darling-JavaScriptCore/b3/B3Procedure.cpp

445 lines
11 KiB
C++

/*
* Copyright (C) 2015-2020 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "B3Procedure.h"
#if ENABLE(B3_JIT)
#include "AirCode.h"
#include "B3BackwardsCFG.h"
#include "B3BackwardsDominators.h"
#include "B3BasicBlockUtils.h"
#include "B3CFG.h"
#include "B3DataSection.h"
#include "B3Dominators.h"
#include "B3NaturalLoops.h"
#include "B3OpaqueByproducts.h"
#include "B3ProcedureInlines.h"
#include "B3StackSlot.h"
#include "B3ValueInlines.h"
#include "B3Variable.h"
namespace JSC { namespace B3 {
Procedure::Procedure()
: m_cfg(new CFG(*this))
, m_lastPhaseName("initial")
, m_byproducts(makeUnique<OpaqueByproducts>())
, m_code(new Air::Code(*this))
{
m_code->setNumEntrypoints(m_numEntrypoints);
}
Procedure::~Procedure()
{
}
void Procedure::printOrigin(PrintStream& out, Origin origin) const
{
if (m_originPrinter)
m_originPrinter->run(out, origin);
else
out.print(origin);
}
BasicBlock* Procedure::addBlock(double frequency)
{
std::unique_ptr<BasicBlock> block(new BasicBlock(m_blocks.size(), frequency));
BasicBlock* result = block.get();
m_blocks.append(WTFMove(block));
return result;
}
StackSlot* Procedure::addStackSlot(unsigned byteSize)
{
return m_stackSlots.addNew(byteSize);
}
Variable* Procedure::addVariable(Type type)
{
return m_variables.addNew(type);
}
Type Procedure::addTuple(Vector<Type>&& types)
{
Type result = Type::tupleFromIndex(m_tuples.size());
m_tuples.append(WTFMove(types));
ASSERT(result.isTuple());
return result;
}
bool Procedure::isValidTuple(Type tuple) const
{
return tuple.tupleIndex() < m_tuples.size();
}
const Vector<Type>& Procedure::tupleForType(Type tuple) const
{
return m_tuples[tuple.tupleIndex()];
}
Value* Procedure::clone(Value* value)
{
std::unique_ptr<Value> clone(value->cloneImpl());
clone->m_index = UINT_MAX;
clone->owner = nullptr;
return m_values.add(WTFMove(clone));
}
Value* Procedure::addIntConstant(Origin origin, Type type, int64_t value)
{
switch (type.kind()) {
case Int32:
return add<Const32Value>(origin, static_cast<int32_t>(value));
case Int64:
return add<Const64Value>(origin, value);
case Double:
return add<ConstDoubleValue>(origin, static_cast<double>(value));
case Float:
return add<ConstFloatValue>(origin, static_cast<float>(value));
default:
RELEASE_ASSERT_NOT_REACHED();
return nullptr;
}
}
Value* Procedure::addIntConstant(Value* likeValue, int64_t value)
{
return addIntConstant(likeValue->origin(), likeValue->type(), value);
}
Value* Procedure::addConstant(Origin origin, Type type, uint64_t bits)
{
switch (type.kind()) {
case Int32:
return add<Const32Value>(origin, static_cast<int32_t>(bits));
case Int64:
return add<Const64Value>(origin, bits);
case Float:
return add<ConstFloatValue>(origin, bitwise_cast<float>(static_cast<int32_t>(bits)));
case Double:
return add<ConstDoubleValue>(origin, bitwise_cast<double>(bits));
default:
RELEASE_ASSERT_NOT_REACHED();
return nullptr;
}
}
Value* Procedure::addBottom(Origin origin, Type type)
{
if (type.isTuple())
return add<BottomTupleValue>(origin, type);
return addIntConstant(origin, type, 0);
}
Value* Procedure::addBottom(Value* value)
{
return addBottom(value->origin(), value->type());
}
Value* Procedure::addBoolConstant(Origin origin, TriState triState)
{
int32_t value = 0;
switch (triState) {
case TriState::False:
value = 0;
break;
case TriState::True:
value = 1;
break;
case TriState::Indeterminate:
return nullptr;
}
return addIntConstant(origin, Int32, value);
}
void Procedure::resetValueOwners()
{
for (BasicBlock* block : *this) {
for (Value* value : *block)
value->owner = block;
}
}
void Procedure::resetReachability()
{
recomputePredecessors(m_blocks);
// The common case is that this does not find any dead blocks.
