by the parser. } void AbstractModuleRecord::addExportEntry(const ExportEntry& entry) { bool isNewEntry = m_exportEntries.add(entry.exportName.impl(), entry).isNewEntry; ASSERT_UNUSED(isNewEntry, isNewEntry); // This is guaranteed by the parser. } auto AbstractModuleRecord::tryGetImportEntry(UniquedStringImpl* localName) -> Optional<ImportEntry> { const auto iterator = m_importEntries.find(localName); if (iterator == m_importEntries.end()) return WTF::nullopt; return Optional<ImportEntry>(iterator->value); } auto AbstractModuleRecord::tryGetExportEntry(UniquedStringImpl* exportName) -> Optional<ExportEntry> { const auto iterator = m_exportEntries.find(exportName); if (iterator == m_exportEntries.end()) return WTF::nullopt; return Optional<ExportEntry>(iterator->value); } auto AbstractModuleRecord::ExportEntry::createLocal(const Identifier& exportName, const Identifier& localName) -> ExportEntry { return ExportEntry { Type::Local, exportName, Identifier(), Identifier(), localName }; } auto AbstractModuleRecord::ExportEntry::createIndirect(const Identifier& exportName, const Identifier& importName, const Identifier& moduleName) -> ExportEntry { return ExportEntry { Type::Indirect, exportName, moduleName, importName, Identifier() }; } auto AbstractModuleRecord::ExportEntry::createNamespace(const Identifier& exportName, const Identifier& moduleName) -> ExportEntry { return ExportEntry { Type::Namespace, exportName, moduleName, Identifier(), Identifier() }; } auto AbstractModuleRecord::Resolution::notFound() -> Resolution { return Resolution { Type::NotFound, nullptr, Identifier() }; } auto AbstractModuleRecord::Resolution::error() -> Resolution { return Resolution { Type::Error, nullptr, Identifier() }; } auto AbstractModuleRecord::Resolution::ambiguous() -> Resolution { return Resolution { Type::Ambiguous, nullptr, Identifier() }; } AbstractModuleRecord* AbstractModuleRecord::hostResolveImportedModule(JSGlobalObject* globalObject, const Identifier& moduleName) { VM& vm = globalObject->vm(); auto scope = DECLARE_THROW_SCOPE(vm); JSValue moduleNameValue = identifierToJSValue(vm, moduleName); JSValue entry = m_dependenciesMap->JSMap::get(globalObject, moduleNameValue); RETURN_IF_EXCEPTION(scope, nullptr); RELEASE_AND_RETURN(scope, jsCast<AbstractModuleRecord*>(entry.get(globalObject, Identifier::fromString(vm, "module")))); } auto AbstractModuleRecord::resolveImport(JSGlobalObject* globalObject, const Identifier& localName) -> Resolution { VM& vm = globalObject->vm(); auto scope = DECLARE_THROW_SCOPE(vm); Optional<ImportEntry> optionalImportEntry = tryGetImportEntry(localName.impl()); if (!optionalImportEntry) return Resolution::notFound(); const ImportEntry& importEntry = *optionalImportEntry; if (importEntry.type == AbstractModuleRecord::ImportEntryType::Namespace) return Resolution::notFound(); AbstractModuleRecord* importedModule = hostResolveImportedModule(globalObject, importEntry.moduleRequest); RETURN_IF_EXCEPTION(scope, Resolution::error()); return importedModule->resolveExport(globalObject, importEntry.importName); } struct AbstractModuleRecord::ResolveQuery { struct Hash { static unsigned hash(const ResolveQuery&); static bool equal(const ResolveQuery&, const ResolveQuery&); static constexpr bool safeToCompareToEmptyOrDeleted = true; }; using HashTraits = WTF::CustomHashTraits<ResolveQuery>; ResolveQuery(AbstractModuleRecord* moduleRecord, UniquedStringImpl* exportName) : moduleRecord(moduleRecord) , exportName(exportName) { } ResolveQuery(AbstractModuleRecord* moduleRecord, const Identifier& exportName) : ResolveQuery(moduleRecord, exportName.impl()) { } enum EmptyValueTag { EmptyValue }; ResolveQuery(EmptyValueTag) { } enum DeletedValueTag { DeletedValue }; ResolveQuery(DeletedValueTag) : moduleRecord(nullptr) , exportName(WTF::HashTableDeletedValue) { } bool isEmptyValue() const { return !exportName; } bool isDeletedValue() const { return exportName.isHashTableDeletedValue(); } void dump(PrintStream& out) const { if (!moduleRecord) { out.print("<empty>"); return; } out.print(moduleRecord->moduleKey(), " \"", exportName.get(), "\""); } // The module record is not marked from the GC. But these records are reachable from the JSGlobalObject. // So we don't care the reachability to this record. AbstractModuleRecord* moduleRecord; RefPtr<UniquedStringImpl> exportName; }; inline unsigned