/* * Copyright (C) 2011-2019 Apple Inc. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "config.h" #include "DFGOSREntry.h" #if ENABLE(DFG_JIT) #include "BytecodeStructs.h" #include "CallFrame.h" #include "CodeBlock.h" #include "DFGJITCode.h" #include "DFGNode.h" #include "JSCJSValueInlines.h" #include "RegisterAtOffsetList.h" #include "VMInlines.h" #include namespace JSC { namespace DFG { void OSREntryData::dumpInContext(PrintStream& out, DumpContext* context) const { out.print(m_bytecodeIndex, ", machine code = ", RawPointer(m_machineCode.executableAddress())); out.print(", stack rules = ["); auto printOperand = [&] (VirtualRegister reg) { out.print(inContext(m_expectedValues.operand(reg), context), " ("); VirtualRegister toReg; bool overwritten = false; for (OSREntryReshuffling reshuffling : m_reshufflings) { if (reg == VirtualRegister(reshuffling.fromOffset)) { toReg = VirtualRegister(reshuffling.toOffset); break; } if (reg == VirtualRegister(reshuffling.toOffset)) overwritten = true; } if (!overwritten && !toReg.isValid()) toReg = reg; if (toReg.isValid()) { if (toReg.isLocal() && !m_machineStackUsed.get(toReg.toLocal())) out.print("ignored"); else out.print("maps to ", toReg); } else out.print("overwritten"); if (reg.isLocal() && m_localsForcedDouble.get(reg.toLocal())) out.print(", forced double"); if (reg.isLocal() && m_localsForcedAnyInt.get(reg.toLocal())) out.print(", forced machine int"); out.print(")"); }; CommaPrinter comma; for (size_t argumentIndex = m_expectedValues.numberOfArguments(); argumentIndex--;) { out.print(comma, "arg", argumentIndex, ":"); printOperand(virtualRegisterForArgumentIncludingThis(argumentIndex)); } for (size_t localIndex = 0; localIndex < m_expectedValues.numberOfLocals(); ++localIndex) { out.print(comma, "loc", localIndex, ":"); printOperand(virtualRegisterForLocal(localIndex)); } out.print("], machine stack used = ", m_machineStackUsed); } void OSREntryData::dump(PrintStream& out) const { dumpInContext(out, nullptr); } SUPPRESS_ASAN void* prepareOSREntry(VM& vm, CallFrame* callFrame, CodeBlock* codeBlock, BytecodeIndex bytecodeIndex) { ASSERT(JITCode::isOptimizingJIT(codeBlock->jitType())); ASSERT(codeBlock->alternative()); ASSERT(codeBlock->alternative()->jitType() == JITType::BaselineJIT); ASSERT(!codeBlock->jitCodeMap()); ASSERT(codeBlock->jitCode()->dfgCommon()->isStillValid); if (!Options::useOSREntryToDFG()) return nullptr; dataLogLnIf(Options::verboseOSR(), "DFG OSR in ", *codeBlock->alternative(), " -> ", *codeBlock, " from ", bytecodeIndex); sanitizeStackForVM(vm); if (bytecodeIndex) codeBlock->ownerExecutable()->setDidTryToEnterInLoop(true); if (codeBlock->jitType() != JITType::DFGJIT) { RELEASE_ASSERT(codeBlock->jitType() == JITType::FTLJIT); // When will this happen? We could have: // // - An exit from the FTL JIT into the baseline JIT followed by an attempt // to reenter. We're fine with allowing this to fail. If it happens // enough we'll just reoptimize. It basically means that the OSR exit cost // us dearly and so reoptimizing is the right thing to do. // // - We have recursive code with hot loops. Consider that foo has a hot loop // that calls itself. We have two foo's on the stack, lets call them foo1 // and foo2, with foo1 having called foo2 from foo's hot loop. foo2 gets // optimized all the way into the FTL. Then it returns into foo1, and then // foo1 wants to get optimized. It might reach this conclusion from its // hot loop and attempt to OSR enter. And we'll tell it that it can't. It // might be worth addressing this case, but I just think this case will // be super rare. For now, if it does happen, it'll cause some compilation // thrashing. dataLogLnIf(Options::verboseOSR(), " OSR failed because the target code block is not DFG."); return nullptr; } JITCode* jitCode = codeBlock->jitCode()->dfg(); OSREntryData* entry = jitCode->osrEntryDataForBytecodeIndex(bytecodeIndex); if (!entry) { dataLogLnIf(Options::verboseOSR(), " OSR failed because the entrypoint was optimized out."); return nullptr; } ASSERT(entry->m_bytecodeIndex == bytecodeIndex); // The code below checks if it is safe to perform OSR entry. It may find // that it is unsafe to do so, for any number of reasons, which are documented // below. If the code decides not to OSR then it returns 0, and it's the caller's // responsibility to patch up the state in such a way as to ensure that it's // both safe and efficient to continue executing baseline code for now. This // should almost certainly include calling either codeBlock->optimizeAfterWarmUp() // or codeBlock->dontOptimizeAnytimeSoon(). // 1) Verify predictions. If the predictions are inconsistent with the actual // values, then OSR entry is not possible at this time. It's tempting to // assume that we could somehow avoid this case. We can certainly avoid it // for first-time loop OSR - that is, OSR into a CodeBlock that we have just // compiled. Then we are almost guaranteed that all of the predictions will // check out. It would be pretty easy to make that a hard guarantee. But // then there would still be the case where two call frames with the same // baseline CodeBlock are on the stack at the same time. The top one // triggers compilation and OSR. In that case, we may no longer have // accurate value profiles for the one deeper in the stack. Hence, when we // pop into the CodeBlock that is deeper on the stack, we might OSR and // realize that the predictions are wrong. Probably, in most cases, this is // just an anomaly in the sense that the older CodeBlock simply went off // into a less-likely path. So, the wisest course of action is to simply not // OSR at this time. for (size_t argument = 0; argument < entry->m_expectedValues.numberOfArguments(); ++argument) { JSValue value; if (!argument) value = callFrame->thisValue(); else value = callFrame->argument(argument - 1); if (!entry->m_expectedValues.argument(argument).validateOSREntryValue(value, FlushedJSValue)) { dataLogLnIf(Options::verboseOSR(), " OSR failed because argument ", argument, " is ", value, ", expected ", entry->m_expectedValues.argument(argument)); return nullptr; } } for (size_t local = 0; local < entry->m_expectedValues.numberOfLocals(); ++local) { int localOffset = virtualRegisterForLocal(local).offset(); JSValue value = callFrame->registers()[localOffset].asanUnsafeJSValue(); FlushFormat format = FlushedJSValue; if (entry->m_localsForcedAnyInt.get(local)) { if (!value.isAnyInt()) { dataLogLnIf(Options::verboseOSR(), " OSR failed because variable ", localOffset, " is ", value, ", expected ", "machine int."); return nullptr; } value = jsDoubleNumber(value.asAnyInt()); format = FlushedInt52; } if (entry->m_localsForcedDouble.get(local)) { if (!value.isNumber()) { dataLogLnIf(Options::verboseOSR(), " OSR failed because variable ", localOffset, " is ", value, ", expected number."); return nullptr; } value = jsDoubleNumber(value.asNumber()); format = FlushedDouble; } if (!entry->m_expectedValues.local(local).validateOSREntryValue(value, format)) { dataLogLnIf(Options::verboseOSR(), " OSR failed because variable ", VirtualRegister(localOffset), " is ", value, ", expected ", entry->m_expectedValues.local(local), "."); return nullptr; } } // 2) Check the stack height. The DFG JIT may require a taller stack than the // baseline JIT, in some cases. If we can't grow the stack, then don't do // OSR right now. That's the only option we have unless we want basic block // boundaries to start throwing RangeErrors. Although that would be possible, // it seems silly: you'd be diverting the program to error handling when it // would have otherwise just kept running albeit less quickly. unsigned frameSizeForCheck = jitCode->common.requiredRegisterCountForExecutionAndExit(); if (UNLIKELY(!vm.ensureStackCapacityFor(&callFrame->registers()[virtualRegisterForLocal(frameSizeForCheck - 1).offset()]))) { dataLogLnIf(Options::verboseOSR(), " OSR failed because stack growth failed."); return nullptr; } dataLogLnIf(Options::verboseOSR(), " OSR should succeed."); // At this point we're committed to entering. We will do some work to set things up, // but we also rely on our caller recognizing that when we return a non-null pointer, // that means that we're already past the point of no return and we must succeed at // entering. // 3) Set up the data in the scratch buffer and perform data format conversions. unsigned frameSize = jitCode->common.frameRegisterCount; unsigned baselineFrameSize = entry->m_expectedValues.numberOfLocals(); unsigned maxFrameSize = std::max(frameSize, baselineFrameSize); Register* scratch = bitwise_cast(vm.scratchBufferForSize(sizeof(Register) * (2 + CallFrame::headerSizeInRegisters + maxFrameSize))->dataBuffer()); *bitwise_cast(scratch + 0) = frameSize; void* targetPC = entry->m_machineCode.executableAddress(); RELEASE_ASSERT(codeBlock->jitCode()->contains(entry->m_machineCode.untaggedExecutableAddress())); dataLogLnIf(Options::verboseOSR(), " OSR using target PC ", RawPointer(targetPC)); RELEASE_ASSERT(targetPC); *bitwise_cast(scratch + 1) = tagCodePtrWithStackPointerForJITCall(untagCodePtr(targetPC), callFrame); Register* pivot = scratch + 2 + CallFrame::headerSizeInRegisters; for (int index = -CallFrame::headerSizeInRegisters; index < static_cast(baselineFrameSize); ++index) { VirtualRegister reg(-1 - index); if (reg.isLocal()) { if (entry->m_localsForcedDouble.get(reg.toLocal())) { *bitwise_cast(pivot + index) = callFrame->registers()[reg.offset()].asanUnsafeJSValue().asNumber(); continue; } if (entry->m_localsForcedAnyInt.get(reg.toLocal())) { *bitwise_cast(pivot + index) = callFrame->registers()[reg.offset()].asanUnsafeJSValue().asAnyInt() << JSValue::int52ShiftAmount; continue; } } pivot[index] = callFrame->registers()[reg.offset()].asanUnsafeJSValue(); } // 4) Reshuffle those registers that need reshuffling. Vector temporaryLocals(entry->m_reshufflings.size()); for (unsigned i = entry->m_reshufflings.size(); i--;) temporaryLocals[i] = pivot[VirtualRegister(entry->m_reshufflings[i].fromOffset).toLocal()].asanUnsafeJSValue(); for (unsigned i = entry->m_reshufflings.size(); i--;) pivot[VirtualRegister(entry->m_reshufflings[i].toOffset).toLocal()] = temporaryLocals[i]; // 5) Clear those parts of the call frame that the DFG ain't using. This helps GC on // some programs by eliminating some stale pointer pathologies. for (unsigned i = frameSize; i--;) { if (entry->m_machineStackUsed.get(i)) continue; pivot[i] = JSValue(); } // 6) Copy our callee saves to buffer. #if NUMBER_OF_CALLEE_SAVES_REGISTERS > 0 const RegisterAtOffsetList* registerSaveLocations = codeBlock->calleeSaveRegisters(); RegisterAtOffsetList* allCalleeSaves = RegisterSet::vmCalleeSaveRegisterOffsets(); RegisterSet dontSaveRegisters = RegisterSet(RegisterSet::stackRegisters(), RegisterSet::allFPRs()); unsigned registerCount = registerSaveLocations->size(); VMEntryRecord* record = vmEntryRecord(vm.topEntryFrame); for (unsigned i = 0; i < registerCount; i++) { RegisterAtOffset currentEntry = registerSaveLocations->at(i); if (dontSaveRegisters.get(currentEntry.reg())) continue; RegisterAtOffset* calleeSavesEntry = allCalleeSaves->find(currentEntry.reg()); if constexpr (CallerFrameAndPC::sizeInRegisters == 2) *(bitwise_cast(pivot - 1) - currentEntry.offsetAsIndex()) = record->calleeSaveRegistersBuffer[calleeSavesEntry->offsetAsIndex()]; else { // We need to adjust 4-bytes on 32-bits, otherwise we will clobber some parts of // pivot[-1] when currentEntry.offsetAsIndex() returns -1. This region contains // CallerFrameAndPC and if it is cloberred, we will have a corrupted stack. // Also, we need to store callee-save registers swapped in pairs on scratch buffer, // otherwise they will be swapped when copied to call frame during OSR Entry code. // Here is how we would like to have the buffer configured: // // pivot[-4] = ArgumentCountIncludingThis // pivot[-3] = Callee // pivot[-2] = CodeBlock // pivot[-1] = CallerFrameAndReturnPC // pivot[0] = csr1/csr0 // pivot[1] = csr3/csr2 // ... ASSERT(sizeof(intptr_t) == 4); ASSERT(CallerFrameAndPC::sizeInRegisters == 1); ASSERT(currentEntry.offsetAsIndex() < 0); int offsetAsIndex = currentEntry.offsetAsIndex(); int properIndex = offsetAsIndex % 2 ? offsetAsIndex - 1 : offsetAsIndex + 1; *(bitwise_cast(pivot - 1) + 1 - properIndex) = record->calleeSaveRegistersBuffer[calleeSavesEntry->offsetAsIndex()]; } } #endif // 7) Fix the call frame to have the right code block. *bitwise_cast(pivot - (CallFrameSlot::codeBlock + 1)) = codeBlock; dataLogLnIf(Options::verboseOSR(), " OSR returning data buffer ", RawPointer(scratch)); return scratch; } MacroAssemblerCodePtr prepareCatchOSREntry(VM& vm, CallFrame* callFrame, CodeBlock* baselineCodeBlock, CodeBlock* optimizedCodeBlock, BytecodeIndex bytecodeIndex) { ASSERT(optimizedCodeBlock->jitType() == JITType::DFGJIT || optimizedCodeBlock->jitType() == JITType::FTLJIT); ASSERT(optimizedCodeBlock->jitCode()->dfgCommon()->isStillValid); if (!Options::useOSREntryToDFG() && optimizedCodeBlock->jitCode()->jitType() == JITType::DFGJIT) return nullptr; if (!Options::useOSREntryToFTL() && optimizedCodeBlock->jitCode()->jitType() == JITType::FTLJIT) return nullptr; CommonData* dfgCommon = optimizedCodeBlock->jitCode()->dfgCommon(); RELEASE_ASSERT(dfgCommon); DFG::CatchEntrypointData* catchEntrypoint = dfgCommon->catchOSREntryDataForBytecodeIndex(bytecodeIndex); if (!catchEntrypoint) { // This can be null under some circumstances. The most common is that we didn't // compile this op_catch as an entrypoint since it had never executed when starting // the compilation. return nullptr; } // We're only allowed to OSR enter if we've proven we have compatible argument types. for (unsigned argument = 0; argument < catchEntrypoint->argumentFormats.size(); ++argument) { JSValue value = callFrame->uncheckedR(virtualRegisterForArgumentIncludingThis(argument)).jsValue(); switch (catchEntrypoint->argumentFormats[argument]) { case DFG::FlushedInt32: if (!value.isInt32()) return nullptr; break; case DFG::FlushedCell: if (!value.isCell()) return nullptr; break; case DFG::FlushedBoolean: if (!value.isBoolean()) return nullptr; break; case DFG::DeadFlush: // This means the argument is not alive. Therefore, it's allowed to be any type. break; case DFG::FlushedJSValue: // An argument is trivially a JSValue. break; default: RELEASE_ASSERT_NOT_REACHED(); } } unsigned frameSizeForCheck = dfgCommon->requiredRegisterCountForExecutionAndExit(); if (UNLIKELY(!vm.ensureStackCapacityFor(&callFrame->registers()[virtualRegisterForLocal(frameSizeForCheck).offset()]))) return nullptr; auto instruction = baselineCodeBlock->instructions().at(callFrame->bytecodeIndex()); ASSERT(instruction->is()); ValueProfileAndVirtualRegisterBuffer* buffer = instruction->as().metadata(baselineCodeBlock).m_buffer; JSValue* dataBuffer = reinterpret_cast(dfgCommon->catchOSREntryBuffer->dataBuffer()); unsigned index = 0; buffer->forEach([&] (ValueProfileAndVirtualRegister& profile) { if (!VirtualRegister(profile.m_operand).isLocal()) return; dataBuffer[index] = callFrame->uncheckedR(profile.m_operand).jsValue(); ++index; }); // The active length of catchOSREntryBuffer will be zeroed by ClearCatchLocals node. dfgCommon->catchOSREntryBuffer->setActiveLength(sizeof(JSValue) * index); return catchEntrypoint->machineCode; } } } // namespace JSC::DFG #endif // ENABLE(DFG_JIT)