bool foundDead = false;
for (auto& block : m_blocks) {
if (isBlockDead(block.get())) {
foundDead = true;
break;
}
}
if (!foundDead)
return;
resetValueOwners();
for (Value* value : values()) {
if (UpsilonValue* upsilon = value->as<UpsilonValue>()) {
if (isBlockDead(upsilon->phi()->owner))
upsilon->replaceWithNop();
}
}
for (auto& block : m_blocks) {
if (isBlockDead(block.get())) {
for (Value* value : *block)
deleteValue(value);
block = nullptr;
}
}
}
void Procedure::invalidateCFG()
{
m_dominators = nullptr;
m_naturalLoops = nullptr;
m_backwardsCFG = nullptr;
m_backwardsDominators = nullptr;
}
void Procedure::dump(PrintStream& out) const
{
IndexSet<Value*> valuesInBlocks;
for (BasicBlock* block : *this) {
out.print(deepDump(*this, block));
valuesInBlocks.addAll(*block);
}
bool didPrint = false;
for (Value* value : values()) {
if (valuesInBlocks.contains(value))
continue;
if (!didPrint) {
dataLog(tierName, "Orphaned values:\n");
didPrint = true;
}
dataLog(tierName, " ", deepDump(*this, value), "\n");
}
if (hasQuirks())
out.print(tierName, "Has Quirks: True\n");
if (variables().size()) {
out.print(tierName, "Variables:\n");
for (Variable* variable : variables())
out.print(tierName, " ", deepDump(variable), "\n");
}
if (stackSlots().size()) {
out.print(tierName, "Stack slots:\n");
for (StackSlot* slot : stackSlots())
out.print(tierName, " ", pointerDump(slot), ": ", deepDump(slot), "\n");
}
if (m_byproducts->count())
out.print(*m_byproducts);
}
Vector<BasicBlock*> Procedure::blocksInPreOrder()
{
return B3::blocksInPreOrder(at(0));
}
Vector<BasicBlock*> Procedure::blocksInPostOrder()
{
return B3::blocksInPostOrder(at(0));
}
void Procedure::deleteStackSlot(StackSlot* stackSlot)
{
m_stackSlots.remove(stackSlot);
}
void Procedure::deleteVariable(Variable* variable)
{
m_variables.remove(variable);
}
void Procedure::deleteValue(Value* value)
{
m_values.remove(value);
}
void Procedure::deleteOrphans()
{
IndexSet<Value*> valuesInBlocks;
for (BasicBlock* block : *this)
valuesInBlocks.addAll(*block);
// Since this method is not on any hot path, we do it conservatively: first a pass to
// identify the values to be removed, and then a second pass to remove them. This avoids any
// risk of the value iteration being broken by removals.
Vector<Value*, 16> toRemove;
for (Value* value : values()) {
if (!valuesInBlocks.contains(value))
toRemove.append(value);
else if (UpsilonValue* upsilon = value->as<UpsilonValue>()) {
if (!valuesInBlocks.contains(upsilon->phi()))
upsilon->replaceWithNop();
}
}
for (Value* value : toRemove)
deleteValue(value);
}
Dominators& Procedure::dominators()
{
if (!m_dominators)
m_dominators = makeUnique<Dominators>(*this);
return *m_dominators;
}
NaturalLoops& Procedure::naturalLoops()
{
if (!m_naturalLoops)
m_naturalLoops = makeUnique<NaturalLoops>(*this);
return *m_naturalLoops;
}
BackwardsCFG& Procedure::backwardsCFG()
{
if (!m_backwardsCFG)
m_backwardsCFG = makeUnique<BackwardsCFG>(*this);
return *m_backwardsCFG;
}
BackwardsDominators& Procedure::backwardsDominators()
{
if (!m_backwardsDominators)
m_backwardsDominators = makeUnique<BackwardsDominators>(*this);
return *m_backwardsDominators;
}
void Procedure::addFastConstant(const ValueKey& constant)
{
RELEASE_ASSERT(constant.isConstant());
m_fastConstants.add(constant);
}
bool Procedure::isFastConstant(const ValueKey& constant)
{
if (!constant)
return false;
return m_fastConstants.contains(constant);
}
void* Procedure::addDataSection(size_t size)
{
if (!size)
return nullptr;
std::unique_ptr<DataSection> dataSection = makeUnique<DataSection>(size);
void* result = dataSection->data();
m_byproducts->add(WTFMove(dataSection));
return result;
}
unsigned Procedure::callArgAreaSizeInBytes() const
{
return code().callArgAreaSizeInBytes();
}
void Procedure::requestCallArgAreaSizeInBytes(unsigned size)
{
code().requestCallArgAreaSizeInBytes(size);
}
void Procedure::pinRegister(Reg reg)
{
code().pinRegister(reg);
}
void Procedure::setOptLevel(unsigned optLevel)
{
m_optLevel = optLevel;
code().setOptLevel(optLevel);
}
unsigned Procedure::frameSize() const
{
return code().frameSize();
}
RegisterAtOffsetList Procedure::calleeSaveRegisterAtOffsetList() const
{
return code().calleeSaveRegisterAtOffsetList();
}
Value* Procedure::addValueImpl(Value* value)
{
return m_values.add(std::unique_ptr<Value>(value));
}
void Procedure::setBlockOrderImpl(Vector<BasicBlock*>& blocks)
{
IndexSet<BasicBlock*> blocksSet;
blocksSet.addAll(blocks);
for (BasicBlock* block : *this) {
if (!blocksSet.contains(block))
blocks.append(block);
}
// Place blocks into this's block list by first leaking all of the blocks and then readopting
// them.
for (auto& entry : m_blocks)
entry.release();
m_blocks.resize(blocks.size());
for (unsigned i = 0; i < blocks.size(); ++i) {
BasicBlock* block = blocks[i];
block->m_index = i;
m_blocks[i] = std::unique_ptr<BasicBlock>(block);
}
}
void Procedure::setWasmBoundsCheckGenerator(RefPtr<WasmBoundsCheckGenerator> generator)
{
code().setWasmBoundsCheckGenerator(generator);
}
RegisterSet Procedure::mutableGPRs()
{
return code().mutableGPRs();
}
RegisterSet Procedure::mutableFPRs()
{
return code().mutableFPRs();
}
void Procedure::setNumEntrypoints(unsigned numEntrypoints)
{
m_numEntrypoints = numEntrypoints;
m_code->setNumEntrypoints(numEntrypoints);
}
} } // namespace JSC::B3
#endif // ENABLE(B3_JIT)