darling-JavaScriptCore/heap/Heap.h

768 lines
28 KiB
C++

/*
* Copyright (C) 1999-2000 Harri Porten (porten@kde.org)
* Copyright (C) 2001 Peter Kelly (pmk@post.com)
* Copyright (C) 2003-2020 Apple Inc. All rights reserved.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
#pragma once
#include "ArrayBuffer.h"
#include "CellState.h"
#include "CollectionScope.h"
#include "CollectorPhase.h"
#include "DFGDoesGCCheck.h"
#include "DeleteAllCodeEffort.h"
#include "GCConductor.h"
#include "GCIncomingRefCountedSet.h"
#include "GCMemoryOperations.h"
#include "GCRequest.h"
#include "HandleSet.h"
#include "HeapFinalizerCallback.h"
#include "HeapObserver.h"
#include "MarkedBlock.h"
#include "MarkedSpace.h"
#include "MutatorState.h"
#include "Options.h"
#include "StructureIDTable.h"
#include "Synchronousness.h"
#include "WeakHandleOwner.h"
#include <wtf/AutomaticThread.h>
#include <wtf/ConcurrentPtrHashSet.h>
#include <wtf/Deque.h>
#include <wtf/HashCountedSet.h>
#include <wtf/HashSet.h>
#include <wtf/Markable.h>
#include <wtf/ParallelHelperPool.h>
#include <wtf/Threading.h>
namespace JSC {
class CodeBlock;
class CodeBlockSet;
class CollectingScope;
class ConservativeRoots;
class GCDeferralContext;
class EdenGCActivityCallback;
class FullGCActivityCallback;
class GCActivityCallback;
class GCAwareJITStubRoutine;
class Heap;
class HeapProfiler;
class HeapVerifier;
class IncrementalSweeper;
class JITStubRoutine;
class JITStubRoutineSet;
class JSCell;
class JSImmutableButterfly;
class JSValue;
class LLIntOffsetsExtractor;
class MachineThreads;
class MarkStackArray;
class MarkStackMergingConstraint;
class MarkedJSValueRefArray;
class BlockDirectory;
class MarkedArgumentBuffer;
class MarkingConstraint;
class MarkingConstraintSet;
class MutatorScheduler;
class RunningScope;
class SlotVisitor;
class SpaceTimeMutatorScheduler;
class StopIfNecessaryTimer;
class SweepingScope;
class VM;
class WeakGCMapBase;
struct CurrentThreadState;
#ifdef JSC_GLIB_API_ENABLED
class JSCGLibWrapperObject;
#endif
namespace DFG {
class SpeculativeJIT;
class Worklist;
}
#if ENABLE(DFG_JIT) && ASSERT_ENABLED
#define ENABLE_DFG_DOES_GC_VALIDATION 1
#else
#define ENABLE_DFG_DOES_GC_VALIDATION 0
#endif
constexpr bool validateDFGDoesGC = ENABLE_DFG_DOES_GC_VALIDATION;
typedef HashCountedSet<JSCell*> ProtectCountSet;
typedef HashCountedSet<const char*> TypeCountSet;
enum HeapType { SmallHeap, LargeHeap };
class HeapUtil;
class Heap {
WTF_MAKE_NONCOPYABLE(Heap);
public:
friend class JIT;
friend class DFG::SpeculativeJIT;
static Heap* heap(const JSValue); // 0 for immediate values
static Heap* heap(const HeapCell*);
// This constant determines how many blocks we iterate between checks of our
// deadline when calling Heap::isPagedOut. Decreasing it will cause us to detect
// overstepping our deadline more quickly, while increasing it will cause
// our scan to run faster.
static constexpr unsigned s_timeCheckResolution = 16;
bool isMarked(const void*);
static bool testAndSetMarked(HeapVersion, const void*);
static size_t cellSize(const void*);
void writeBarrier(const JSCell* from);
void writeBarrier(const JSCell* from, JSValue to);
void writeBarrier(const JSCell* from, JSCell* to);
void writeBarrierWithoutFence(const JSCell* from);
void mutatorFence();
// Take this if you know that from->cellState() < barrierThreshold.
