/* * Copyright (C) 2012-2019 Apple Inc. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "config.h" #include "LinkBuffer.h" #if ENABLE(ASSEMBLER) #include "CodeBlock.h" #include "Disassembler.h" #include "JITCode.h" #include "Options.h" #include "WasmCompilationMode.h" #if OS(LINUX) #include "PerfLog.h" #endif namespace JSC { bool shouldDumpDisassemblyFor(CodeBlock* codeBlock) { if (codeBlock && JITCode::isOptimizingJIT(codeBlock->jitType()) && Options::dumpDFGDisassembly()) return true; return Options::dumpDisassembly(); } bool shouldDumpDisassemblyFor(Wasm::CompilationMode mode) { if (Options::asyncDisassembly() || Options::dumpDisassembly() || Options::dumpWasmDisassembly()) return true; switch (mode) { case Wasm::CompilationMode::BBQMode: return Options::dumpBBQDisassembly(); case Wasm::CompilationMode::OMGMode: case Wasm::CompilationMode::OMGForOSREntryMode: return Options::dumpOMGDisassembly(); default: break; } return false; } LinkBuffer::CodeRef LinkBuffer::finalizeCodeWithoutDisassemblyImpl() { performFinalization(); ASSERT(m_didAllocate); if (m_executableMemory) return CodeRef(*m_executableMemory); return CodeRef::createSelfManagedCodeRef(m_code); } LinkBuffer::CodeRef LinkBuffer::finalizeCodeWithDisassemblyImpl(bool dumpDisassembly, const char* format, ...) { CodeRef result = finalizeCodeWithoutDisassemblyImpl(); #if OS(LINUX) if (Options::logJITCodeForPerf()) { StringPrintStream out; va_list argList; va_start(argList, format); va_start(argList, format); out.vprintf(format, argList); va_end(argList); PerfLog::log(out.toCString(), result.code().untaggedExecutableAddress(), result.size()); } #endif if (!dumpDisassembly || m_alreadyDisassembled) return result; StringPrintStream out; out.printf("Generated JIT code for "); va_list argList; va_start(argList, format); out.vprintf(format, argList); va_end(argList); out.printf(":\n"); uint8_t* executableAddress = result.code().untaggedExecutableAddress(); out.printf(" Code at [%p, %p):\n", executableAddress, executableAddress + result.size()); CString header = out.toCString(); if (Options::asyncDisassembly()) { CodeRef codeRefForDisassembly = result.retagged(); disassembleAsynchronously(header, WTFMove(codeRefForDisassembly), m_size, " "); return result; } dataLog(header); disassemble(result.retaggedCode(), m_size, " ", WTF::dataFile()); return result; } #if ENABLE(BRANCH_COMPACTION) class BranchCompactionLinkBuffer; using ThreadSpecificBranchCompactionLinkBuffer = ThreadSpecific; static ThreadSpecificBranchCompactionLinkBuffer* threadSpecificBranchCompactionLinkBufferPtr; static ThreadSpecificBranchCompactionLinkBuffer& threadSpecificBranchCompactionLinkBuffer() { static std::once_flag flag; std::call_once( flag, [] () { threadSpecificBranchCompactionLinkBufferPtr = new ThreadSpecificBranchCompactionLinkBuffer(); }); return *threadSpecificBranchCompactionLinkBufferPtr; } DECLARE_ALLOCATOR_WITH_HEAP_IDENTIFIER(BranchCompactionLinkBuffer); class BranchCompactionLinkBuffer { WTF_MAKE_NONCOPYABLE(BranchCompactionLinkBuffer); public: BranchCompactionLinkBuffer() { } BranchCompactionLinkBuffer(size_t size, uint8_t* userBuffer = nullptr) { if (userBuffer) { m_data = userBuffer; m_size = size; m_bufferProvided = true; return; } auto& threadSpecific = threadSpecificBranchCompactionLinkBuffer(); if (threadSpecific->size() >= size) takeBufferIfLarger(*threadSpecific); else { m_size = size; m_data = static_cast(BranchCompactionLinkBufferMalloc::malloc(size)); } } ~BranchCompactionLinkBuffer() { if (m_bufferProvided) return; auto& threadSpecific = threadSpecificBranchCompactionLinkBuffer(); threadSpecific->takeBufferIfLarger(*this); if (m_data) BranchCompactionLinkBufferMalloc::free(m_data); } uint8_t* data() { return m_data; } private: void takeBufferIfLarger(BranchCompactionLinkBuffer& other) { if (size() >= other.size()) return; if (m_data) BranchCompactionLinkBufferMalloc::free(m_data); m_data = other.m_data; m_size = other.m_size; other.m_data = nullptr; other.m_size = 0; } size_t size() { return m_size; } uint8_t* m_data { nullptr }; size_t m_size { 0 }; bool m_bufferProvided { false }; }; static ALWAYS_INLINE void recordLinkOffsets(AssemblerData& assemblerData, int32_t regionStart, int32_t regionEnd, int32_t offset) { int32_t ptr = regionStart / sizeof(int32_t); const int32_t end = regionEnd / sizeof(int32_t); int32_t* offsets = reinterpret_cast_ptr(assemblerData.buffer()); while (ptr < end) offsets[ptr++] = offset; } // We use this to prevent compile errors on some platforms that are unhappy // about the signature of the system's memcpy. ALWAYS_INLINE void* memcpyWrapper(void* dst, const void* src, size_t bytes) { return memcpy(dst, src, bytes); } template void LinkBuffer::copyCompactAndLinkCode(MacroAssembler& macroAssembler, JITCompilationEffort effort) { allocate(macroAssembler, effort); const size_t initialSize = macroAssembler.m_assembler.codeSize(); if (didFailToAllocate()) return; Vector& jumpsToLink = macroAssembler.jumpsToLink(); m_assemblerStorage = macroAssembler.m_assembler.buffer().releaseAssemblerData(); uint8_t* inData = bitwise_cast(m_assemblerStorage.buffer()); #if CPU(ARM64E) ARM64EHash verifyUncompactedHash { static_cast(bitwise_cast(¯oAssembler.m_assembler.buffer())) }; m_assemblerHashesStorage = macroAssembler.m_assembler.buffer().releaseAssemblerHashes(); uint32_t* inHashes = bitwise_cast(m_assemblerHashesStorage.buffer()); #endif uint8_t* codeOutData = m_code.dataLocation(); BranchCompactionLinkBuffer outBuffer(m_size, useFastJITPermissions() ? codeOutData : 0); uint8_t* outData = outBuffer.data(); #if CPU(ARM64) RELEASE_ASSERT(roundUpToMultipleOf(outData) == outData); RELEASE_ASSERT(roundUpToMultipleOf(codeOutData) == codeOutData); #endif int readPtr = 0; int writePtr = 0; unsigned jumpCount = jumpsToLink.size(); auto read = [&](const InstructionType* ptr) -> InstructionType { InstructionType value = *ptr; #if CPU(ARM64E) uint32_t hash = verifyUncompactedHash.update(value); unsigned index = (bitwise_cast(ptr) - inData) / 4; RELEASE_ASSERT(inHashes[index] == hash); #endif return value; }; if (useFastJITPermissions()) threadSelfRestrictRWXToRW(); if (m_shouldPerformBranchCompaction) { for (unsigned i = 0; i < jumpCount; ++i) { int offset = readPtr - writePtr; ASSERT(!(offset & 1)); // Copy the instructions from the last jump to the current one. size_t regionSize = jumpsToLink[i].from() - readPtr; InstructionType* copySource = reinterpret_cast_ptr(inData + readPtr); InstructionType* copyEnd = reinterpret_cast_ptr(inData + readPtr + regionSize); InstructionType* copyDst = reinterpret_cast_ptr(outData + writePtr); ASSERT(!(regionSize % 2)); ASSERT(!(readPtr % 2)); ASSERT(!