darling-JavaScriptCore/ftl/FTLAbstractHeap.cpp

271 lines
7.8 KiB
C++

/*
* Copyright (C) 2013, 2015-2016 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "FTLAbstractHeap.h"
#if ENABLE(FTL_JIT)
#include "FTLAbbreviatedTypes.h"
#include "FTLOutput.h"
#include "FTLTypedPointer.h"
#include "Options.h"
namespace JSC { namespace FTL {
AbstractHeap::AbstractHeap(AbstractHeap* parent, const char* heapName, ptrdiff_t offset)
: m_offset(offset)
, m_heapName(heapName)
{
changeParent(parent);
}
void AbstractHeap::changeParent(AbstractHeap* parent)
{
if (m_parent) {
bool result = m_parent->m_children.removeFirst(this);
RELEASE_ASSERT(result);
}
m_parent = parent;
if (parent) {
ASSERT(!m_parent->m_children.contains(this));
m_parent->m_children.append(this);
}
}
void AbstractHeap::compute(unsigned begin)
{
// This recursively computes the ranges of the tree. This solves the following constraints
// in linear time:
//
// - A node's end is greater than its begin.
// - A node's begin is greater than or equal to its parent's begin.
// - A node's end is less than or equal to its parent's end.
// - The ranges are as small as possible.
//
// It's OK to recurse because we keep the depth of our abstract heap hierarchy fairly sane.
// I think that it gets 4 deep at most.
if (m_children.isEmpty()) {
// Must special-case leaves so that they use just one slot on the number line.
m_range = B3::HeapRange(begin);
return;
}
unsigned current = begin;
for (AbstractHeap* child : m_children) {
child->compute(current);
current = child->range().end();
}
m_range = B3::HeapRange(begin, current);
}
void AbstractHeap::shallowDump(PrintStream& out) const
{
out.print(heapName(), "(", m_offset, ")");
if (m_range)
out.print("<", m_range, ">");
}
void AbstractHeap::dump(PrintStream& out) const
{
shallowDump(out);
if (m_parent)
out.print("->", *m_parent);
}
void AbstractHeap::deepDump(PrintStream& out, unsigned indent) const
{
auto printIndent = [&] () {
for (unsigned i = indent; i--;)
out.print(" ");
};
printIndent();
shallowDump(out);
if (m_children.isEmpty()) {
out.print("\n");
return;
}
out.print(":\n");
for (AbstractHeap* child : m_children)
child->deepDump(out, indent + 1);
}
void AbstractHeap::badRangeError() const
{
dataLog("Heap does not have range: ", *this, "\n");
RELEASE_ASSERT_NOT_REACHED();
}
IndexedAbstractHeap::IndexedAbstractHeap(AbstractHeap* parent, const char* heapName, ptrdiff_t offset, size_t elementSize)
: m_heapForAnyIndex(parent, heapName)
, m_heapNameLength(strlen(heapName))
, m_offset(offset)
, m_elementSize(elementSize)
{
}
IndexedAbstractHeap::~IndexedAbstractHeap()
{
}
TypedPointer IndexedAbstractHeap::baseIndex(Output& out, LValue base, LValue index, JSValue indexAsConstant, ptrdiff_t offset, LValue mask)
{
if (indexAsConstant.isInt32())
return out.address(base, at(indexAsConstant.asInt32()), offset);
if (mask)
index = out.bitAnd(mask, index);
LValue result = out.add(base, out.mul(index, out.constIntPtr(m_elementSize)));
return TypedPointer(atAnyIndex(), out.addPtr(result, m_offset + offset));
}
const AbstractHeap& IndexedAbstractHeap::atSlow(ptrdiff_t index)
{
ASSERT(static_cast<size_t>(index) >= m_smallIndices.size());
if (UNLIKELY(!m_largeIndices))
m_largeIndices = makeUnique<MapType>();
std::unique_ptr<AbstractHeap>& field = m_largeIndices->add(index, nullptr).iterator->value;
if (!field) {
field = makeUnique<AbstractHeap>();
initialize(*field, index);
}
return *field;
}
void IndexedAbstractHeap::initialize(AbstractHeap& field, ptrdiff_t signedIndex)
{
// Build up a name of the form:
//
// heapName_hexIndex
//
// or:
//
// heapName_neg_hexIndex
//
// For example if you access an indexed heap called FooBar at index 5, you'll
// get:
//
// FooBar_5
//
// Or if you access an indexed heap called Blah at index -10, you'll get:
//
// Blah_neg_A
//
// This naming convention comes from our previous use of LLVM. It's not clear that we need
// it anymore, though it is sort of nifty. Basically, B3 doesn't need string names for
// abstract heaps, but the fact that we have a reasonably efficient way to always name the
// heaps will probably come in handy for debugging.
static const char* negSplit = "_neg_";
static const char* posSplit = "_";
bool negative;
size_t index;
if (signedIndex < 0) {
negative = true;
index = -signedIndex;
} else {
negative = false;
index = signedIndex;
}
for (unsigned power = 4; power <= sizeof(void*) * 8; power += 4) {
if (isGreaterThanNonZeroPowerOfTwo(index, power))
continue;
unsigned numHexlets = power >> 2;
size_t stringLength = m_heapNameLength + (negative ? strlen(negSplit) : strlen(posSplit)) + numHexlets;
char* characters;
m_largeIndexNames.append(CString::newUninitialized(stringLength, characters));
memcpy(characters, m_heapForAnyIndex.heapName(), m_heapNameLength);
if (negative)
memcpy(characters + m_heapNameLength, negSplit, strlen(negSplit));
else
memcpy(characters + m_heapNameLength, posSplit, strlen(posSplit));
size_t accumulator = index;
for (unsigned i = 0; i < numHexlets; ++i) {
characters[stringLength - i - 1] = lowerNibbleToASCIIHexDigit(accumulator);
accumulator >>= 4;
}
field.initialize(&m_heapForAnyIndex, characters, m_offset + signedIndex * m_elementSize);
return;
}
RELEASE_ASSERT_NOT_REACHED();
}
void IndexedAbstractHeap::dump(PrintStream& out)
{
out.print("Indexed:", atAnyIndex());
}
NumberedAbstractHeap::NumberedAbstractHeap(AbstractHeap* heap, const char* heapName)
: m_indexedHeap(heap, heapName, 0, 1)
{
}
NumberedAbstractHeap::~NumberedAbstractHeap()
{
}
void NumberedAbstractHeap::dump(PrintStream& out)
{
out.print("Numbered: ", atAnyNumber());
}
AbsoluteAbstractHeap::AbsoluteAbstractHeap(AbstractHeap* heap, const char* heapName)
: m_indexedHeap(heap, heapName, 0, 1)
{
}
AbsoluteAbstractHeap::~AbsoluteAbstractHeap()
{
}
void AbsoluteAbstractHeap::dump(PrintStream& out)
{
out.print("Absolute:", atAnyAddress());
}
} } // namespace JSC::FTL
#endif // ENABLE(FTL_JIT)