/* * Copyright (C) 2013-2018 Apple Inc. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #pragma once #if ENABLE(DFG_JIT) #include "DFGAbstractValue.h" #include "DFGGraph.h" #include "DFGNode.h" #include "DFGNodeFlowProjection.h" #include "DFGPhiChildren.h" namespace JSC { namespace DFG { template class AbstractInterpreter { public: AbstractInterpreter(Graph&, AbstractStateType&); ~AbstractInterpreter(); ALWAYS_INLINE AbstractValue& forNode(NodeFlowProjection node) { return m_state.forNode(node); } ALWAYS_INLINE AbstractValue& forNode(Edge edge) { return forNode(edge.node()); } ALWAYS_INLINE void clearForNode(NodeFlowProjection node) { m_state.clearForNode(node); } ALWAYS_INLINE void clearForNode(Edge edge) { clearForNode(edge.node()); } template ALWAYS_INLINE void setForNode(NodeFlowProjection node, Arguments&&... arguments) { m_state.setForNode(node, std::forward(arguments)...); } template ALWAYS_INLINE void setForNode(Edge edge, Arguments&&... arguments) { setForNode(edge.node(), std::forward(arguments)...); } template ALWAYS_INLINE void setTypeForNode(NodeFlowProjection node, Arguments&&... arguments) { m_state.setTypeForNode(node, std::forward(arguments)...); } template ALWAYS_INLINE void setTypeForNode(Edge edge, Arguments&&... arguments) { setTypeForNode(edge.node(), std::forward(arguments)...); } template ALWAYS_INLINE void setNonCellTypeForNode(NodeFlowProjection node, Arguments&&... arguments) { m_state.setNonCellTypeForNode(node, std::forward(arguments)...); } template ALWAYS_INLINE void setNonCellTypeForNode(Edge edge, Arguments&&... arguments) { setNonCellTypeForNode(edge.node(), std::forward(arguments)...); } ALWAYS_INLINE void makeBytecodeTopForNode(NodeFlowProjection node) { m_state.makeBytecodeTopForNode(node); } ALWAYS_INLINE void makeBytecodeTopForNode(Edge edge) { makeBytecodeTopForNode(edge.node()); } ALWAYS_INLINE void makeHeapTopForNode(NodeFlowProjection node) { m_state.makeHeapTopForNode(node); } ALWAYS_INLINE void makeHeapTopForNode(Edge edge) { makeHeapTopForNode(edge.node()); } bool needsTypeCheck(Node* node, SpeculatedType typesPassedThrough) { return !forNode(node).isType(typesPassedThrough); } bool needsTypeCheck(Edge edge, SpeculatedType typesPassedThrough) { return needsTypeCheck(edge.node(), typesPassedThrough); } bool needsTypeCheck(Edge edge) { return needsTypeCheck(edge, typeFilterFor(edge.useKind())); } // Abstractly executes the given node. The new abstract state is stored into an // abstract stack stored in *this. Loads of local variables (that span // basic blocks) interrogate the basic block's notion of the state at the head. // Stores to local variables are handled in endBasicBlock(). This returns true // if execution should continue past this node. Notably, it will return true // for block terminals, so long as those terminals are not Return or Unreachable. // // This is guaranteed to be equivalent to doing: // // state.startExecuting() // state.executeEdges(node); // result = state.executeEffects(index); bool execute(unsigned indexInBlock); bool execute(Node*); // Indicate the start of execution of a node. It resets any state in the node // that is progressively built up by executeEdges() and executeEffects(). void startExecuting(); // Abstractly execute the edges of the given node. This runs filterEdgeByUse() // on all edges of the node. You can skip this step, if you have already used // filterEdgeByUse() (or some equivalent) on each edge. void executeEdges(Node*); void executeKnownEdgeTypes(Node*); ALWAYS_INLINE void filterEdgeByUse(Edge& edge) { UseKind useKind = edge.useKind(); if (useKind == UntypedUse) return; filterByType(edge, typeFilterFor(useKind)); } // Abstractly execute the effects of the given node. This changes the abstract // state assuming that edges have already been filtered. bool executeEffects(unsigned indexInBlock); bool executeEffects(unsigned clobberLimit, Node*); void dump(PrintStream& out) const; void dump(PrintStream& out); template FiltrationResult filter(T node, const RegisteredStructureSet& set, SpeculatedType admittedTypes = SpecNone) { return filter(forNode(node), set, admittedTypes); } template FiltrationResult filterArrayModes(T node, ArrayModes arrayModes) { return filterArrayModes(forNode(node), arrayModes); } template FiltrationResult filter(T node, SpeculatedType type) { return filter(forNode(node), type); } template FiltrationResult filterByValue(T node, FrozenValue value) { return filterByValue(forNode(node), value); } template FiltrationResult filterClassInfo(T node, const ClassInfo* classInfo) { return filterClassInfo(forNode(node), classInfo); } FiltrationResult filter(AbstractValue&, const RegisteredStructureSet&, SpeculatedType admittedTypes = SpecNone); FiltrationResult filterArrayModes(AbstractValue&, ArrayModes); FiltrationResult filter(AbstractValue&, SpeculatedType); FiltrationResult filterByValue(AbstractValue&, FrozenValue); FiltrationResult filterClassInfo(AbstractValue&, const ClassInfo*); PhiChildren* phiChildren() { return m_phiChildren.get(); } void filterICStatus(Node*); private: void clobberWorld(); void didFoldClobberWorld(); bool handleConstantBinaryBitwiseOp(Node*); template void forAllValues(unsigned indexInBlock, Functor&); void clobberStructures(); void didFoldClobberStructures(); void observeTransition(unsigned indexInBlock, RegisteredStructure from, RegisteredStructure to); void observeTransitions(unsigned indexInBlock, const TransitionVector&); enum BooleanResult { UnknownBooleanResult, DefinitelyFalse, DefinitelyTrue }; BooleanResult booleanResult(Node*, AbstractValue&); void setBuiltInConstant(Node* node, FrozenValue value) { AbstractValue& abstractValue = forNode(node); abstractValue.set(m_graph, value, m_state.structureClobberState()); abstractValue.fixTypeForRepresentation(m_graph, node); } void setConstant(Node* node, FrozenValue value) { setBuiltInConstant(node, value); m_state.setFoundConstants(true); } ALWAYS_INLINE void filterByType(Edge& edge, SpeculatedType type); void verifyEdge(Node*, Edge); void verifyEdges(Node*); void executeDoubleUnaryOpEffects(Node*, double(*equivalentFunction)(double)); bool handleConstantDivOp(Node*); CodeBlock* m_codeBlock; Graph& m_graph; VM& m_vm; AbstractStateType& m_state; std::unique_ptr m_phiChildren; }; } } // namespace JSC::DFG #endif // ENABLE(DFG_JIT)