darling-JavaScriptCore/dfg/DFGAbstractInterpreterInlines.h
2018-01-02 21:17:19 -08:00

3292 lines
117 KiB
C++

/*
* Copyright (C) 2013-2017 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#pragma once
#if ENABLE(DFG_JIT)
#include "ArrayConstructor.h"
#include "DFGAbstractInterpreter.h"
#include "DOMJITGetterSetter.h"
#include "DOMJITSignature.h"
#include "GetByIdStatus.h"
#include "GetterSetter.h"
#include "HashMapImpl.h"
#include "JITOperations.h"
#include "MathCommon.h"
#include "Operations.h"
#include "PutByIdStatus.h"
#include "StringObject.h"
namespace JSC { namespace DFG {
template<typename AbstractStateType>
AbstractInterpreter<AbstractStateType>::AbstractInterpreter(Graph& graph, AbstractStateType& state)
: m_codeBlock(graph.m_codeBlock)
, m_graph(graph)
, m_vm(m_graph.m_vm)
, m_state(state)
{
if (m_graph.m_form == SSA)
m_phiChildren = std::make_unique<PhiChildren>(m_graph);
}
template<typename AbstractStateType>
AbstractInterpreter<AbstractStateType>::~AbstractInterpreter()
{
}
template<typename AbstractStateType>
typename AbstractInterpreter<AbstractStateType>::BooleanResult
AbstractInterpreter<AbstractStateType>::booleanResult(
Node* node, AbstractValue& value)
{
JSValue childConst = value.value();
if (childConst) {
if (childConst.toBoolean(m_codeBlock->globalObjectFor(node->origin.semantic)->globalExec()))
return DefinitelyTrue;
return DefinitelyFalse;
}
// Next check if we can fold because we know that the source is an object or string and does not equal undefined.
if (isCellSpeculation(value.m_type) && !value.m_structure.isTop()) {
bool allTrue = true;
for (unsigned i = value.m_structure.size(); i--;) {
RegisteredStructure structure = value.m_structure[i];
if (structure->masqueradesAsUndefined(m_codeBlock->globalObjectFor(node->origin.semantic))
|| structure->typeInfo().type() == StringType) {
allTrue = false;
break;
}
}
if (allTrue)
return DefinitelyTrue;
}
return UnknownBooleanResult;
}
template<typename AbstractStateType>
void AbstractInterpreter<AbstractStateType>::startExecuting()
{
ASSERT(m_state.block());
ASSERT(m_state.isValid());
m_state.setDidClobber(false);
}
template<typename AbstractStateType>
void AbstractInterpreter<AbstractStateType>::executeEdges(Node* node)
{
m_graph.doToChildren(
node,
[&] (Edge& edge) {
filterEdgeByUse(edge);
});
}
template<typename AbstractStateType>
void AbstractInterpreter<AbstractStateType>::executeKnownEdgeTypes(Node* node)
{
// Some use kinds are required to not have checks, because we know somehow that the incoming
// value will already have the type we want. In those cases, AI may not be smart enough to
// prove that this is indeed the case. But the existance of the edge is enough to prove that
// it is indeed the case. Taking advantage of this is not optional, since otherwise the DFG
// and FTL backends may emit checks in a node that lacks a valid exit origin.
m_graph.doToChildren(
node,
[&] (Edge& edge) {
if (mayHaveTypeCheck(edge.useKind()))
return;
filterEdgeByUse(edge);
});
}
template<typename AbstractStateType>
void AbstractInterpreter<AbstractStateType>::verifyEdge(Node* node, Edge edge)
{
if (!(forNode(edge).m_type & ~typeFilterFor(edge.useKind())))
return;
DFG_CRASH(m_graph, node, toCString("Edge verification error: ", node, "->", edge, " was expected to have type ", SpeculationDump(typeFilterFor(edge.useKind())), " but has type ", SpeculationDump(forNode(edge).m_type), " (", forNode(edge).m_type, ")").data(), AbstractInterpreterInvalidType, node->op(), edge->op(), edge.useKind(), forNode(edge).m_type);
}
template<typename AbstractStateType>
void AbstractInterpreter<AbstractStateType>::verifyEdges(Node* node)
{
DFG_NODE_DO_TO_CHILDREN(m_graph, node, verifyEdge);
}
inline bool isToThisAnIdentity(bool isStrictMode, AbstractValue& valueForNode)
{
// We look at the type first since that will cover most cases and does not require iterating all the structures.
if (isStrictMode) {
if (valueForNode.m_type && !(valueForNode.m_type & SpecObjectOther))
return true;
} else {
if (valueForNode.m_type && !(valueForNode.m_type & (~SpecObject | SpecObjectOther)))
return true;
}
if ((isStrictMode || (valueForNode.m_type && !(valueForNode.m_type & ~SpecObject))) && valueForNode.m_structure.isFinite()) {
bool overridesToThis = false;
valueForNode.m_structure.forEach([&](RegisteredStructure structure) {
TypeInfo type = structure->typeInfo();
ASSERT(type.isObject() || type.type() == StringType || type.type() == SymbolType);
if (!isStrictMode)
ASSERT(type.isObject());
// We don't need to worry about strings/symbols here since either:
// 1) We are in strict mode and strings/symbols are not wrapped
// 2) The AI has proven that the type of this is a subtype of object
if (type.isObject() && type.overridesToThis())
overridesToThis = true;
});
return !overridesToThis;
}
return false;
}
template<typename AbstractStateType>
bool AbstractInterpreter<AbstractStateType>::executeEffects(unsigned clobberLimit, Node* node)
{
verifyEdges(node);
m_state.createValueForNode(node);
switch (node->op()) {
case JSConstant:
case DoubleConstant:
case Int52Constant: {
setBuiltInConstant(node, *node->constant());
break;
}
case LazyJSConstant: {
LazyJSValue value = node->lazyJSValue();
switch (value.kind()) {
case LazyJSValue::KnownValue:
setConstant(node, value.value()->value());
break;
case LazyJSValue::SingleCharacterString:
case LazyJSValue::KnownStringImpl:
case LazyJSValue::NewStringImpl:
forNode(node).setType(m_graph, SpecString);
break;
}
break;
}
case Identity: {
forNode(node) = forNode(node->child1());
if (forNode(node).value())
m_state.setFoundConstants(true);
break;
}
case ExtractOSREntryLocal: {
forNode(node).makeBytecodeTop();
break;
}
case GetLocal: {
VariableAccessData* variableAccessData = node->variableAccessData();
AbstractValue value = m_state.variables().operand(variableAccessData->local().offset());
// The value in the local should already be checked.