AbstractModuleRecord::ResolveQuery::Hash::hash(const ResolveQuery& query) { return WTF::PtrHash<AbstractModuleRecord*>::hash(query.moduleRecord) + IdentifierRepHash::hash(query.exportName); } inline bool AbstractModuleRecord::ResolveQuery::Hash::equal(const ResolveQuery& lhs, const ResolveQuery& rhs) { return lhs.moduleRecord == rhs.moduleRecord && lhs.exportName == rhs.exportName; } auto AbstractModuleRecord::tryGetCachedResolution(UniquedStringImpl* exportName) -> Optional<Resolution> { const auto iterator = m_resolutionCache.find(exportName); if (iterator == m_resolutionCache.end()) return WTF::nullopt; return Optional<Resolution>(iterator->value); } void AbstractModuleRecord::cacheResolution(UniquedStringImpl* exportName, const Resolution& resolution) { m_resolutionCache.add(exportName, resolution); } auto AbstractModuleRecord::resolveExportImpl(JSGlobalObject* globalObject, const ResolveQuery& root) -> Resolution { VM& vm = globalObject->vm(); auto scope = DECLARE_THROW_SCOPE(vm); if (AbstractModuleRecordInternal::verbose) dataLog("Resolving ", root, "\n"); // https://tc39.github.io/ecma262/#sec-resolveexport // How to avoid C++ recursion in this function: // This function avoids C++ recursion of the naive ResolveExport implementation. // Flatten the recursion to the loop with the task queue and frames. // // 1. pendingTasks // We enqueue the recursive resolveExport call to this queue to avoid recursive calls in C++. // The task has 3 types. (1) Query, (2) IndirectFallback and (3) GatherStars. // (1) Query // Querying the resolution to the current module. // (2) IndirectFallback // Examine the result of the indirect export resolution. Only when the indirect export resolution fails, // we look into the star exports. (step 5-a-vi). // (3) GatherStars // Examine the result of the star export resolutions. // // 2. frames // When the spec calls the resolveExport recursively, instead we append the frame // (that holds the result resolution) to the frames and enqueue the task to the pendingTasks. // The entry in the frames means the *local* resolution result of the specific recursive resolveExport. // // We should maintain the local resolution result instead of holding the global resolution result only. // For example, // // star // (1) ---> (2) "Resolve" // | // | // +-> (3) "NotFound" // | // | star // +-> (4) ---> (5) "Resolve" [here] // | // | // +-> (6) "Error" // // Consider the above graph. The numbers represents the modules. Now we are [here]. // If we only hold the global resolution result during the resolveExport operation, [here], // we decide the entire result of resolveExport is "Ambiguous", because there are multiple // "Resolve" (in module (2) and (5)). However, this should become "Error" because (6) will // propagate "Error" state to the (4), (4) will become "Error" and then, (1) will become // "Error". We should aggregate the results at the star exports point ((4) and (1)). // // Usually, both "Error" and "Ambiguous" states will throw the syntax error. So except for the content of the // error message, there are no difference. (And if we fix the (6) that raises "Error", next, it will produce // the "Ambiguous" error due to (5). Anyway, user need to fix the both. So which error should be raised at first // doesn't matter so much. // // However, this may become the problem under the module namespace creation. // http://www.ecma-international.org/ecma-262/6.0/#sec-getmodulenamespace // section 15.2.1.18, step 3-d-ii // Here, we distinguish "Ambiguous" and "Error". When "Error" state is produced, we need to throw the propagated error. // But if "Ambiguous" state comes, we just ignore the result. // To follow the requirement strictly, in this implementation, we keep the local resolution result to produce the // correct result under the above complex cases. // Caching strategy: // The resolveExport operation is frequently called. So caching results is important. // We observe the following aspects and based on them construct the caching strategy. // Here, we attempt to cache the resolution by constructing the map in module records. // That means Module -> ExportName -> Maybe<Resolution>. // Technically, all the AbstractModuleRecords have the Map<ExportName, Resolution> for caching. // // The important observations are that, // // - *cacheable* means that traversing to this node from