JS_EXPORT_PRIVATE void writeBarrierSlowPath(const JSCell* from);
Heap(VM&, HeapType);
~Heap();
void lastChanceToFinalize();
void releaseDelayedReleasedObjects();
VM& vm() const;
MarkedSpace& objectSpace() { return m_objectSpace; }
MachineThreads& machineThreads() { return *m_machineThreads; }
SlotVisitor& collectorSlotVisitor() { return *m_collectorSlotVisitor; }
JS_EXPORT_PRIVATE GCActivityCallback* fullActivityCallback();
JS_EXPORT_PRIVATE GCActivityCallback* edenActivityCallback();
JS_EXPORT_PRIVATE void setGarbageCollectionTimerEnabled(bool);
JS_EXPORT_PRIVATE IncrementalSweeper& sweeper();
void addObserver(HeapObserver* observer) { m_observers.append(observer); }
void removeObserver(HeapObserver* observer) { m_observers.removeFirst(observer); }
MutatorState mutatorState() const { return m_mutatorState; }
Optional<CollectionScope> collectionScope() const { return m_collectionScope; }
bool hasHeapAccess() const;
bool worldIsStopped() const;
bool worldIsRunning() const { return !worldIsStopped(); }
// We're always busy on the collection threads. On the main thread, this returns true if we're
// helping heap.
JS_EXPORT_PRIVATE bool isCurrentThreadBusy();
typedef void (*CFinalizer)(JSCell*);
JS_EXPORT_PRIVATE void addFinalizer(JSCell*, CFinalizer);
using LambdaFinalizer = WTF::Function<void(JSCell*)>;
JS_EXPORT_PRIVATE void addFinalizer(JSCell*, LambdaFinalizer);
void notifyIsSafeToCollect();
bool isSafeToCollect() const { return m_isSafeToCollect; }
bool isShuttingDown() const { return m_isShuttingDown; }
JS_EXPORT_PRIVATE bool isAnalyzingHeap() const;
JS_EXPORT_PRIVATE void sweepSynchronously();
bool shouldCollectHeuristic();
// Queue up a collection. Returns immediately. This will not queue a collection if a collection
// of equal or greater strength exists. Full collections are stronger than WTF::nullopt collections
// and WTF::nullopt collections are stronger than Eden collections. WTF::nullopt means that the GC can
// choose Eden or Full. This implies that if you request a GC while that GC is ongoing, nothing
// will happen.
JS_EXPORT_PRIVATE void collectAsync(GCRequest = GCRequest());
// Queue up a collection and wait for it to complete. This won't return until you get your own
// complete collection. For example, if there was an ongoing asynchronous collection at the time
// you called this, then this would wait for that one to complete and then trigger your
// collection and then return. In weird cases, there could be multiple GC requests in the backlog
// and this will wait for that backlog before running its GC and returning.
JS_EXPORT_PRIVATE void collectSync(GCRequest = GCRequest());
JS_EXPORT_PRIVATE void collect(Synchronousness, GCRequest = GCRequest());
// Like collect(), but in the case of Async this will stopIfNecessary() and in the case of
// Sync this will sweep synchronously.
JS_EXPORT_PRIVATE void collectNow(Synchronousness, GCRequest = GCRequest());
JS_EXPORT_PRIVATE void collectNowFullIfNotDoneRecently(Synchronousness);
void collectIfNecessaryOrDefer(GCDeferralContext* = nullptr);
void completeAllJITPlans();
// Use this API to report non-GC memory referenced by GC objects. Be sure to
// call both of these functions: Calling only one may trigger catastropic
// memory growth.
void reportExtraMemoryAllocated(size_t);
JS_EXPORT_PRIVATE void reportExtraMemoryVisited(size_t);
#if ENABLE(RESOURCE_USAGE)
// Use this API to report the subset of extra memory that lives outside this process.
JS_EXPORT_PRIVATE void reportExternalMemoryVisited(size_t);
size_t externalMemorySize() { return m_externalMemorySize; }
#endif
// Use this API to report non-GC memory if you can't use the better API above.
void deprecatedReportExtraMemory(size_t);
JS_EXPORT_PRIVATE void reportAbandonedObjectGraph();
JS_EXPORT_PRIVATE void protect(JSValue);
JS_EXPORT_PRIVATE bool unprotect(JSValue); // True when the protect count drops to 0.
JS_EXPORT_PRIVATE size_t extraMemorySize(); // Non-GC memory referenced by GC objects.