DFG_ASSERT(m_graph, node, value.isType(typeFilterFor(variableAccessData->flushFormat())));
if (value.value())
m_state.setFoundConstants(true);
forNode(node) = value;
break;
}
case GetStack: {
StackAccessData* data = node->stackAccessData();
AbstractValue value = m_state.variables().operand(data->local);
// The value in the local should already be checked.
DFG_ASSERT(m_graph, node, value.isType(typeFilterFor(data->format)));
if (value.value())
m_state.setFoundConstants(true);
forNode(node) = value;
break;
}
case GetLocalUnlinked: {
AbstractValue value = m_state.variables().operand(node->unlinkedLocal().offset());
if (value.value())
m_state.setFoundConstants(true);
forNode(node) = value;
break;
}
case SetLocal: {
m_state.variables().operand(node->local()) = forNode(node->child1());
break;
}
case PutStack: {
m_state.variables().operand(node->stackAccessData()->local) = forNode(node->child1());
break;
}
case MovHint: {
// Don't need to do anything. A MovHint only informs us about what would have happened
// in bytecode, but this code is just concerned with what is actually happening during
// DFG execution.
break;
}
case KillStack: {
// This is just a hint telling us that the OSR state of the local is no longer inside the
// flushed data.
break;
}
case SetArgument:
// Assert that the state of arguments has been set. SetArgument means that someone set
// the argument values out-of-band, and currently this always means setting to a
// non-clear value.
ASSERT(!m_state.variables().operand(node->local()).isClear());
break;
case LoadVarargs:
case ForwardVarargs: {
// FIXME: ForwardVarargs should check if the count becomes known, and if it does, it should turn
// itself into a straight-line sequence of GetStack/PutStack.
// https://bugs.webkit.org/show_bug.cgi?id=143071
clobberWorld(node->origin.semantic, clobberLimit);
LoadVarargsData* data = node->loadVarargsData();
m_state.variables().operand(data->count).setType(SpecInt32Only);
for (unsigned i = data->limit - 1; i--;)
m_state.variables().operand(data->start.offset() + i).makeHeapTop();
break;
}
case BitAnd:
case BitOr:
case BitXor:
case BitRShift:
case BitLShift:
case BitURShift: {
if (node->child1().useKind() == UntypedUse || node->child2().useKind() == UntypedUse) {
clobberWorld(node->origin.semantic, clobberLimit);
forNode(node).setType(m_graph, SpecInt32Only);
break;
}
JSValue left = forNode(node->child1()).value();
JSValue right = forNode(node->child2()).value();
if (left && right && left.isInt32() && right.isInt32()) {
int32_t a = left.asInt32();
int32_t b = right.asInt32();
switch (node->op()) {
case BitAnd:
setConstant(node, JSValue(a & b));
break;
case BitOr:
setConstant(node, JSValue(a | b));
break;
case BitXor:
setConstant(node, JSValue(a ^ b));
break;
case BitRShift:
setConstant(node, JSValue(a >> static_cast<uint32_t>(b)));
break;
case BitLShift:
setConstant(node, JSValue(a << static_cast<uint32_t>(b)));
break;
case BitURShift:
setConstant(node, JSValue(static_cast<uint32_t>(a) >> static_cast<uint32_t>(b)));
break;
default:
RELEASE_ASSERT_NOT_REACHED();
break;
}
break;
}
if (node->op() == BitAnd
&& (isBoolInt32Speculation(forNode(node->child1()).m_type) ||
isBoolInt32Speculation(forNode(node->child2()).m_type))) {
forNode(node).setType(SpecBoolInt32);
break;
}
forNode(node).setType(SpecInt32Only);
break;
}
case UInt32ToNumber: {
JSValue child = forNode(node->child1()).value();
if (doesOverflow(node->arithMode())) {
if (enableInt52()) {
if (child && child.isAnyInt()) {
int64_t machineInt = child.asAnyInt();
setConstant(node, jsNumber(static_cast<uint32_t>(machineInt)));
break;
}
forNode(node).setType(SpecAnyInt);
break;
}
if (child && child.isInt32()) {
uint32_t value = child.asInt32();
setConstant(node, jsNumber(value));
break;
}
forNode(node).setType(SpecAnyIntAsDouble);
break;
}
if (child && child.isInt32()) {
int32_t value = child.asInt32();
if (value >= 0) {
setConstant(node, jsNumber(value));
break;
}
}
forNode(node).setType(SpecInt32Only);
break;
}
case BooleanToNumber: {
JSValue concreteValue = forNode(node->child1()).value();
if (concreteValue) {
if (concreteValue.isBoolean())
setConstant(node, jsNumber(concreteValue.asBoolean()));
else
setConstant(node, *m_graph.freeze(concreteValue));
break;
}
AbstractValue& value = forNode(node);
value = forNode(node->child1());
if (node->child1().useKind() == UntypedUse && !(value.m_type & ~SpecBoolean))
m_state.setFoundConstants(true);
if (value.m_type & SpecBoolean) {
value.merge(SpecBoolInt32);
value.filter(~SpecBoolean);
}
break;
}
case DoubleAsInt32: {
JSValue child = forNode(node->child1()).value();
if (child && child.isNumber()) {
double asDouble = child.asNumber();
int32_t asInt = JSC::toInt32(asDouble);
if (bitwise_cast<int64_t>(static_cast<double>(asInt)) == bitwise_cast<int64_t>(asDouble)) {
setConstant(node, JSValue(asInt));
break;
}
}
forNode(node).setType(SpecInt32Only);
break;
}
case ValueToInt32: {
JSValue child = forNode(node->child1()).value();
if (child) {
if (child.isNumber()) {
if (child.isInt32())
setConstant(node, child);
else
setConstant(node, JSValue(JSC::toInt32(child.asDouble())));
break;
}
if (child.isBoolean()) {
setConstant(node, jsNumber(child.asBoolean()));
break;
}
if (child.isUndefinedOrNull()) {
setConstant(node, jsNumber(0));
break;
}
}
if (isBooleanSpeculation(forNode(node->child1()).m_type)) {
forNode(node).setType(SpecBoolInt32);
break;
}
forNode(node).setType(SpecInt32Only);
break;
}
case DoubleRep: {
JSValue child = forNode(node->child1()).value();
if (std::optional<double> number = child.toNumberFromPrimitive()) {
setConstant(node, jsDoubleNumber(*number));
break;
}
SpeculatedType type = forNode(node->child1()).m_type;
switch (node->child1().useKind()) {
case NotCellUse: {
if (type & SpecOther) {
type &= ~SpecOther;
type |= SpecDoublePureNaN | SpecBoolInt32; // Null becomes zero, undefined becomes NaN.