a path will produce the same results as starting from this node. // // Here, we define the resovling route. We represent [?] as the module that has the local binding. // And (?) as the module without the local binding. // // @ -> (A) -> (B) -> [C] // // We list the resolving route for each node. // // (A): (A) -> (B) -> [C] // (B): (B) -> [C] // [C]: [C] // // In this case, if we start the tracing from (B), the resolving route becomes (B) -> [C]. // So this is the same. At that time, we can say (B) is cacheable in the first tracing. // // - The cache ability of a node depends on the resolving route from this node. // // 1. The starting point is always cacheable. // // 2. A module that has resolved a local binding is always cacheable. // // @ -> (A) -> [B] // // In the above case, we can see the [B] as cacheable. // This is because when starting from [B] node, we immediately resolve with the local binding. // So the resolving route from [B] does not depend on the starting point. // // 3. If we don't follow any star links during the resolution, we can see all the traced nodes are cacheable. // // If there are non star links, it means that there is *no branch* in the module dependency graph. // This *no branch* feature makes all the modules cachable. // // I.e, if we traverse one star link (even if we successfully resolve that star link), // we must still traverse all other star links. I would also explain we don't run into // this when resolving a local/indirect link. When resolving a local/indirect link, // we won't traverse any star links. // And since the module can hold only one local/indirect link for the specific export name (if there // are multiple local/indirect links that has the same export name, it should be syntax error in the // parsing phase.), there is no multiple outgoing links from a module. // // @ -> (A) --> (B) -> [C] -> (D) -> (E) -+ // ^ | // | | // +------------------------+ // // When starting from @, [C] will be found as the module resolving the given binding. // In this case, (B) can cache this resolution. Since the resolving route is the same to the one when // starting from (B). After caching the above result, we attempt to resolve the same binding from (D). // // @ // | // v // @ -> (A) --> (B) -> [C] -> (D) -> (E) -+ // ^ | // | | // +------------------------+ // // In this case, we can use the (B)'s cached result. And (E) can be cached. // // (E): The resolving route is now (E) -> (B) -> [C]. That is the same when starting from (E). // // No branching makes that the problematic *once-visited* node cannot be seen. // The *once-visited* node makes the resolving route changed since when we see the *once-visited* node, // we stop tracing this. // // If there is no star links and if we look *once-visited* node under no branching graph, *once-visited* // node cannot resolve the requested binding. If the *once-visited* node can resolve the binding, we // should have already finished the resolution before reaching this *once-visited* node. // // 4. Once we follow star links, we should not retrieve the result from the cache and should not cache. // // Star links are only the way to introduce branch. // Once we follow the star links during the resolution, we cannot cache naively. // This is because the cacheability depends on the resolving route. And branching produces the problematic *once-visited* // nodes. Since we don't follow the *once-visited* node, the resolving route from the node becomes different from // the resolving route when starting from this node. // // The following example explains when we should not retrieve the cache and cache the result. // // +----> (D) ------+ // | | // | v // (A) *----+----> (B) ---> [C] // ^ // | // @ // // When starting from (B), we find [C]. In this resolving route, we don't find any star link. // And by definition, (B) and [C] are cachable. (B) is the starting point. And [C] has the local binding. // // +----> (D) ------+ // | | // | v // @-> (A) *----+----> (B) ---> [C] // // But when starting from (A), we should not get the value from the cache. Because, // // 1. When looking (D), we reach [C] and make both resolved. // 2. When looking (B), if we retrieved the last cache from (B), (B) becomes resolved. // 3. But actually, (B) is not-found in this trial because (C) is already *once-visited*. // 4. If we accidentally make (B) resolved, (A) becomes ambiguous. But the correct answer is resolved. // // Why is this problem caused? This is because the *once-visited* node makes the result not-found. // In the second trial, (B) -> [C] result is changed from resolved to not-found. // // When does this become a problem? If the status of the *once-visited* node group is resolved, // changing the result to not-found makes the result changed. // // This problem does not happen when we don't see any star link yet. Now, consider the minimum case. // // @-> (A) -> [ some graph ] // ^ | // | | // +------------+ // // In (A), we don't see any star link yet. So we can say that all the visited nodes does not have any local // resolution. Because if they had a local/indirect resolution, we should have already finished the tracing. // // And even if the some graph will see the *once-visited* node (in this case, (A)), that does not affect the // result of the resolution. Because even if we follow the link to (A) or not follow the link to (A), the status // of the link is always not-found since (A) does not have any local resolution. // In the above case, we can use the result of the [some graph]. // // 5. Once we see star links, even if we have not yet traversed that star link path, we should disable caching. // // Here is the reason why: // // +-------------+ // | | // v | // (A) -> (B) -> (C) *-> [E] // * ^ // | | // v @ // [D] // // In the above case, (C) will be resolved with [D]. // (C) will see (A) and (A) gives up in (A) -> (B) -> (C) route. So, (A) will fallback to [D]. // // +-------------+ // | | // v | // @-> (A) -> (B) -> (C) *-> [E] // * // | // v // [D] // // But in this case, (A) will be resolved with [E] (not [D]). // (C) will attempt to follow the link to (A), but it fails. // So (C) will fallback to the star link and found [E]. In this senario, // (C) is now resolved with [E]'s result. // // The cause of this problem is also the same to 4. // In the latter case, when looking (C), we cannot use the cached result in (C). // Because the cached result of (C) depends on the *once-visited* node (A) and // (A) has the fallback system with the star link. // In the latter trial, we now assume that (A)'s status is not-found. // But, actually, in the former trial, (A)'s status becomes resolved due to the fallback to the [D]. // // To summarize the observations. // // 1. The starting point is always cacheable. // 2. A module that has resolved a local binding is always cacheable. // 3. If we don't follow any star links during the resolution, we can see all the traced nodes are cacheable. // 4. Once we follow star links, we should not retrieve the result from the cache and should not cache the result. // 5. Once we see star links, even if we have not yet traversed that star link path, we should disable caching. using ResolveSet = WTF::HashSet<ResolveQuery, ResolveQuery::Hash, ResolveQuery::HashTraits>; enum class Type { Query, IndirectFallback, GatherStars }; struct Task { ResolveQuery query; Type type; }; auto typeString = [] (Type type) -> const char* { switch (type) { case Type::Query: return "Query"; case Type::IndirectFallback: return "IndirectFallback"; case Type::GatherStars: return "GatherStars"; } RELEASE_ASSERT_NOT_REACHED(); return nullptr; }; Vector<Task, 8> pendingTasks; ResolveSet resolveSet; Vector<Resolution, 8> frames; bool foundStarLinks = false; frames.append(Resolution::notFound()); // Call when the query is not resolved in the current module. // It will enqueue the star resolution requests. Return "false" if the error occurs. auto resolveNonLocal = [&](const ResolveQuery& query) -> bool { // https://tc39.github.io/ecma262/#sec-resolveexport // section 15.2.1.16.3, step 6 // If the "default" name is not resolved in the current module, we need to throw an error and stop resolution immediately, // Rationale to this error: A default export cannot be provided by an export *. VM& vm = globalObject->vm(); auto scope = DECLARE_THROW_SCOPE(vm); if (query.exportName == vm.propertyNames->defaultKeyword.impl()) return false; // Enqueue the task to gather the results of the stars. // And append the new Resolution frame to gather the local result of the stars. pendingTasks.append(Task { query, Type::GatherStars }); foundStarLinks = true; frames.append(Resolution::notFound()); // Enqueue the tasks in reverse order. for (auto iterator = query.moduleRecord->starExportEntries().rbegin(), end = query.moduleRecord->starExportEntries().rend(); iterator != end; ++iterator) { const RefPtr<UniquedStringImpl>& starModuleName = *iterator; AbstractModuleRecord* importedModuleRecord = query.moduleRecord->hostResolveImportedModule(globalObject, Identifier::fromUid(vm, starModuleName.get())); RETURN_IF_EXCEPTION(scope, false); pendingTasks.append(Task { ResolveQuery(importedModuleRecord, query.exportName.get()), Type::Query }); } return true; }; // Return the current resolution value of the top frame. auto currentTop = [&] () -> Resolution& { ASSERT(!frames.isEmpty()); return frames.last(); }; // Merge the given resolution to the current resolution value of the top frame. // If there is ambiguity, return "false". When the "false" is returned, we should make the result "ambiguous". auto mergeToCurrentTop = [&] (const Resolution& resolution) -> bool { if (resolution.type == Resolution::Type::NotFound) return true; if (currentTop().type == Resolution::Type::NotFound) { currentTop() = resolution; return true; } if (currentTop().moduleRecord != resolution.moduleRecord || currentTop().localName != resolution.localName) return false; return true; }; auto cacheResolutionForQuery = [] (const ResolveQuery& query, const Resolution& resolution) { ASSERT(resolution.type == Resolution::Type::Resolved); query.moduleRecord->cacheResolution(query.exportName.get(), resolution); }; pendingTasks.append(Task { root, Type::Query }); while (!pendingTasks.isEmpty()) { const Task task = pendingTasks.takeLast(); const ResolveQuery& query = task.query; if (AbstractModuleRecordInternal::verbose) dataLog(" ", typeString(task.type), " ", task.query, "\n"); switch (task.type) { case Type::Query: { AbstractModuleRecord* moduleRecord = query.moduleRecord; if (!resolveSet.add(task.query).isNewEntry) continue; // 5. Once we see star links, even if we have not yet traversed that star link path, we should disable caching. if (!moduleRecord->starExportEntries().isEmpty()) foundStarLinks = true; // 4. Once we follow star links, we should not retrieve the result from the cache and should not cache the result. if (!foundStarLinks) { if (Optional<Resolution> cachedResolution = moduleRecord->tryGetCachedResolution(query.exportName.get())) { if (!mergeToCurrentTop(*cachedResolution)) return Resolution::ambiguous(); continue; } } const Optional<ExportEntry> optionalExportEntry = moduleRecord->tryGetExportEntry(query.exportName.get()); if (!optionalExportEntry) { // If there is no matched exported binding in the current module, // we need to look into the stars. bool success = resolveNonLocal(task.query); EXCEPTION_ASSERT(!scope.exception() || !success); if (!success) return Resolution::error(); continue; } const ExportEntry& exportEntry = *optionalExportEntry; switch (exportEntry.type) { case ExportEntry::Type::Local: { ASSERT(!exportEntry.localName.isNull()); Resolution resolution { Resolution::Type::Resolved, moduleRecord, exportEntry.localName }; // 2. A module that has resolved a local binding is always cacheable. cacheResolutionForQuery(query, resolution); if (!mergeToCurrentTop(resolution)) return Resolution::ambiguous(); continue; } case ExportEntry::Type::Indirect: { AbstractModuleRecord* importedModuleRecord = moduleRecord->hostResolveImportedModule(globalObject, exportEntry.moduleName); RETURN_IF_EXCEPTION(scope, Resolution::error()); // When the imported module does not produce any resolved binding, we need to look into the stars in the *current* // module. To do this, we append the `IndirectFallback` task to the task queue. pendingTasks.append(Task { query, Type::IndirectFallback }); // And append the new Resolution frame to check the indirect export will be resolved or not. frames.append(Resolution::notFound()); pendingTasks.append(Task { ResolveQuery(importedModuleRecord, exportEntry.importName), Type::Query }); continue; } case ExportEntry::Type::Namespace: { AbstractModuleRecord* importedModuleRecord = moduleRecord->hostResolveImportedModule(globalObject, exportEntry.moduleName); RETURN_IF_EXCEPTION(scope, Resolution::error()); Resolution resolution { Resolution::Type::Resolved, importedModuleRecord, vm.propertyNames->starNamespacePrivateName }; // 2. A module that has resolved a module namespace binding is always cacheable. cacheResolutionForQuery(query, resolution); if (!mergeToCurrentTop(resolution)) return Resolution::ambiguous(); continue; } } break; } case Type::IndirectFallback: { Resolution resolution = frames.takeLast(); if (resolution.type == Resolution::Type::NotFound) { // Indirect export entry does not produce any resolved binding. // So we will investigate the stars. bool success = resolveNonLocal(task.query); EXCEPTION_ASSERT(!scope.exception() || !success); if (!success) return Resolution::error(); continue; } ASSERT_WITH_MESSAGE(resolution.type == Resolution::Type::Resolved, "When we see Error and Ambiguous, we immediately return from this loop. So here, only Resolved comes."); // 3. If we don't follow any star links during the resolution, we can see all the traced nodes are cacheable. // 4. Once we follow star links, we should not retrieve the result from the cache and should not cache the result. if (!foundStarLinks) cacheResolutionForQuery(query, resolution); // If indirect export entry produces Resolved, we should merge it to the upper frame. // And do not investigate the stars of the current module. if (!mergeToCurrentTop(resolution)) return Resolution::ambiguous(); break; } case Type::GatherStars: { Resolution resolution = frames.takeLast(); ASSERT_WITH_MESSAGE(resolution.type == Resolution::Type::Resolved || resolution.type == Resolution::Type::NotFound, "When we see Error and Ambiguous, we immediately return from this loop. So here, only Resolved and NotFound comes."); // Merge the star resolution to the upper frame. if (!mergeToCurrentTop(resolution)) return Resolution::ambiguous(); break; } } } ASSERT(frames.size() == 1); // 1. The starting point is always cacheable. if (frames[0].type == Resolution::Type::Resolved) cacheResolutionForQuery(root, frames[0]); return frames[0]; } auto AbstractModuleRecord::resolveExport(JSGlobalObject* globalObject, const Identifier& exportName) -> Resolution { // Look up the cached resolution first before entering the resolving loop, since the loop setup takes some cost. if (Optional<Resolution> cachedResolution = tryGetCachedResolution(exportName.impl())) return *cachedResolution; return resolveExportImpl(globalObject, ResolveQuery(this, exportName.impl())); } static void getExportedNames(JSGlobalObject* globalObject, AbstractModuleRecord* root, IdentifierSet& exportedNames) { VM& vm = globalObject->vm(); auto scope = DECLARE_THROW_SCOPE(vm); HashSet<AbstractModuleRecord*> exportStarSet; Vector<AbstractModuleRecord*, 8> pendingModules; pendingModules.append(root); while (!pendingModules.isEmpty()) { AbstractModuleRecord* moduleRecord = pendingModules.takeLast(); if (exportStarSet.contains(moduleRecord)) continue; exportStarSet.add(moduleRecord); for (const auto& pair : moduleRecord->exportEntries()) { const AbstractModuleRecord::ExportEntry& exportEntry = pair.value; if (moduleRecord == root || vm.propertyNames->defaultKeyword != exportEntry.exportName) exportedNames.add(exportEntry.exportName.impl()); } for (const auto& starModuleName : moduleRecord->starExportEntries()) { AbstractModuleRecord* requestedModuleRecord = moduleRecord->hostResolveImportedModule(globalObject, Identifier::fromUid(vm, starModuleName.get())); RETURN_IF_EXCEPTION(scope, void()); pendingModules.append(requestedModuleRecord); } } } JSModuleNamespaceObject* AbstractModuleRecord::getModuleNamespace(JSGlobalObject* globalObject) { VM& vm = globalObject->vm(); auto scope = DECLARE_THROW_SCOPE(vm); // http://www.ecma-international.org/ecma-262/6.0/#sec-getmodulenamespace if (m_moduleNamespaceObject) return m_moduleNamespaceObject.get(); IdentifierSet exportedNames; getExportedNames(globalObject, this, exportedNames); RETURN_IF_EXCEPTION(scope, nullptr); Vector<std::pair<Identifier, Resolution>> resolutions; for (auto& name : exportedNames) { Identifier ident = Identifier::fromUid(vm, name.get()); const Resolution resolution = resolveExport(globalObject, ident); RETURN_IF_EXCEPTION(scope, nullptr); switch (resolution.type) { case Resolution::Type::NotFound: throwSyntaxError(globalObject, scope, makeString("Exported binding name '", String(name.get()), "' is not found.")); return nullptr; case Resolution::Type::Error: throwSyntaxError(globalObject, scope, makeString("Exported binding name 'default' cannot be resolved by star export entries.")); return nullptr; case Resolution::Type::Ambiguous: break; case