/* * Copyright (C) 2009-2018 Apple Inc. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #pragma once #if ENABLE(ASSEMBLER) #define DUMP_LINK_STATISTICS 0 #define DUMP_CODE 0 #define GLOBAL_THUNK_ID reinterpret_cast(static_cast(-1)) #define REGEXP_CODE_ID reinterpret_cast(static_cast(-2)) #define CSS_CODE_ID reinterpret_cast(static_cast(-3)) #include "JITCompilationEffort.h" #include "MacroAssembler.h" #include "MacroAssemblerCodeRef.h" #include #include #include namespace JSC { class CodeBlock; // LinkBuffer: // // This class assists in linking code generated by the macro assembler, once code generation // has been completed, and the code has been copied to is final location in memory. At this // time pointers to labels within the code may be resolved, and relative offsets to external // addresses may be fixed. // // Specifically: // * Jump objects may be linked to external targets, // * The address of Jump objects may taken, such that it can later be relinked. // * The return address of a Call may be acquired. // * The address of a Label pointing into the code may be resolved. // * The value referenced by a DataLabel may be set. // class LinkBuffer { WTF_MAKE_NONCOPYABLE(LinkBuffer); WTF_MAKE_FAST_ALLOCATED; template using CodePtr = MacroAssemblerCodePtr; template using CodeRef = MacroAssemblerCodeRef; typedef MacroAssembler::Label Label; typedef MacroAssembler::Jump Jump; typedef MacroAssembler::PatchableJump PatchableJump; typedef MacroAssembler::JumpList JumpList; typedef MacroAssembler::Call Call; typedef MacroAssembler::DataLabelCompact DataLabelCompact; typedef MacroAssembler::DataLabel32 DataLabel32; typedef MacroAssembler::DataLabelPtr DataLabelPtr; typedef MacroAssembler::ConvertibleLoadLabel ConvertibleLoadLabel; #if ENABLE(BRANCH_COMPACTION) typedef MacroAssembler::LinkRecord LinkRecord; typedef MacroAssembler::JumpLinkType JumpLinkType; #endif public: LinkBuffer(MacroAssembler& macroAssembler, void* ownerUID, JITCompilationEffort effort = JITCompilationMustSucceed) : m_size(0) , m_didAllocate(false) #ifndef NDEBUG , m_completed(false) #endif { linkCode(macroAssembler, ownerUID, effort); } template LinkBuffer(MacroAssembler& macroAssembler, MacroAssemblerCodePtr code, size_t size, JITCompilationEffort effort = JITCompilationMustSucceed, bool shouldPerformBranchCompaction = true) : m_size(size) , m_didAllocate(false) #ifndef NDEBUG , m_completed(false) #endif , m_code(code.template retagged()) { #if ENABLE(BRANCH_COMPACTION) m_shouldPerformBranchCompaction = shouldPerformBranchCompaction; #else UNUSED_PARAM(shouldPerformBranchCompaction); #endif linkCode(macroAssembler, 0, effort); } ~LinkBuffer() { } bool didFailToAllocate() const { return !m_didAllocate; } bool isValid() const { return !didFailToAllocate(); } // These methods are used to link or set values at code generation time. template::type>::value>> void link(Call call, Func funcName) { FunctionPtr function(funcName); link(call, function); } template void link(Call call, FunctionPtr function) { ASSERT(call.isFlagSet(Call::Linkable)); call.m_label = applyOffset(call.m_label); MacroAssembler::linkCall(code(), call, function); } template void link(Call call, CodeLocationLabel label) { link(call, FunctionPtr(label)); } template void link(Jump jump, CodeLocationLabel label) { jump.m_label = applyOffset(jump.m_label); MacroAssembler::linkJump(code(), jump, label); } template void link(const JumpList& list, CodeLocationLabel label) { for (const Jump& jump : list.jumps()) link(jump, label); } void patch(DataLabelPtr label, void* value) { AssemblerLabel target = applyOffset(label.m_label); MacroAssembler::linkPointer(code(), target, value); } template