/* * Copyright (C) 2015-2017 Apple Inc. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "config.h" #include "MacroAssemblerPrinter.h" #if ENABLE(MASM_PROBE) #include "MacroAssembler.h" namespace JSC { namespace Printer { using CPUState = MacroAssembler::CPUState; using RegisterID = MacroAssembler::RegisterID; using FPRegisterID = MacroAssembler::FPRegisterID; void printAllRegisters(PrintStream& out, Context& context) { auto& cpu = context.probeContext.cpu; unsigned charsToIndent = context.data.as(); auto indent = [&] () { for (unsigned i = 0; i < charsToIndent; ++i) out.print(" "); }; #define INDENT indent() INDENT, out.print("cpu: {\n"); #if USE(JSVALUE32_64) #define INTPTR_HEX_VALUE_FORMAT "0x%08lx" #else #define INTPTR_HEX_VALUE_FORMAT "0x%016lx" #endif #define PRINT_GPREGISTER(_type, _regName) { \ intptr_t value = reinterpret_cast(cpu._regName); \ INDENT, out.printf(" %6s: " INTPTR_HEX_VALUE_FORMAT " %ld\n", #_regName, value, value) ; \ } FOR_EACH_CPU_GPREGISTER(PRINT_GPREGISTER) FOR_EACH_CPU_SPECIAL_REGISTER(PRINT_GPREGISTER) #undef PRINT_GPREGISTER #undef INTPTR_HEX_VALUE_FORMAT #define PRINT_FPREGISTER(_type, _regName) { \ uint64_t* u = reinterpret_cast(&cpu._regName); \ double* d = reinterpret_cast(&cpu._regName); \ INDENT, out.printf(" %6s: 0x%016llx %.13g\n", #_regName, *u, *d); \ } FOR_EACH_CPU_FPREGISTER(PRINT_FPREGISTER) #undef PRINT_FPREGISTER INDENT, out.print("}\n"); #undef INDENT } void printPCRegister(PrintStream& out, Context& context) { auto cpu = context.probeContext.cpu; void* value; #if CPU(X86) || CPU(X86_64) value = cpu.eip; #elif CPU(ARM_TRADITIONAL) || CPU(ARM_THUMB2) || CPU(ARM64) value = cpu.pc; #else #error "Unsupported CPU" #endif out.printf("pc:<%p %ld>", value, bitwise_cast(value)); } void printRegisterID(PrintStream& out, Context& context) { RegisterID regID = context.data.as(); const char* name = CPUState::gprName(regID); void* value = context.probeContext.gpr(regID); out.printf("%s:<%p %ld>", name, value, bitwise_cast(value)); } void printFPRegisterID(PrintStream& out, Context& context) { FPRegisterID regID = context.data.as(); const char* name = CPUState::fprName(regID); double value = context.probeContext.fpr(regID); out.printf("%s:<0x%016llx %.13g>", name, bitwise_cast(value), value); } void printAddress(PrintStream& out, Context& context) { MacroAssembler::Address address = context.data.as(); RegisterID regID = address.base; const char* name = CPUState::gprName(regID); void* value = context.probeContext.gpr(regID); out.printf("Address{base:%s:<%p %ld>, offset:<0x%x %d>", name, value, bitwise_cast(value), address.offset, address.offset); } void printMemory(PrintStream& out, Context& context) { const Memory& memory = context.data.as(); uint8_t* ptr = nullptr; switch (memory.addressType) { case Memory::AddressType::Address: { ptr = reinterpret_cast(context.probeContext.gpr(memory.u.address.base)); ptr += memory.u.address.offset; break; } case Memory::AddressType::AbsoluteAddress: { ptr = reinterpret_cast(const_cast(memory.u.absoluteAddress.m_ptr)); break; } } if (memory.dumpStyle == Memory::SingleWordDump) { if (memory.numBytes == sizeof(int8_t)) { auto p = reinterpret_cast(ptr); out.printf("%p:<0x%02x %d>", p, *p, *p); return; } if (memory.numBytes == sizeof(int16_t)) { auto p = reinterpret_cast(ptr); out.printf("%p:<0x%04x %d>", p, *p, *p); return; } if (memory.numBytes == sizeof(int32_t)) { auto p = reinterpret_cast(ptr); out.printf("%p:<0x%08x %d>", p, *p, *p); return; } if (memory.numBytes == sizeof(int64_t)) { auto p = reinterpret_cast(ptr); out.printf("%p:<0x%016llx %lld>", p, *p, *p); return; } // Else, unknown word size. Fall thru and dump in the generic way. } // Generic dump: dump rows of 16 bytes in 4 byte groupings. size_t numBytes = memory.numBytes; for (size_t i = 0; i < numBytes; i++) { if (!(i % 16)) out.printf("%p: ", &ptr[i]); else if (!(i % 4)) out.printf(" "); out.printf("%02x", ptr[i]); if (i % 16 == 15) out.print("\n"); } if (numBytes % 16 < 15) out.print("\n"); } void printCallback(ProbeContext* probeContext) { auto& out = WTF::dataFile(); PrintRecordList& list = *reinterpret_cast(probeContext->arg); for (size_t i = 0; i < list.size(); i++) { auto& record = list[i]; Context context(*probeContext, record.data); record.printer(out, context); } } } // namespace Printer } // namespace JSC #endif // ENABLE(MASM_PROBE)