Resolution::Type::Resolved: resolutions.append({ WTFMove(ident), resolution }); break; } } auto* moduleNamespaceObject = JSModuleNamespaceObject::create(globalObject, globalObject->moduleNamespaceObjectStructure(), this, WTFMove(resolutions)); RETURN_IF_EXCEPTION(scope, nullptr); // Materialize *namespace* slot with module namespace object unless the module environment is not yet materialized, in which case we'll do it in setModuleEnvironment if (m_moduleEnvironment) { bool putResult = false; constexpr bool shouldThrowReadOnlyError = false; constexpr bool ignoreReadOnlyErrors = true; symbolTablePutTouchWatchpointSet(m_moduleEnvironment.get(), globalObject, vm.propertyNames->starNamespacePrivateName, moduleNamespaceObject, shouldThrowReadOnlyError, ignoreReadOnlyErrors, putResult); RETURN_IF_EXCEPTION(scope, nullptr); } m_moduleNamespaceObject.set(vm, this, moduleNamespaceObject); return moduleNamespaceObject; } void AbstractModuleRecord::setModuleEnvironment(JSGlobalObject* globalObject, JSModuleEnvironment* moduleEnvironment) { VM& vm = globalObject->vm(); auto scope = DECLARE_THROW_SCOPE(vm); ASSERT(!m_moduleEnvironment); // If module namespace object is materialized, we will materialize *namespace* slot too. if (m_moduleNamespaceObject) { bool putResult = false; constexpr bool shouldThrowReadOnlyError = false; constexpr bool ignoreReadOnlyErrors = true; symbolTablePutTouchWatchpointSet(moduleEnvironment, globalObject, vm.propertyNames->starNamespacePrivateName, m_moduleNamespaceObject.get(), shouldThrowReadOnlyError, ignoreReadOnlyErrors, putResult); RETURN_IF_EXCEPTION(scope, void()); } m_moduleEnvironment.set(vm, this, moduleEnvironment); } void AbstractModuleRecord::link(JSGlobalObject* globalObject, JSValue scriptFetcher) { VM& vm = globalObject->vm(); if (auto* jsModuleRecord = jsDynamicCast<JSModuleRecord*>(vm, this)) return jsModuleRecord->link(globalObject, scriptFetcher); #if ENABLE(WEBASSEMBLY) if (auto* wasmModuleRecord = jsDynamicCast<WebAssemblyModuleRecord*>(vm, this)) return wasmModuleRecord->link(globalObject, scriptFetcher, nullptr, Wasm::CreationMode::FromModuleLoader); #endif RELEASE_ASSERT_NOT_REACHED(); } JS_EXPORT_PRIVATE JSValue AbstractModuleRecord::evaluate(JSGlobalObject* globalObject) { VM& vm = globalObject->vm(); if (auto* jsModuleRecord = jsDynamicCast<JSModuleRecord*>(vm, this)) return jsModuleRecord->evaluate(globalObject); #if ENABLE(WEBASSEMBLY) if (auto* wasmModuleRecord = jsDynamicCast<WebAssemblyModuleRecord*>(vm, this)) return wasmModuleRecord->evaluate(globalObject); #endif RELEASE_ASSERT_NOT_REACHED(); return jsUndefined(); } static String printableName(const RefPtr<UniquedStringImpl>& uid) { if (uid->isSymbol()) return uid.get(); return WTF::makeString("'", String(uid.get()), "'"); } static String printableName(const Identifier& ident) { return printableName(ident.impl()); } void AbstractModuleRecord::dump() { dataLog("\nAnalyzing ModuleRecord key(", printableName(m_moduleKey), ")\n"); dataLog(" Dependencies: ", m_requestedModules.size(), " modules\n"); for (const auto& moduleName : m_requestedModules) dataLog(" module(", printableName(moduleName), ")\n"); dataLog(" Import: ", m_importEntries.size(), " entries\n"); for (const auto& pair : m_importEntries) { const ImportEntry& importEntry = pair.value; dataLog(" import(", printableName(importEntry.importName), "), local(", printableName(importEntry.localName), "), module(", printableName(importEntry.moduleRequest), ")\n"); } dataLog(" Export: ", m_exportEntries.size(), " entries\n"); for (const auto& pair : m_exportEntries) { const ExportEntry& exportEntry = pair.value; switch (exportEntry.type) { case ExportEntry::Type::Local: dataLog(" [Local] ", "export(", printableName(exportEntry.exportName), "), local(", printableName(exportEntry.localName), ")\n"); break; case ExportEntry::Type::Indirect: dataLog(" [Indirect] ", "export(", printableName(exportEntry.exportName), "), import(", printableName(exportEntry.importName), "), module(", printableName(exportEntry.moduleName), ")\n"); break; case ExportEntry::Type::Namespace: dataLog(" [Namespace] ", "export(", printableName(exportEntry.exportName), "), module(", printableName(exportEntry.moduleName), ")\n"); break; } } for (const auto& moduleName : m_starExportEntries) dataLog(" [Star] module(", printableName(moduleName.get()), ")\n"); } } // namespace JSC