JS_EXPORT_PRIVATE size_t size();
JS_EXPORT_PRIVATE size_t capacity();
JS_EXPORT_PRIVATE size_t objectCount();
JS_EXPORT_PRIVATE size_t globalObjectCount();
JS_EXPORT_PRIVATE size_t protectedObjectCount();
JS_EXPORT_PRIVATE size_t protectedGlobalObjectCount();
JS_EXPORT_PRIVATE std::unique_ptr<TypeCountSet> protectedObjectTypeCounts();
JS_EXPORT_PRIVATE std::unique_ptr<TypeCountSet> objectTypeCounts();
HashSet<MarkedArgumentBuffer*>& markListSet();
void addMarkedJSValueRefArray(MarkedJSValueRefArray*);
template<typename Functor> void forEachProtectedCell(const Functor&);
template<typename Functor> void forEachCodeBlock(const Functor&);
template<typename Functor> void forEachCodeBlockIgnoringJITPlans(const AbstractLocker& codeBlockSetLocker, const Functor&);
HandleSet* handleSet() { return &m_handleSet; }
void willStartIterating();
void didFinishIterating();
Seconds lastFullGCLength() const { return m_lastFullGCLength; }
Seconds lastEdenGCLength() const { return m_lastEdenGCLength; }
void increaseLastFullGCLength(Seconds amount) { m_lastFullGCLength += amount; }
size_t sizeBeforeLastEdenCollection() const { return m_sizeBeforeLastEdenCollect; }
size_t sizeAfterLastEdenCollection() const { return m_sizeAfterLastEdenCollect; }
size_t sizeBeforeLastFullCollection() const { return m_sizeBeforeLastFullCollect; }
size_t sizeAfterLastFullCollection() const { return m_sizeAfterLastFullCollect; }
void deleteAllCodeBlocks(DeleteAllCodeEffort);
void deleteAllUnlinkedCodeBlocks(DeleteAllCodeEffort);
void didAllocate(size_t);
bool isPagedOut();
const JITStubRoutineSet& jitStubRoutines() { return *m_jitStubRoutines; }
void addReference(JSCell*, ArrayBuffer*);
bool isDeferred() const { return !!m_deferralDepth; }
StructureIDTable& structureIDTable() { return m_structureIDTable; }
CodeBlockSet& codeBlockSet() { return *m_codeBlocks; }
#if USE(FOUNDATION)
template<typename T> void releaseSoon(RetainPtr<T>&&);
#endif
#ifdef JSC_GLIB_API_ENABLED
void releaseSoon(std::unique_ptr<JSCGLibWrapperObject>&&);
#endif
JS_EXPORT_PRIVATE void registerWeakGCMap(WeakGCMapBase* weakGCMap);
JS_EXPORT_PRIVATE void unregisterWeakGCMap(WeakGCMapBase* weakGCMap);
void addLogicallyEmptyWeakBlock(WeakBlock*);
#if ENABLE(RESOURCE_USAGE)
size_t blockBytesAllocated() const { return m_blockBytesAllocated; }
#endif
void didAllocateBlock(size_t capacity);
void didFreeBlock(size_t capacity);
bool mutatorShouldBeFenced() const { return m_mutatorShouldBeFenced; }
const bool* addressOfMutatorShouldBeFenced() const { return &m_mutatorShouldBeFenced; }
unsigned barrierThreshold() const { return m_barrierThreshold; }
const unsigned* addressOfBarrierThreshold() const { return &m_barrierThreshold; }
#if ENABLE(DFG_DOES_GC_VALIDATION)
DoesGCCheck* addressOfDoesGC() { return &m_doesGC; }
void setDoesGCExpectation(bool expectDoesGC, unsigned nodeIndex, unsigned nodeOp) { m_doesGC.set(expectDoesGC, nodeIndex, nodeOp); }
void setDoesGCExpectation(bool expectDoesGC, DoesGCCheck::Special special) { m_doesGC.set(expectDoesGC, special); }
void verifyCanGC() { m_doesGC.verifyCanGC(vm()); }
#else
DoesGCCheck* addressOfDoesGC() { UNREACHABLE_FOR_PLATFORM(); return nullptr; }
void setDoesGCExpectation(bool, unsigned, unsigned) { }
void setDoesGCExpectation(bool, DoesGCCheck::Special) { }
void verifyCanGC() { }
#endif
// If true, the GC believes that the mutator is currently messing with the heap. We call this
// "having heap access". The GC may block if the mutator is in this state. If false, the GC may
// currently be doing things to the heap that make the heap unsafe to access for the mutator.
bool hasAccess() const;
// If the mutator does not currently have heap access, this function will acquire it. If the GC
// is currently using the lack of heap access to do dangerous things to the heap then this
// function will block, waiting for the GC to finish. It's not valid to call this if the mutator
// already has heap access. The mutator is required to precisely track whether or not it has
// heap access.