(writePtr % 2)); while (copySource != copyEnd) { InstructionType insn = read(copySource++); *copyDst++ = insn; } recordLinkOffsets(m_assemblerStorage, readPtr, jumpsToLink[i].from(), offset); readPtr += regionSize; writePtr += regionSize; // Calculate absolute address of the jump target, in the case of backwards // branches we need to be precise, forward branches we are pessimistic const uint8_t* target; #if CPU(ARM64) const intptr_t to = jumpsToLink[i].to(¯oAssembler.m_assembler); #else const intptr_t to = jumpsToLink[i].to(); #endif if (to >= jumpsToLink[i].from()) target = codeOutData + to - offset; // Compensate for what we have collapsed so far else target = codeOutData + to - executableOffsetFor(to); JumpLinkType jumpLinkType = MacroAssembler::computeJumpType(jumpsToLink[i], codeOutData + writePtr, target); // Compact branch if we can... if (MacroAssembler::canCompact(jumpsToLink[i].type())) { // Step back in the write stream int32_t delta = MacroAssembler::jumpSizeDelta(jumpsToLink[i].type(), jumpLinkType); if (delta) { writePtr -= delta; recordLinkOffsets(m_assemblerStorage, jumpsToLink[i].from() - delta, readPtr, readPtr - writePtr); } } #if CPU(ARM64) jumpsToLink[i].setFrom(¯oAssembler.m_assembler, writePtr); #else jumpsToLink[i].setFrom(writePtr); #endif } } else { if (ASSERT_ENABLED) { for (unsigned i = 0; i < jumpCount; ++i) ASSERT(!MacroAssembler::canCompact(jumpsToLink[i].type())); } } // Copy everything after the last jump { InstructionType* dst = bitwise_cast(outData + writePtr); InstructionType* src = bitwise_cast(inData + readPtr); size_t bytes = initialSize - readPtr; RELEASE_ASSERT(bitwise_cast(dst) % sizeof(InstructionType) == 0); RELEASE_ASSERT(bitwise_cast(src) % sizeof(InstructionType) == 0); RELEASE_ASSERT(bytes % sizeof(InstructionType) == 0); for (size_t i = 0; i < bytes; i += sizeof(InstructionType)) { InstructionType insn = read(src++); *dst++ = insn; } } recordLinkOffsets(m_assemblerStorage, readPtr, initialSize, readPtr - writePtr); for (unsigned i = 0; i < jumpCount; ++i) { uint8_t* location = codeOutData + jumpsToLink[i].from(); #if CPU(ARM64) const intptr_t to = jumpsToLink[i].to(¯oAssembler.m_assembler); #else const intptr_t to = jumpsToLink[i].to(); #endif uint8_t* target = codeOutData + to - executableOffsetFor(to); if (useFastJITPermissions()) MacroAssembler::link(jumpsToLink[i], outData + jumpsToLink[i].from(), location, target); else MacroAssembler::link(jumpsToLink[i], outData + jumpsToLink[i].from(), location, target); } size_t compactSize = writePtr + initialSize - readPtr; if (!m_executableMemory) { size_t nopSizeInBytes = initialSize - compactSize; if (useFastJITPermissions()) Assembler::fillNops(outData + compactSize, nopSizeInBytes); else Assembler::fillNops(outData + compactSize, nopSizeInBytes); } if (useFastJITPermissions()) threadSelfRestrictRWXToRX(); if (m_executableMemory) { m_size = compactSize; m_executableMemory->shrink(m_size); } #if ENABLE(JIT) if (useFastJITPermissions()) { ASSERT(codeOutData == outData); if (UNLIKELY(Options::dumpJITMemoryPath())) dumpJITMemory(outData, outData, m_size); } else { ASSERT(codeOutData != outData); performJITMemcpy(codeOutData, outData, m_size); } #else ASSERT(codeOutData != outData); performJITMemcpy(codeOutData, outData, m_size); #endif jumpsToLink.clear(); #if DUMP_LINK_STATISTICS dumpLinkStatistics(codeOutData, initialSize, m_size); #endif #if DUMP_CODE dumpCode(codeOutData, m_size); #endif } #endif // ENABLE(BRANCH_COMPACTION) void LinkBuffer::linkCode(MacroAssembler& macroAssembler, JITCompilationEffort effort) { // Ensure