}
if (type & SpecBoolean) {
type &= ~SpecBoolean;
type |= SpecBoolInt32; // True becomes 1, false becomes 0.
}
type &= SpecBytecodeNumber;
break;
}
case Int52RepUse:
case NumberUse:
case RealNumberUse:
break;
default:
RELEASE_ASSERT_NOT_REACHED();
}
forNode(node).setType(type);
forNode(node).fixTypeForRepresentation(m_graph, node);
break;
}
case Int52Rep: {
JSValue child = forNode(node->child1()).value();
if (child && child.isAnyInt()) {
setConstant(node, child);
break;
}
forNode(node).setType(SpecAnyInt);
break;
}
case ValueRep: {
JSValue value = forNode(node->child1()).value();
if (value) {
setConstant(node, value);
break;
}
forNode(node).setType(m_graph, forNode(node->child1()).m_type & ~SpecDoubleImpureNaN);
forNode(node).fixTypeForRepresentation(m_graph, node);
break;
}
case ValueAdd: {
ASSERT(node->binaryUseKind() == UntypedUse);
clobberWorld(node->origin.semantic, clobberLimit);
forNode(node).setType(m_graph, SpecString | SpecBytecodeNumber);
break;
}
case StrCat: {
forNode(node).setType(m_graph, SpecString);
break;
}
case ArithAdd: {
JSValue left = forNode(node->child1()).value();
JSValue right = forNode(node->child2()).value();
switch (node->binaryUseKind()) {
case Int32Use:
if (left && right && left.isInt32() && right.isInt32()) {
if (!shouldCheckOverflow(node->arithMode())) {
setConstant(node, jsNumber(left.asInt32() + right.asInt32()));
break;
}
JSValue result = jsNumber(left.asNumber() + right.asNumber());
if (result.isInt32()) {
setConstant(node, result);
break;
}
}
forNode(node).setType(SpecInt32Only);
break;
case Int52RepUse:
if (left && right && left.isAnyInt() && right.isAnyInt()) {
JSValue result = jsNumber(left.asAnyInt() + right.asAnyInt());
if (result.isAnyInt()) {
setConstant(node, result);
break;
}
}
forNode(node).setType(SpecAnyInt);
break;
case DoubleRepUse:
if (left && right && left.isNumber() && right.isNumber()) {
setConstant(node, jsDoubleNumber(left.asNumber() + right.asNumber()));
break;
}
forNode(node).setType(
typeOfDoubleSum(
forNode(node->child1()).m_type, forNode(node->child2()).m_type));
break;
default:
RELEASE_ASSERT_NOT_REACHED();
break;
}
break;
}
case AtomicsIsLockFree: {
if (node->child1().useKind() != Int32Use)
clobberWorld(node->origin.semantic, clobberLimit);
forNode(node).setType(SpecBoolInt32);
break;
}
case ArithClz32: {
JSValue operand = forNode(node->child1()).value();
if (std::optional<double> number = operand.toNumberFromPrimitive()) {
uint32_t value = toUInt32(*number);
setConstant(node, jsNumber(clz32(value)));
break;
}
forNode(node).setType(SpecInt32Only);
break;
}
case MakeRope: {
unsigned numberOfChildren = 0;
unsigned numberOfRemovedChildren = 0;
std::optional<unsigned> nonEmptyIndex;
for (unsigned i = 0; i < AdjacencyList::Size; ++i) {
Edge& edge = node->children.child(i);
if (!edge)
break;
++numberOfChildren;
JSValue childConstant = m_state.forNode(edge).value();
if (!childConstant) {
nonEmptyIndex = i;
continue;
}
if (!childConstant.isString()) {
nonEmptyIndex = i;
continue;
}
if (asString(childConstant)->length()) {
nonEmptyIndex = i;
continue;
}
++numberOfRemovedChildren;
}
if (numberOfRemovedChildren) {
m_state.setFoundConstants(true);
if (numberOfRemovedChildren == numberOfChildren) {
// Propagate the last child. This is the way taken in the constant folding phase.
forNode(node) = forNode(node->children.child(numberOfChildren - 1));
break;
}
if ((numberOfRemovedChildren + 1) == numberOfChildren) {
ASSERT(nonEmptyIndex);
forNode(node) = forNode(node->children.child(nonEmptyIndex.value()));
break;
}
}
forNode(node).set(m_graph, m_vm.stringStructure.get());
break;
}
case ArithSub: {
JSValue left = forNode(node->child1()).value();
JSValue right = forNode(node->child2()).value();
switch (node->binaryUseKind()) {
case Int32Use:
if (left && right && left.isInt32() && right.isInt32()) {
if (!shouldCheckOverflow(node->arithMode())) {
setConstant(node, jsNumber(left.asInt32() - right.asInt32()));
break;
}
JSValue result = jsNumber(left.asNumber() - right.asNumber());
if (result.isInt32()) {
setConstant(node, result);
break;
}
}
forNode(node).setType(SpecInt32Only);
break;
case Int52RepUse:
if (left && right && left.isAnyInt() && right.isAnyInt()) {
JSValue result = jsNumber(left.asAnyInt() - right.asAnyInt());
if (result.isAnyInt() || !shouldCheckOverflow(node->arithMode())) {
setConstant(node, result);
break;
}
}
forNode(node).setType(SpecAnyInt);
break;
case DoubleRepUse:
if (left && right && left.isNumber() && right.isNumber()) {
setConstant(node, jsDoubleNumber(left.asNumber() - right.asNumber()));
break;
}