void patch(DataLabelPtr label, CodeLocationLabel value) { AssemblerLabel target = applyOffset(label.m_label); MacroAssembler::linkPointer(code(), target, value); } // These methods are used to obtain handles to allow the code to be relinked / repatched later. template CodeLocationLabel entrypoint() { return CodeLocationLabel(tagCodePtr(code())); } template CodeLocationCall locationOf(Call call) { ASSERT(call.isFlagSet(Call::Linkable)); ASSERT(!call.isFlagSet(Call::Near)); return CodeLocationCall(MacroAssembler::getLinkerAddress(code(), applyOffset(call.m_label))); } template CodeLocationNearCall locationOfNearCall(Call call) { ASSERT(call.isFlagSet(Call::Linkable)); ASSERT(call.isFlagSet(Call::Near)); return CodeLocationNearCall(MacroAssembler::getLinkerAddress(code(), applyOffset(call.m_label)), call.isFlagSet(Call::Tail) ? NearCallMode::Tail : NearCallMode::Regular); } template CodeLocationLabel locationOf(PatchableJump jump) { return CodeLocationLabel(MacroAssembler::getLinkerAddress(code(), applyOffset(jump.m_jump.m_label))); } template CodeLocationLabel locationOf(Label label) { return CodeLocationLabel(MacroAssembler::getLinkerAddress(code(), applyOffset(label.m_label))); } template CodeLocationDataLabelPtr locationOf(DataLabelPtr label) { return CodeLocationDataLabelPtr(MacroAssembler::getLinkerAddress(code(), applyOffset(label.m_label))); } template CodeLocationDataLabel32 locationOf(DataLabel32 label) { return CodeLocationDataLabel32(MacroAssembler::getLinkerAddress(code(), applyOffset(label.m_label))); } template CodeLocationDataLabelCompact locationOf(DataLabelCompact label) { return CodeLocationDataLabelCompact(MacroAssembler::getLinkerAddress(code(), applyOffset(label.m_label))); } template CodeLocationConvertibleLoad locationOf(ConvertibleLoadLabel label) { return CodeLocationConvertibleLoad(MacroAssembler::getLinkerAddress(code(), applyOffset(label.m_label))); } // This method obtains the return address of the call, given as an offset from // the start of the code. unsigned returnAddressOffset(Call call) { call.m_label = applyOffset(call.m_label); return MacroAssembler::getLinkerCallReturnOffset(call); } uint32_t offsetOf(Label label) { return applyOffset(label.m_label).m_offset; } unsigned offsetOf(PatchableJump jump) { return applyOffset(jump.m_jump.m_label).m_offset; } // Upon completion of all patching 'FINALIZE_CODE()' should be called once to // complete generation of the code. Alternatively, call // finalizeCodeWithoutDisassembly() directly if you have your own way of // displaying disassembly. template CodeRef finalizeCodeWithoutDisassembly() { return finalizeCodeWithoutDisassemblyImpl().template retagged(); } template CodeRef finalizeCodeWithDisassembly(bool dumpDisassembly, const char* format, Args... args) { ALLOW_NONLITERAL_FORMAT_BEGIN IGNORE_WARNINGS_BEGIN("format-security") return finalizeCodeWithDisassemblyImpl(dumpDisassembly, format, args...).template retagged(); IGNORE_WARNINGS_END ALLOW_NONLITERAL_FORMAT_END } template CodePtr trampolineAt(Label label) { return CodePtr(MacroAssembler::AssemblerType_T::getRelocatedAddress(code(), applyOffset(label.m_label))); } void* debugAddress() { return m_code.dataLocation(); } size_t size() const { return m_size; } bool wasAlreadyDisassembled() const { return m_alreadyDisassembled; } void didAlreadyDisassemble() { m_alreadyDisassembled = true; } private: JS_EXPORT_PRIVATE CodeRef finalizeCodeWithoutDisassemblyImpl(); JS_EXPORT_PRIVATE CodeRef finalizeCodeWithDisassemblyImpl(bool dumpDisassembly, const char* format, ...) WTF_ATTRIBUTE_PRINTF(3, 4); #if ENABLE(BRANCH_COMPACTION) int