that the end of the last invalidation point does not extend beyond the end of the buffer. macroAssembler.label(); #if !ENABLE(BRANCH_COMPACTION) #if defined(ASSEMBLER_HAS_CONSTANT_POOL) && ASSEMBLER_HAS_CONSTANT_POOL macroAssembler.m_assembler.buffer().flushConstantPool(false); #endif allocate(macroAssembler, effort); if (!m_didAllocate) return; ASSERT(m_code); AssemblerBuffer& buffer = macroAssembler.m_assembler.buffer(); void* code = m_code.dataLocation(); #if CPU(ARM64) RELEASE_ASSERT(roundUpToMultipleOf(code) == code); #endif performJITMemcpy(code, buffer.data(), buffer.codeSize()); #if CPU(MIPS) macroAssembler.m_assembler.relocateJumps(buffer.data(), code); #endif #elif CPU(ARM_THUMB2) copyCompactAndLinkCode(macroAssembler, effort); #elif CPU(ARM64) copyCompactAndLinkCode(macroAssembler, effort); #endif // !ENABLE(BRANCH_COMPACTION) m_linkTasks = WTFMove(macroAssembler.m_linkTasks); } void LinkBuffer::allocate(MacroAssembler& macroAssembler, JITCompilationEffort effort) { size_t initialSize = macroAssembler.m_assembler.codeSize(); if (m_code) { if (initialSize > m_size) return; size_t nopsToFillInBytes = m_size - initialSize; macroAssembler.emitNops(nopsToFillInBytes); m_didAllocate = true; return; } while (initialSize % jitAllocationGranule) { macroAssembler.breakpoint(); initialSize = macroAssembler.m_assembler.codeSize(); } m_executableMemory = ExecutableAllocator::singleton().allocate(initialSize, effort); if (!m_executableMemory) return; m_code = MacroAssemblerCodePtr(m_executableMemory->start().retaggedPtr()); m_size = initialSize; m_didAllocate = true; } void LinkBuffer::performFinalization() { for (auto& task : m_linkTasks) task->run(*this); #ifndef NDEBUG ASSERT(m_isJumpIsland || !isCompilationThread()); ASSERT(!m_completed); ASSERT(isValid()); m_completed = true; #endif MacroAssembler::cacheFlush(code(), m_size); } #if DUMP_LINK_STATISTICS void LinkBuffer::dumpLinkStatistics(void* code, size_t initializeSize, size_t finalSize) { static unsigned linkCount = 0; static unsigned totalInitialSize = 0; static unsigned totalFinalSize = 0; linkCount++; totalInitialSize += initialSize; totalFinalSize += finalSize; dataLogF("link %p: orig %u, compact %u (delta %u, %.2f%%)\n", code, static_cast(initialSize), static_cast(finalSize), static_cast(initialSize - finalSize), 100.0 * (initialSize - finalSize) / initialSize); dataLogF("\ttotal %u: orig %u, compact %u (delta %u, %.2f%%)\n", linkCount, totalInitialSize, totalFinalSize, totalInitialSize - totalFinalSize, 100.0 * (totalInitialSize - totalFinalSize) / totalInitialSize); } #endif #if DUMP_CODE void LinkBuffer::dumpCode(void* code, size_t size) { #if CPU(ARM_THUMB2) // Dump the generated code in an asm file format that can be assembled and then disassembled // for debugging purposes. For example, save this output as jit.s: // gcc -arch armv7 -c jit.s // otool -tv jit.o static unsigned codeCount = 0; unsigned short* tcode = static_cast(code); size_t tsize = size / sizeof(short); char nameBuf[128]; snprintf(nameBuf, sizeof(nameBuf), "_jsc_jit%u", codeCount++); dataLogF("\t.syntax unified\n" "\t.section\t__TEXT,__text,regular,pure_instructions\n" "\t.globl\t%s\n" "\t.align 2\n" "\t.code 16\n" "\t.thumb_func\t%s\n" "# %p\n" "%s:\n", nameBuf, nameBuf, code, nameBuf); for (unsigned i = 0; i < tsize; i++) dataLogF("\t.short\t0x%x\n", tcode[i]); #endif } #endif } // namespace JSC #endif // ENABLE(ASSEMBLER)