forNode(node).setType(
typeOfDoubleDifference(
forNode(node->child1()).m_type, forNode(node->child2()).m_type));
break;
case UntypedUse:
clobberWorld(node->origin.semantic, clobberLimit);
forNode(node).setType(m_graph, SpecBytecodeNumber);
break;
default:
RELEASE_ASSERT_NOT_REACHED();
break;
}
break;
}
case ArithNegate: {
JSValue child = forNode(node->child1()).value();
switch (node->child1().useKind()) {
case Int32Use:
if (child && child.isInt32()) {
if (!shouldCheckOverflow(node->arithMode())) {
setConstant(node, jsNumber(-child.asInt32()));
break;
}
double doubleResult;
if (shouldCheckNegativeZero(node->arithMode()))
doubleResult = -child.asNumber();
else
doubleResult = 0 - child.asNumber();
JSValue valueResult = jsNumber(doubleResult);
if (valueResult.isInt32()) {
setConstant(node, valueResult);
break;
}
}
forNode(node).setType(SpecInt32Only);
break;
case Int52RepUse:
if (child && child.isAnyInt()) {
double doubleResult;
if (shouldCheckNegativeZero(node->arithMode()))
doubleResult = -child.asNumber();
else
doubleResult = 0 - child.asNumber();
JSValue valueResult = jsNumber(doubleResult);
if (valueResult.isAnyInt()) {
setConstant(node, valueResult);
break;
}
}
forNode(node).setType(SpecAnyInt);
break;
case DoubleRepUse:
if (child && child.isNumber()) {
setConstant(node, jsDoubleNumber(-child.asNumber()));
break;
}
forNode(node).setType(
typeOfDoubleNegation(
forNode(node->child1()).m_type));
break;
default:
DFG_ASSERT(m_graph, node, node->child1().useKind() == UntypedUse);
forNode(node).setType(SpecBytecodeNumber);
break;
}
break;
}
case ArithMul: {
JSValue left = forNode(node->child1()).value();
JSValue right = forNode(node->child2()).value();
switch (node->binaryUseKind()) {
case Int32Use:
if (left && right && left.isInt32() && right.isInt32()) {
if (!shouldCheckOverflow(node->arithMode())) {
setConstant(node, jsNumber(left.asInt32() * right.asInt32()));
break;
}
double doubleResult = left.asNumber() * right.asNumber();
if (!shouldCheckNegativeZero(node->arithMode()))
doubleResult += 0; // Sanitizes zero.
JSValue valueResult = jsNumber(doubleResult);
if (valueResult.isInt32()) {
setConstant(node, valueResult);
break;
}
}
forNode(node).setType(SpecInt32Only);
break;
case Int52RepUse:
if (left && right && left.isAnyInt() && right.isAnyInt()) {
double doubleResult = left.asNumber() * right.asNumber();
if (!shouldCheckNegativeZero(node->arithMode()))
doubleResult += 0;
JSValue valueResult = jsNumber(doubleResult);
if (valueResult.isAnyInt()) {
setConstant(node, valueResult);
break;
}
}
forNode(node).setType(SpecAnyInt);
break;
case DoubleRepUse:
if (left && right && left.isNumber() && right.isNumber()) {
setConstant(node, jsDoubleNumber(left.asNumber() * right.asNumber()));
break;
}
forNode(node).setType(
typeOfDoubleProduct(
forNode(node->child1()).m_type, forNode(node->child2()).m_type));
break;
case UntypedUse:
clobberWorld(node->origin.semantic, clobberLimit);
forNode(node).setType(m_graph, SpecBytecodeNumber);
break;
default:
RELEASE_ASSERT_NOT_REACHED();
break;
}
break;
}
case ArithDiv: {
JSValue left = forNode(node->child1()).value();
JSValue right = forNode(node->child2()).value();
switch (node->binaryUseKind()) {
case Int32Use:
if (left && right && left.isInt32() && right.isInt32()) {
double doubleResult = left.asNumber() / right.asNumber();
if (!shouldCheckOverflow(node->arithMode()))
doubleResult = toInt32(doubleResult);
else if (!shouldCheckNegativeZero(node->arithMode()))
doubleResult += 0; // Sanitizes zero.
JSValue valueResult = jsNumber(doubleResult);
if (valueResult.isInt32()) {
setConstant(node, valueResult);
break;
}
}
forNode(node).setType(SpecInt32Only);
break;
case DoubleRepUse:
if (left && right && left.isNumber() && right.isNumber()) {
setConstant(node, jsDoubleNumber(left.asNumber() / right.asNumber()));
break;
}
forNode(node).setType(
typeOfDoubleQuotient(
forNode(node->child1()).m_type, forNode(node->child2()).m_type));
break;
case UntypedUse:
clobberWorld(node->origin.semantic, clobberLimit);
forNode(node).setType(m_graph, SpecBytecodeNumber);
break;
default:
RELEASE_ASSERT_NOT_REACHED();
break;
}
break;
}
case ArithMod: {
JSValue left = forNode(node->child1()).value();
JSValue right = forNode(node->child2()).value();
switch (node->binaryUseKind()) {
case Int32Use:
if (left && right && left.isInt32() && right.isInt32()) {
double doubleResult = fmod(left.asNumber(), right.asNumber());
if (!shouldCheckOverflow(node->arithMode()))
doubleResult = toInt32(doubleResult);
else if (!shouldCheckNegativeZero(node->arithMode()))
doubleResult += 0; // Sanitizes zero.