//
// It's totally fine to acquireAccess() upon VM instantiation and keep it that way. This is how
// WebCore uses us. For most other clients, JSLock does acquireAccess()/releaseAccess() for you.
void acquireAccess();
// Releases heap access. If the GC is blocking waiting to do bad things to the heap, it will be
// allowed to run now.
//
// Ordinarily, you should use the ReleaseHeapAccessScope to release and then reacquire heap
// access. You should do this anytime you're about do perform a blocking operation, like waiting
// on the ParkingLot.
void releaseAccess();
// This is like a super optimized way of saying:
//
// releaseAccess()
// acquireAccess()
//
// The fast path is an inlined relaxed load and branch. The slow path will block the mutator if
// the GC wants to do bad things to the heap.
//
// All allocations logically call this. As an optimization to improve GC progress, you can call
// this anywhere that you can afford a load-branch and where an object allocation would have been
// safe.
//
// The GC will also push a stopIfNecessary() event onto the runloop of the thread that
// instantiated the VM whenever it wants the mutator to stop. This means that if you never block
// but instead use the runloop to wait for events, then you could safely run in a mode where the
// mutator has permanent heap access (like the DOM does). If you have good event handling
// discipline (i.e. you don't block the runloop) then you can be sure that stopIfNecessary() will
// already be called for you at the right times.
void stopIfNecessary();
// This gives the conn to the collector.
void relinquishConn();
bool mayNeedToStop();
void performIncrement(size_t bytes);
// This is a much stronger kind of stopping of the collector, and it may require waiting for a
// while. This is meant to be a legacy API for clients of collectAllGarbage that expect that there
// is no GC before or after that function call. After calling this, you are free to start GCs
// yourself but you can be sure that none are running.
//
// This both prevents new collections from being started asynchronously and waits for any
// outstanding collections to complete.
void preventCollection();
void allowCollection();
uint64_t mutatorExecutionVersion() const { return m_mutatorExecutionVersion; }
uint64_t phaseVersion() const { return m_phaseVersion; }
JS_EXPORT_PRIVATE void addMarkingConstraint(std::unique_ptr<MarkingConstraint>);
size_t numOpaqueRoots() const { return m_opaqueRoots.size(); }
HeapVerifier* verifier() const { return m_verifier.get(); }
void addHeapFinalizerCallback(const HeapFinalizerCallback&);
void removeHeapFinalizerCallback(const HeapFinalizerCallback&);
void runTaskInParallel(RefPtr<SharedTask<void(SlotVisitor&)>>);
template<typename Func>
void runFunctionInParallel(const Func& func)
{
runTaskInParallel(createSharedTask<void(SlotVisitor&)>(func));
}
template<typename Func>
void forEachSlotVisitor(const Func&);
Seconds totalGCTime() const { return m_totalGCTime; }
HashMap<JSImmutableButterfly*, JSString*> immutableButterflyToStringCache;
private:
friend class AllocatingScope;
friend class CodeBlock;
friend class CollectingScope;
friend class DeferGC;
friend class DeferGCForAWhile;
friend class GCAwareJITStubRoutine;
friend class GCLogging;
friend class GCThread;
friend class HandleSet;
friend class HeapUtil;
friend class HeapVerifier;
friend class JITStubRoutine;
friend class LLIntOffsetsExtractor;
friend class MarkStackMergingConstraint;
friend class MarkedSpace;
friend class BlockDirectory;
friend class MarkedBlock;
friend class RunningScope;
friend class SlotVisitor;
friend class SpaceTimeMutatorScheduler;
friend class StochasticSpaceTimeMutatorScheduler;
friend class SweepingScope;
friend class IncrementalSweeper;
friend class VM;
friend class WeakSet;
class HeapThread;
friend class HeapThread;
static constexpr size_t minExtraMemory = 256;
class CFinalizerOwner final : public WeakHandleOwner {
void finalize(Handle<Unknown>, void* context) final;
};
class LambdaFinalizerOwner final : public WeakHandleOwner {
void finalize(Handle<Unknown>, void* context) final;
};
JS_EXPORT_PRIVATE bool isValidAllocation(size_t);
JS_EXPORT_PRIVATE void reportExtraMemoryAllocatedSlowCase(size_t);
JS_EXPORT_PRIVATE void deprecatedReportExtraMemorySlowCase(size_t);
bool shouldCollectInCollectorThread(const AbstractLocker&);
void collectInCollectorThread();
void checkConn(GCConductor);
enum class RunCurrentPhaseResult {
Finished,
Continue,
NeedCurrentThreadState
};
RunCurrentPhaseResult runCurrentPhase(GCConductor, CurrentThreadState*);
// Returns true if we should keep doing things.