executableOffsetFor(int location) { // Returning 0 in this case works because at location < // sizeof(int32_t), no compaction could have happened before this // point as the assembler could not have placed a branch instruction // within this space that required compaction. if (location < static_cast(sizeof(int32_t))) return 0; return bitwise_cast(m_assemblerStorage.buffer())[location / sizeof(int32_t) - 1]; } #endif template T applyOffset(T src) { #if ENABLE(BRANCH_COMPACTION) src.m_offset -= executableOffsetFor(src.m_offset); #endif return src; } // Keep this private! - the underlying code should only be obtained externally via finalizeCode(). void* code() { return m_code.dataLocation(); } void allocate(MacroAssembler&, void* ownerUID, JITCompilationEffort); JS_EXPORT_PRIVATE void linkCode(MacroAssembler&, void* ownerUID, JITCompilationEffort); #if ENABLE(BRANCH_COMPACTION) template void copyCompactAndLinkCode(MacroAssembler&, void* ownerUID, JITCompilationEffort); #endif void performFinalization(); #if DUMP_LINK_STATISTICS static void dumpLinkStatistics(void* code, size_t initialSize, size_t finalSize); #endif #if DUMP_CODE static void dumpCode(void* code, size_t); #endif RefPtr m_executableMemory; size_t m_size; #if ENABLE(BRANCH_COMPACTION) AssemblerData m_assemblerStorage; bool m_shouldPerformBranchCompaction { true }; #endif bool m_didAllocate; #ifndef NDEBUG bool m_completed; #endif bool m_alreadyDisassembled { false }; MacroAssemblerCodePtr m_code; Vector>> m_linkTasks; }; #if OS(LINUX) #define FINALIZE_CODE_IF(condition, linkBufferReference, resultPtrTag, ...) \ (UNLIKELY((condition)) \ ? (linkBufferReference).finalizeCodeWithDisassembly(true, __VA_ARGS__) \ : (UNLIKELY(JSC::Options::logJITCodeForPerf()) \ ? (linkBufferReference).finalizeCodeWithDisassembly(false, __VA_ARGS__) \ : (linkBufferReference).finalizeCodeWithoutDisassembly())) #else #define FINALIZE_CODE_IF(condition, linkBufferReference, resultPtrTag, ...) \ (UNLIKELY((condition)) \ ? (linkBufferReference).finalizeCodeWithDisassembly(true, __VA_ARGS__) \ : (linkBufferReference).finalizeCodeWithoutDisassembly()) #endif bool shouldDumpDisassemblyFor(CodeBlock*); #define FINALIZE_CODE_FOR(codeBlock, linkBufferReference, resultPtrTag, ...) \ FINALIZE_CODE_IF((shouldDumpDisassemblyFor(codeBlock) || Options::asyncDisassembly()), linkBufferReference, resultPtrTag, __VA_ARGS__) // Use this to finalize code, like so: // // CodeRef code = FINALIZE_CODE(linkBuffer, tag, "my super thingy number %d", number); // // Which, in disassembly mode, will print: // // Generated JIT code for my super thingy number 42: // Code at [0x123456, 0x234567]: // 0x123456: mov $0, 0 // 0x12345a: ret // // ... and so on. // // Note that the format string and print arguments are only evaluated when dumpDisassembly // is true, so you can hide expensive disassembly-only computations inside there. #define FINALIZE_CODE(linkBufferReference, resultPtrTag, ...) \ FINALIZE_CODE_IF((JSC::Options::asyncDisassembly() || JSC::Options::dumpDisassembly()), linkBufferReference, resultPtrTag, __VA_ARGS__) #define FINALIZE_DFG_CODE(linkBufferReference, resultPtrTag, ...) \ FINALIZE_CODE_IF((JSC::Options::asyncDisassembly() || JSC::Options::dumpDisassembly() || Options::dumpDFGDisassembly()), linkBufferReference, resultPtrTag, __VA_ARGS__) #define FINALIZE_REGEXP_CODE(linkBufferReference, resultPtrTag, dataLogFArgumentsForHeading) \ FINALIZE_CODE_IF(JSC::Options::asyncDisassembly() || JSC::Options::dumpDisassembly() || Options::dumpRegExpDisassembly(), linkBufferReference, resultPtrTag, dataLogFArgumentsForHeading) } // namespace JSC #endif // ENABLE(ASSEMBLER)