JSValue valueResult = jsNumber(doubleResult);
if (valueResult.isInt32()) {
setConstant(node, valueResult);
break;
}
}
forNode(node).setType(SpecInt32Only);
break;
case DoubleRepUse:
if (left && right && left.isNumber() && right.isNumber()) {
setConstant(node, jsDoubleNumber(fmod(left.asNumber(), right.asNumber())));
break;
}
forNode(node).setType(
typeOfDoubleBinaryOp(
forNode(node->child1()).m_type, forNode(node->child2()).m_type));
break;
default:
RELEASE_ASSERT_NOT_REACHED();
break;
}
break;
}
case ArithMin: {
JSValue left = forNode(node->child1()).value();
JSValue right = forNode(node->child2()).value();
switch (node->binaryUseKind()) {
case Int32Use:
if (left && right && left.isInt32() && right.isInt32()) {
setConstant(node, jsNumber(std::min(left.asInt32(), right.asInt32())));
break;
}
forNode(node).setType(SpecInt32Only);
break;
case DoubleRepUse:
if (left && right && left.isNumber() && right.isNumber()) {
double a = left.asNumber();
double b = right.asNumber();
setConstant(node, jsDoubleNumber(a < b ? a : (b <= a ? b : a + b)));
break;
}
forNode(node).setType(
typeOfDoubleMinMax(
forNode(node->child1()).m_type, forNode(node->child2()).m_type));
break;
default:
RELEASE_ASSERT_NOT_REACHED();
break;
}
break;
}
case ArithMax: {
JSValue left = forNode(node->child1()).value();
JSValue right = forNode(node->child2()).value();
switch (node->binaryUseKind()) {
case Int32Use:
if (left && right && left.isInt32() && right.isInt32()) {
setConstant(node, jsNumber(std::max(left.asInt32(), right.asInt32())));
break;
}
forNode(node).setType(SpecInt32Only);
break;
case DoubleRepUse:
if (left && right && left.isNumber() && right.isNumber()) {
double a = left.asNumber();
double b = right.asNumber();
setConstant(node, jsDoubleNumber(a > b ? a : (b >= a ? b : a + b)));
break;
}
forNode(node).setType(
typeOfDoubleMinMax(
forNode(node->child1()).m_type, forNode(node->child2()).m_type));
break;
default:
RELEASE_ASSERT_NOT_REACHED();
break;
}
break;
}
case ArithAbs: {
JSValue child = forNode(node->child1()).value();
switch (node->child1().useKind()) {
case Int32Use:
if (std::optional<double> number = child.toNumberFromPrimitive()) {
JSValue result = jsNumber(fabs(*number));
if (result.isInt32()) {
setConstant(node, result);
break;
}
}
forNode(node).setType(SpecInt32Only);
break;
case DoubleRepUse:
if (std::optional<double> number = child.toNumberFromPrimitive()) {
setConstant(node, jsDoubleNumber(fabs(*number)));
break;
}
forNode(node).setType(typeOfDoubleAbs(forNode(node->child1()).m_type));
break;
default:
DFG_ASSERT(m_graph, node, node->child1().useKind() == UntypedUse);
forNode(node).setType(SpecFullNumber);
break;
}
break;
}
case ArithPow: {
JSValue childY = forNode(node->child2()).value();
if (childY && childY.isNumber()) {
if (!childY.asNumber()) {
setConstant(node, jsDoubleNumber(1));
break;
}
JSValue childX = forNode(node->child1()).value();
if (childX && childX.isNumber()) {
setConstant(node, jsDoubleNumber(operationMathPow(childX.asNumber(), childY.asNumber())));
break;
}
}
forNode(node).setType(typeOfDoublePow(forNode(node->child1()).m_type, forNode(node->child2()).m_type));
break;
}
case ArithRandom: {
forNode(node).setType(m_graph, SpecDoubleReal);
break;
}
case ArithRound:
case ArithFloor:
case ArithCeil:
case ArithTrunc: {
JSValue operand = forNode(node->child1()).value();
if (std::optional<double> number = operand.toNumberFromPrimitive()) {
double roundedValue = 0;
if (node->op() == ArithRound)
roundedValue = jsRound(*number);
else if (node->op() == ArithFloor)
roundedValue = floor(*number);
else if (node->op() == ArithCeil)
roundedValue = ceil(*number);
else {
ASSERT(node->op() == ArithTrunc);
roundedValue = trunc(*number);
}
if (node->child1().useKind() == UntypedUse) {
setConstant(node, jsNumber(roundedValue));
break;
}
if (producesInteger(node->arithRoundingMode())) {
int32_t roundedValueAsInt32 = static_cast<int32_t>(roundedValue);
if (roundedValueAsInt32 == roundedValue) {
if (shouldCheckNegativeZero(node->arithRoundingMode())) {
if (roundedValueAsInt32 || !std::signbit(roundedValue)) {
setConstant(node, jsNumber(roundedValueAsInt32));
break;
}
} else {
setConstant(node, jsNumber(roundedValueAsInt32));
break;
}
}
} else {
setConstant(node, jsDoubleNumber(roundedValue));
break;
}
}
if (node->child1().useKind() == DoubleRepUse) {
if (producesInteger(node->arithRoundingMode()))
forNode(node).setType(SpecInt32Only);
else if (node->child1().useKind() == DoubleRepUse)
forNode(node).setType(typeOfDoubleRounding(forNode(node->child1()).m_type));
} else {
DFG_ASSERT(m_graph, node, node->child1().useKind() == UntypedUse);
forNode(node).setType(SpecFullNumber);
}
break;
}
case ArithSqrt:
executeDoubleUnaryOpEffects(node, sqrt);
break;
case ArithFRound:
executeDoubleUnaryOpEffects(node, [](double value) -> double { return static_cast<float>(value); });
break;
case ArithUnary:
executeDoubleUnaryOpEffects(node, arithUnaryFunction(node->arithUnaryType()));
break;
case LogicalNot: {
switch (booleanResult(node, forNode(node->child1()))) {
case DefinitelyTrue:
setConstant(node, jsBoolean(false));
break;
case DefinitelyFalse:
setConstant(node, jsBoolean(true));
break;
default:
forNode(node).setType(SpecBoolean);
break;
}
break;
}
case MapHash: {
if (JSValue key = forNode(node->child1()).value()) {
if (std::optional<uint32_t> hash = concurrentJSMapHash(key)) {
// Although C++ code uses uint32_t for the hash, the closest type in DFG IR is Int32
// and that's what MapHash returns. So, we have to cast to int32_t to avoid large
// unsigned values becoming doubles. This casting between signed and unsigned
// happens in the assembly code we emit when we don't constant fold this node.
setConstant(node, jsNumber(static_cast<int32_t>(*hash)));
break;
}
}
forNode(node).setType(SpecInt32Only);
break;
}
case ToLowerCase: {
forNode(node).setType(m_graph, SpecString);
break;
}
case LoadFromJSMapBucket:
forNode(node).makeHeapTop();
break;
case GetMapBucket:
forNode(node).setType(m_graph, SpecCellOther);
break;
case IsNonEmptyMapBucket:
forNode(node).setType(SpecBoolean);
break;
case IsEmpty:
case IsUndefined:
case IsBoolean:
case IsNumber:
case IsObject:
case IsObjectOrNull:
case IsFunction:
case IsCellWithType:
case IsTypedArrayView: {
AbstractValue child = forNode(node->child1());
if (child.value()) {
bool constantWasSet = true;
switch (node->op()) {
case IsCellWithType:
setConstant(node, jsBoolean(child.value().isCell() && child.value().asCell()->type() == node->queriedType()));
break;
case IsUndefined:
setConstant(node, jsBoolean(
child.value().isCell()
? child.value().asCell()->structure()->masqueradesAsUndefined(m_codeBlock->globalObjectFor(node->origin.semantic))
: child.value().isUndefined()));
break;
case IsBoolean:
setConstant(node, jsBoolean(child.value().isBoolean()));
break;
case IsNumber:
setConstant(node, jsBoolean(child.value().isNumber()));
break;
case IsObject:
setConstant(node, jsBoolean(child.value().isObject()));
break;
case IsObjectOrNull:
if (child.value().isObject()) {
JSObject* object = asObject(child.value());
if (object->type() == JSFunctionType)
setConstant(node, jsBoolean(false));
else if (!(object->inlineTypeFlags() & TypeOfShouldCallGetCallData))
setConstant(node, jsBoolean(!child.value().asCell()->structure()->masqueradesAsUndefined(m_codeBlock->globalObjectFor(node->origin.semantic))));
else {
// FIXME: This could just call getCallData.