bool runNotRunningPhase(GCConductor);
bool runBeginPhase(GCConductor);
bool runFixpointPhase(GCConductor);
bool runConcurrentPhase(GCConductor);
bool runReloopPhase(GCConductor);
bool runEndPhase(GCConductor);
bool changePhase(GCConductor, CollectorPhase);
bool finishChangingPhase(GCConductor);
void collectInMutatorThread();
void stopThePeriphery(GCConductor);
void resumeThePeriphery();
// Returns true if the mutator is stopped, false if the mutator has the conn now.
bool stopTheMutator();
void resumeTheMutator();
JS_EXPORT_PRIVATE void stopIfNecessarySlow();
bool stopIfNecessarySlow(unsigned extraStateBits);
template<typename Func>
void waitForCollector(const Func&);
JS_EXPORT_PRIVATE void acquireAccessSlow();
JS_EXPORT_PRIVATE void releaseAccessSlow();
bool handleGCDidJIT(unsigned);
void handleGCDidJIT();
bool handleNeedFinalize(unsigned);
void handleNeedFinalize();
bool relinquishConn(unsigned);
void finishRelinquishingConn();
void setGCDidJIT();
void setNeedFinalize();
void waitWhileNeedFinalize();
void setMutatorWaiting();
void clearMutatorWaiting();
void notifyThreadStopping(const AbstractLocker&);
typedef uint64_t Ticket;
Ticket requestCollection(GCRequest);
void waitForCollection(Ticket);
void suspendCompilerThreads();
void willStartCollection();
void prepareForMarking();
void gatherStackRoots(ConservativeRoots&);
void gatherJSStackRoots(ConservativeRoots&);
void gatherScratchBufferRoots(ConservativeRoots&);
void beginMarking();
void visitCompilerWorklistWeakReferences();
void removeDeadCompilerWorklistEntries();
void updateObjectCounts();
void endMarking();
void reapWeakHandles();
void pruneStaleEntriesFromWeakGCMaps();
void sweepArrayBuffers();
void snapshotUnswept();
void deleteSourceProviderCaches();
void notifyIncrementalSweeper();
void harvestWeakReferences();
template<typename CellType, typename CellSet>
void finalizeMarkedUnconditionalFinalizers(CellSet&);
void finalizeUnconditionalFinalizers();
void deleteUnmarkedCompiledCode();
JS_EXPORT_PRIVATE void addToRememberedSet(const JSCell*);
void updateAllocationLimits();
void didFinishCollection();
void resumeCompilerThreads();
void gatherExtraHeapData(HeapProfiler&);
void removeDeadHeapSnapshotNodes(HeapProfiler&);
void finalize();
void sweepInFinalize();
void sweepAllLogicallyEmptyWeakBlocks();
bool sweepNextLogicallyEmptyWeakBlock();
bool shouldDoFullCollection();
void incrementDeferralDepth();
void decrementDeferralDepth();
void decrementDeferralDepthAndGCIfNeeded();
JS_EXPORT_PRIVATE void decrementDeferralDepthAndGCIfNeededSlow();
size_t visitCount();
size_t bytesVisited();
void forEachCodeBlockImpl(const ScopedLambda<void(CodeBlock*)>&);