// https://bugs.webkit.org/show_bug.cgi?id=144457
constantWasSet = false;
}
} else
setConstant(node, jsBoolean(child.value().isNull()));
break;
case IsFunction:
if (child.value().isObject()) {
JSObject* object = asObject(child.value());
if (object->type() == JSFunctionType)
setConstant(node, jsBoolean(true));
else if (!(object->inlineTypeFlags() & TypeOfShouldCallGetCallData))
setConstant(node, jsBoolean(false));
else {
// FIXME: This could just call getCallData.
// https://bugs.webkit.org/show_bug.cgi?id=144457
constantWasSet = false;
}
} else
setConstant(node, jsBoolean(false));
break;
case IsEmpty:
setConstant(node, jsBoolean(child.value().isEmpty()));
break;
case IsTypedArrayView:
setConstant(node, jsBoolean(child.value().isObject() && isTypedView(child.value().getObject()->classInfo(m_vm)->typedArrayStorageType)));
break;
default:
constantWasSet = false;
break;
}
if (constantWasSet)
break;
}
// FIXME: This code should really use AbstractValue::isType() and
// AbstractValue::couldBeType().
// https://bugs.webkit.org/show_bug.cgi?id=146870
bool constantWasSet = false;
switch (node->op()) {
case IsEmpty: {
if (child.m_type && !(child.m_type & SpecEmpty)) {
setConstant(node, jsBoolean(false));
constantWasSet = true;
break;
}
if (child.m_type && !(child.m_type & ~SpecEmpty)) {
setConstant(node, jsBoolean(true));
constantWasSet = true;
break;
}
break;
}
case IsUndefined:
// FIXME: Use the masquerades-as-undefined watchpoint thingy.
// https://bugs.webkit.org/show_bug.cgi?id=144456
if (!(child.m_type & (SpecOther | SpecObjectOther))) {
setConstant(node, jsBoolean(false));
constantWasSet = true;
break;
}
break;
case IsBoolean:
if (!(child.m_type & ~SpecBoolean)) {
setConstant(node, jsBoolean(true));
constantWasSet = true;
break;
}
if (!(child.m_type & SpecBoolean)) {
setConstant(node, jsBoolean(false));
constantWasSet = true;
break;
}
break;
case IsNumber:
if (!(child.m_type & ~SpecFullNumber)) {
setConstant(node, jsBoolean(true));
constantWasSet = true;
break;
}
if (!(child.m_type & SpecFullNumber)) {
setConstant(node, jsBoolean(false));
constantWasSet = true;
break;
}
break;
case IsObject:
if (!(child.m_type & ~SpecObject)) {
setConstant(node, jsBoolean(true));
constantWasSet = true;
break;
}
if (!(child.m_type & SpecObject)) {
setConstant(node, jsBoolean(false));
constantWasSet = true;
break;
}
break;
case IsObjectOrNull:
// FIXME: Use the masquerades-as-undefined watchpoint thingy.
// https://bugs.webkit.org/show_bug.cgi?id=144456
// These expressions are complicated to parse. A helpful way to parse this is that
// "!(T & ~S)" means "T is a subset of S". Conversely, "!(T & S)" means "T is a
// disjoint set from S". Things like "T - S" means that, provided that S is a
// subset of T, it's the "set of all things in T but not in S". Things like "T | S"
// mean the "union of T and S".
// Is the child's type an object that isn't an other-object (i.e. object that could
// have masquaredes-as-undefined traps) and isn't a function? Then: we should fold
// this to true.
if (!(child.m_type & ~(SpecObject - SpecObjectOther - SpecFunction))) {
setConstant(node, jsBoolean(true));
constantWasSet = true;
break;
}
// Is the child's type definitely not either of: an object that isn't a function,
// or either undefined or null? Then: we should fold this to false. This means
// for example that if it's any non-function object, including those that have
// masquerades-as-undefined traps, then we don't fold. It also means we won't fold
// if it's undefined-or-null, since the type bits don't distinguish between
// undefined (which should fold to false) and null (which should fold to true).
if (!(child.m_type & ((SpecObject - SpecFunction) | SpecOther))) {
setConstant(node, jsBoolean(false));
constantWasSet = true;
break;
}
break;
case IsFunction:
if (!(child.m_type & ~SpecFunction)) {
setConstant(node, jsBoolean(true));
constantWasSet = true;
break;
}
if (!(child.m_type & (SpecFunction | SpecObjectOther | SpecProxyObject))) {
setConstant(node, jsBoolean(false));
constantWasSet = true;
break;
}
break;
case IsCellWithType:
if (!(child.m_type & ~node->speculatedTypeForQuery())) {
setConstant(node, jsBoolean(true));
constantWasSet = true;
break;
}
if (!(child.m_type & node->speculatedTypeForQuery())) {
setConstant(node, jsBoolean(false));
constantWasSet = true;
break;
}
break;
case IsTypedArrayView:
if (!(child.m_type & ~SpecTypedArrayView)) {
setConstant(node, jsBoolean(true));
constantWasSet = true;
break;
}
if (!(child.m_type & SpecTypedArrayView)) {
setConstant(node, jsBoolean(false));
constantWasSet = true;
break;
}
break;
default:
break;
}
if (constantWasSet)
break;
forNode(node).setType(SpecBoolean);
break;
}
case TypeOf: {
JSValue child = forNode(node->child1()).value();
AbstractValue& abstractChild = forNode(node->child1());
if (child) {
JSValue typeString = jsTypeStringForValue(m_vm, m_codeBlock->globalObjectFor(node->origin.semantic), child);
setConstant(node, *m_graph.freeze(typeString));
break;
}
if (isFullNumberSpeculation(abstractChild.m_type)) {
setConstant(node, *m_graph.freeze(m_vm.smallStrings.numberString()));
break;
}
if (isStringSpeculation(abstractChild.m_type)) {
setConstant(node, *m_graph.freeze(m_vm.smallStrings.stringString()));
break;
}
// FIXME: We could use the masquerades-as-undefined watchpoint here.
// https://bugs.webkit.org/show_bug.cgi?id=144456
if (!(abstractChild.m_type & ~(SpecObject - SpecObjectOther - SpecFunction))) {
setConstant(node, *m_graph.freeze(m_vm.smallStrings.objectString()));
break;
}
if (isFunctionSpeculation(abstractChild.m_type)) {
setConstant(node, *m_graph.freeze(m_vm.smallStrings.functionString()));
break;
}
if (isBooleanSpeculation(abstractChild.m_type)) {
setConstant(node, *m_graph.freeze(m_vm.smallStrings.booleanString()));
break;
}
if (isSymbolSpeculation(abstractChild.m_type)) {
setConstant(node, *m_graph.freeze(m_vm.smallStrings.symbolString()));
break;
}
forNode(node).setType(m_graph, SpecStringIdent);
break;
}
case CompareLess:
case CompareLessEq:
case CompareGreater:
case CompareGreaterEq:
case CompareEq: {
JSValue leftConst = forNode(node->child1()).value();
JSValue rightConst = forNode(node->child2()).value();
if (leftConst && rightConst) {
if (leftConst.isNumber() && rightConst.isNumber()) {
double a = leftConst.asNumber();
double b = rightConst.asNumber();
switch (node->op()) {
case CompareLess:
setConstant(node, jsBoolean(a < b));
break;
case CompareLessEq:
setConstant(node, jsBoolean(a <= b));
break;
case CompareGreater:
setConstant(node, jsBoolean(a > b));
break;
case CompareGreaterEq:
setConstant(node, jsBoolean(a >= b));
break;
case CompareEq:
setConstant(node, jsBoolean(a == b));
break;
default:
RELEASE_ASSERT_NOT_REACHED();
break;
}
break;
}
if (leftConst.isString() && rightConst.isString()) {
const StringImpl* a = asString(leftConst)->tryGetValueImpl();
const StringImpl* b = asString(rightConst)->tryGetValueImpl();
if (a && b) {
bool result;
if (node->op() == CompareEq)
result = WTF::equal(a, b);
else if (node->op() == CompareLess)
result = codePointCompare(a, b) < 0;
else if (node->op() == CompareLessEq)
result = codePointCompare(a, b) <= 0;
else if (node->op() == CompareGreater)
result = codePointCompare(a, b) > 0;
else if (node->op() == CompareGreaterEq)
result = codePointCompare(a, b) >= 0;
else
RELEASE_ASSERT_NOT_REACHED();
setConstant(node, jsBoolean(result));
break;
}
}
if (node->op() == CompareEq && leftConst.isSymbol() && rightConst.isSymbol()) {
setConstant(node, jsBoolean(asSymbol(leftConst) == asSymbol(rightConst)));
break;
}
}
if (node->op() == CompareEq) {
SpeculatedType leftType = forNode(node->child1()).m_type;
SpeculatedType rightType = forNode(node->child2()).m_type;
if (!valuesCouldBeEqual(leftType, rightType)) {
setConstant(node, jsBoolean(false));
break;
}
if (leftType == SpecOther)
std::swap(leftType, rightType);
if (rightType == SpecOther) {
// Undefined and Null are always equal when compared to eachother.
if (!(leftType & ~SpecOther)) {
setConstant(node, jsBoolean(true));
break;
}
// Any other type compared to Null or Undefined is always false
// as long as the MasqueradesAsUndefined watchpoint is valid.
//
// MasqueradesAsUndefined only matters for SpecObjectOther, other
// cases are always "false".
if (!(leftType & (SpecObjectOther | SpecOther))) {
setConstant(node, jsBoolean(false));
break;
}
if (!(leftType & SpecOther) && m_graph.masqueradesAsUndefinedWatchpointIsStillValid(node->origin.semantic)) {
JSGlobalObject* globalObject = m_graph.globalObjectFor(node->origin.semantic);
m_graph.watchpoints().addLazily(globalObject->masqueradesAsUndefinedWatchpoint());
setConstant(node, jsBoolean(false));
break;
}
}
}
if (node->child1() == node->child2()) {
if (node->isBinaryUseKind(Int32Use) ||
node->isBinaryUseKind(Int52RepUse) ||
node->isBinaryUseKind(StringUse) ||
node->isBinaryUseKind(BooleanUse) ||
node->isBinaryUseKind(SymbolUse) ||
node->isBinaryUseKind(StringIdentUse) ||
node->isBinaryUseKind(ObjectUse) ||
node->isBinaryUseKind(ObjectUse, ObjectOrOtherUse) ||
node->isBinaryUseKind(ObjectOrOtherUse, ObjectUse)) {
switch (node->op()) {
case CompareLess:
case CompareGreater:
setConstant(node, jsBoolean(false));
break;
case CompareLessEq:
case CompareGreaterEq:
case CompareEq:
setConstant(node, jsBoolean(true));
break;
default:
DFG_CRASH(m_graph, node, "Unexpected node type");
break;
}
break;
}
}
forNode(node).setType(SpecBoolean);
break;
}
case CompareStrictEq: {
Node* leftNode = node->child1().node();
Node* rightNode = node->child2().node();
JSValue left = forNode(leftNode).value();
JSValue right = forNode(rightNode).value();
if (left && right) {
if (left.isString() && right.isString()) {
// We need this case because JSValue::strictEqual is otherwise too racy for
// string comparisons.