void forEachCodeBlockIgnoringJITPlansImpl(const AbstractLocker& codeBlockSetLocker, const ScopedLambda<void(CodeBlock*)>&);
void setMutatorShouldBeFenced(bool value);
void addCoreConstraints();
enum class MemoryThresholdCallType {
Cached,
Direct
};
bool overCriticalMemoryThreshold(MemoryThresholdCallType memoryThresholdCallType = MemoryThresholdCallType::Cached);
template<typename Func>
void iterateExecutingAndCompilingCodeBlocks(const Func&);
template<typename Func>
void iterateExecutingAndCompilingCodeBlocksWithoutHoldingLocks(const Func&);
void assertMarkStacksEmpty();
void setBonusVisitorTask(RefPtr<SharedTask<void(SlotVisitor&)>>);
void dumpHeapStatisticsAtVMDestruction();
static bool useGenerationalGC();
static bool shouldSweepSynchronously();
const HeapType m_heapType;
MutatorState m_mutatorState { MutatorState::Running };
const size_t m_ramSize;
const size_t m_minBytesPerCycle;
size_t m_sizeAfterLastCollect { 0 };
size_t m_sizeAfterLastFullCollect { 0 };
size_t m_sizeBeforeLastFullCollect { 0 };
size_t m_sizeAfterLastEdenCollect { 0 };
size_t m_sizeBeforeLastEdenCollect { 0 };
size_t m_bytesAllocatedThisCycle { 0 };
size_t m_bytesAbandonedSinceLastFullCollect { 0 };
size_t m_maxEdenSize;
size_t m_maxEdenSizeWhenCritical;
size_t m_maxHeapSize;
size_t m_totalBytesVisited { 0 };
size_t m_totalBytesVisitedThisCycle { 0 };
double m_incrementBalance { 0 };
bool m_shouldDoFullCollection { false };
Markable<CollectionScope, EnumMarkableTraits<CollectionScope>> m_collectionScope;
Markable<CollectionScope, EnumMarkableTraits<CollectionScope>> m_lastCollectionScope;
Lock m_raceMarkStackLock;
#if ENABLE(DFG_DOES_GC_VALIDATION)
DoesGCCheck m_doesGC;
#endif
StructureIDTable m_structureIDTable;
MarkedSpace m_objectSpace;
GCIncomingRefCountedSet<ArrayBuffer> m_arrayBuffers;
size_t m_extraMemorySize { 0 };
size_t m_deprecatedExtraMemorySize { 0 };
HashSet<const JSCell*> m_copyingRememberedSet;
ProtectCountSet m_protectedValues;
std::unique_ptr<HashSet<MarkedArgumentBuffer*>> m_markListSet;
SentinelLinkedList<MarkedJSValueRefArray, BasicRawSentinelNode<MarkedJSValueRefArray>> m_markedJSValueRefArrays;
std::unique_ptr<MachineThreads> m_machineThreads;
std::unique_ptr<SlotVisitor> m_collectorSlotVisitor;
std::unique_ptr<SlotVisitor> m_mutatorSlotVisitor;
std::unique_ptr<MarkStackArray> m_mutatorMarkStack;
std::unique_ptr<MarkStackArray> m_raceMarkStack;
std::unique_ptr<MarkingConstraintSet> m_constraintSet;
// We pool the slot visitors used by parallel marking threads. It's useful to be able to
// enumerate over them, and it's useful to have them cache some small amount of memory from
// one GC to the next. GC marking threads claim these at the start of marking, and return
// them at the end.
Vector<std::unique_ptr<SlotVisitor>> m_parallelSlotVisitors;
Vector<SlotVisitor*> m_availableParallelSlotVisitors;
HandleSet m_handleSet;
std::unique_ptr<CodeBlockSet> m_codeBlocks;
std::unique_ptr<JITStubRoutineSet> m_jitStubRoutines;
CFinalizerOwner m_cFinalizerOwner;
LambdaFinalizerOwner m_lambdaFinalizerOwner;
Lock m_parallelSlotVisitorLock;
bool m_isSafeToCollect { false };
bool m_isShuttingDown { false };
bool m_mutatorShouldBeFenced { Options::forceFencedBarrier() };
unsigned m_barrierThreshold { Options::forceFencedBarrier() ? tautologicalThreshold : blackThreshold };
VM& m_vm;
Seconds m_lastFullGCLength { 10_ms };
Seconds m_lastEdenGCLength { 10_ms };
Vector<WeakBlock*> m_logicallyEmptyWeakBlocks;
size_t m_indexOfNextLogicallyEmptyWeakBlockToSweep { WTF::notFound };
RefPtr<FullGCActivityCallback> m_fullActivityCallback;
RefPtr<GCActivityCallback> m_edenActivityCallback;
Ref<IncrementalSweeper> m_sweeper;
Ref<StopIfNecessaryTimer> m_stopIfNecessaryTimer;
Vector<HeapObserver*> m_observers;
Vector<HeapFinalizerCallback> m_heapFinalizerCallbacks;
std::unique_ptr<HeapVerifier> m_verifier;
#if USE(FOUNDATION)
Vector<RetainPtr<CFTypeRef>> m_delayedReleaseObjects;
unsigned m_delayedReleaseRecursionCount { 0 };
#endif
#ifdef JSC_GLIB_API_ENABLED
Vector<std::unique_ptr<JSCGLibWrapperObject>> m_delayedReleaseObjects;
unsigned m_delayedReleaseRecursionCount { 0 };
#endif
unsigned m_deferralDepth { 0 };
HashSet<WeakGCMapBase*> m_weakGCMaps;
std::unique_ptr<MarkStackArray> m_sharedCollectorMarkStack;
std::unique_ptr<MarkStackArray> m_sharedMutatorMarkStack;
unsigned m_numberOfActiveParallelMarkers { 0 };
unsigned m_numberOfWaitingParallelMarkers { 0 };
ConcurrentPtrHashSet m_opaqueRoots;
static constexpr size_t s_blockFragmentLength = 32;
ParallelHelperClient m_helperClient;
RefPtr<SharedTask<void(SlotVisitor&)>> m_bonusVisitorTask;
#if ENABLE(RESOURCE_USAGE)
size_t m_blockBytesAllocated { 0 };
size_t m_externalMemorySize { 0 };
#endif
std::unique_ptr<MutatorScheduler> m_scheduler;
static constexpr unsigned mutatorHasConnBit = 1u << 0u; // Must also be protected by threadLock.
static constexpr unsigned stoppedBit = 1u << 1u; // Only set when !hasAccessBit
static constexpr unsigned hasAccessBit = 1u << 2u;
static constexpr unsigned gcDidJITBit = 1u << 3u; // Set when the GC did some JITing, so on resume we need to cpuid.
static constexpr unsigned needFinalizeBit = 1u << 4u;
static constexpr unsigned mutatorWaitingBit = 1u << 5u; // Allows the mutator to use this as a condition variable.
Atomic<unsigned> m_worldState;
bool m_worldIsStopped { false };
Lock m_visitRaceLock;
Lock m_markingMutex;
Condition m_markingConditionVariable;
MonotonicTime m_beforeGC;
MonotonicTime m_afterGC;
MonotonicTime m_stopTime;
Deque<GCRequest> m_requests;
GCRequest m_currentRequest;
Ticket m_lastServedTicket { 0 };
Ticket m_lastGrantedTicket { 0 };
CollectorPhase m_lastPhase { CollectorPhase::NotRunning };
CollectorPhase m_currentPhase { CollectorPhase::NotRunning };
CollectorPhase m_nextPhase { CollectorPhase::NotRunning };
bool m_collectorThreadIsRunning { false };
bool m_threadShouldStop { false };
bool m_threadIsStopping { false };
bool m_mutatorDidRun { true };
bool m_didDeferGCWork { false };
bool m_shouldStopCollectingContinuously { false };
uint64_t m_mutatorExecutionVersion { 0 };
uint64_t m_phaseVersion { 0 };
Box<Lock> m_threadLock;
Ref<AutomaticThreadCondition> m_threadCondition; // The mutator must not wait on this. It would cause a deadlock.
RefPtr<AutomaticThread> m_thread;
RefPtr<Thread> m_collectContinuouslyThread { nullptr };
MonotonicTime m_lastGCStartTime;
MonotonicTime m_lastGCEndTime;
MonotonicTime m_currentGCStartTime;
Seconds m_totalGCTime;
uintptr_t m_barriersExecuted { 0 };
CurrentThreadState* m_currentThreadState { nullptr };
Thread* m_currentThread { nullptr }; // It's OK if this becomes a dangling pointer.
#if USE(BMALLOC_MEMORY_FOOTPRINT_API)
unsigned m_percentAvailableMemoryCachedCallCount { 0 };
bool m_overCriticalMemoryThreshold { false };
#endif
bool m_parallelMarkersShouldExit { false };
Lock m_collectContinuouslyLock;
Condition m_collectContinuouslyCondition;
};
} // namespace JSC