const StringImpl* a = asString(left)->tryGetValueImpl();
const StringImpl* b = asString(right)->tryGetValueImpl();
if (a && b) {
setConstant(node, jsBoolean(WTF::equal(a, b)));
break;
}
} else {
setConstant(node, jsBoolean(JSValue::strictEqual(0, left, right)));
break;
}
}
SpeculatedType leftLUB = leastUpperBoundOfStrictlyEquivalentSpeculations(forNode(leftNode).m_type);
SpeculatedType rightLUB = leastUpperBoundOfStrictlyEquivalentSpeculations(forNode(rightNode).m_type);
if (!(leftLUB & rightLUB)) {
setConstant(node, jsBoolean(false));
break;
}
if (node->child1() == node->child2()) {
if (node->isBinaryUseKind(BooleanUse) ||
node->isBinaryUseKind(Int32Use) ||
node->isBinaryUseKind(Int52RepUse) ||
node->isBinaryUseKind(StringUse) ||
node->isBinaryUseKind(StringIdentUse) ||
node->isBinaryUseKind(SymbolUse) ||
node->isBinaryUseKind(ObjectUse) ||
node->isBinaryUseKind(MiscUse, UntypedUse) ||
node->isBinaryUseKind(UntypedUse, MiscUse) ||
node->isBinaryUseKind(StringIdentUse, NotStringVarUse) ||
node->isBinaryUseKind(NotStringVarUse, StringIdentUse) ||
node->isBinaryUseKind(StringUse, UntypedUse) ||
node->isBinaryUseKind(UntypedUse, StringUse)) {
setConstant(node, jsBoolean(true));
break;
}
}
forNode(node).setType(SpecBoolean);
break;
}
case CompareEqPtr: {
Node* childNode = node->child1().node();
JSValue childValue = forNode(childNode).value();
if (childValue) {
setConstant(node, jsBoolean(childValue.isCell() && childValue.asCell() == node->cellOperand()->cell()));
break;
}
forNode(node).setType(SpecBoolean);
break;
}
case StringCharCodeAt:
forNode(node).setType(SpecInt32Only);
break;
case StringFromCharCode:
forNode(node).setType(m_graph, SpecString);
break;
case StringCharAt:
forNode(node).set(m_graph, m_vm.stringStructure.get());
break;
case GetByVal:
case AtomicsAdd:
case AtomicsAnd:
case AtomicsCompareExchange:
case AtomicsExchange:
case AtomicsLoad:
case AtomicsOr:
case AtomicsStore:
case AtomicsSub:
case AtomicsXor: {
if (node->op() != GetByVal)
clobberWorld(node->origin.semantic, clobberLimit);
switch (node->arrayMode().type()) {
case Array::SelectUsingPredictions:
case Array::Unprofiled:
case Array::SelectUsingArguments:
RELEASE_ASSERT_NOT_REACHED();
break;
case Array::ForceExit:
m_state.setIsValid(false);
break;
case Array::Undecided: {
JSValue index = forNode(node->child2()).value();
if (index && index.isInt32() && index.asInt32() >= 0) {
setConstant(node, jsUndefined());
break;
}
forNode(node).setType(SpecOther);
break;
}
case Array::Generic:
clobberWorld(node->origin.semantic, clobberLimit);
forNode(node).makeHeapTop();
break;
case Array::String:
if (node->arrayMode().isOutOfBounds()) {
// If the watchpoint was still valid we could totally set this to be
// SpecString | SpecOther. Except that we'd have to be careful. If we
// tested the watchpoint state here then it could change by the time
// we got to the backend. So to do this right, we'd have to get the
// fixup phase to check the watchpoint state and then bake into the
// GetByVal operation the fact that we're using a watchpoint, using
// something like Array::SaneChain (except not quite, because that
// implies an in-bounds access). None of this feels like it's worth it,
// so we're going with TOP for now. The same thing applies to
// clobbering the world.
clobberWorld(node->origin.semantic, clobberLimit);
forNode(node).makeHeapTop();
} else
forNode(node).set(m_graph, m_vm.stringStructure.get());
break;
case Array::DirectArguments:
case Array::ScopedArguments:
forNode(node).makeHeapTop();
break;
case Array::Int32:
if (node->arrayMode().isOutOfBounds()) {
clobberWorld(node->origin.semantic, clobberLimit);
forNode(node).makeHeapTop();
} else
forNode(node).setType(SpecInt32Only);
break;
case Array::Double:
if (node->arrayMode().isOutOfBounds()) {
clobberWorld(node->origin.semantic, clobberLimit);
forNode(node).makeHeapTop();
} else if (node->arrayMode().isSaneChain())
forNode(node).setType(SpecBytecodeDouble);
else
forNode(node).setType(SpecDoubleReal);
break;
case Array::Contiguous:
case Array::ArrayStorage:
case Array::SlowPutArrayStorage:
if (node->arrayMode().isOutOfBounds())
clobberWorld(node->origin.semantic, clobberLimit);
forNode(node).makeHeapTop();
break;
case Array::Int8Array:
forNode(node).setType(SpecInt32Only);
break;
case Array::Int16Array:
forNode(node).setType(SpecInt32Only);
break;
case Array::Int32Array:
forNode(node).setType(SpecInt32Only);
break;
case Array::Uint8Array:
forNode(node).setType(SpecInt32Only);
break;
case Array::Uint8ClampedArray:
forNode(node).setType(SpecInt32Only);
break;
case Array::Uint16Array:
forNode(node).setType(SpecInt32Only);
break;
case Array::Uint32Array:
if (node->shouldSpeculateInt32())
forNode(node).setType(SpecInt32Only);
else if (enableInt52() && node->shouldSpeculateAnyInt())
forNode(node).setType(SpecAnyInt);
else
forNode(node).setType(SpecAnyIntAsDouble);
break;
case Array::Float32Array:
forNode(node).setType(SpecFullDouble);
break;
case Array::Float64Array:
forNode(node).setType(SpecFullDouble);
break;
default:
RELEASE_ASSERT_NOT_REACHED();
break;
}
break;
}
case PutByValDirect:
case PutByVal:
case PutByValAlias: {
switch (node->arrayMode().modeForPut().type()) {
case Array::ForceExit:
m_state.setIsValid(false);
break;
case Array::Generic:
clobberWorld(node->origin.semantic, clobberLimit);
break;
case Array::Int32:
if (node->arrayMode().isOutOfBounds())
clobberWorld(node->origin.semantic, clobberLimit);
break;
case Array::Double:
if (node->arrayMode().isOutOfBounds())
clobberWorld(node->origin.semantic, clobberLimit);
break;
case Array::Contiguous:
case Array::ArrayStorage:
if (node->arrayMode().isOutOfBounds())
clobberWorld(node->origin.semantic, clobberLimit);
break;
case Array::SlowPutArrayStorage:
if (node->arrayMode().mayStoreToHole())
clobberWorld(node->origin.semantic, clobberLimit);
break;
default:
break;
}
break;
}
case ArrayPush:
clobberWorld(node->origin.semantic, clobberLimit);
forNode(node).setType(SpecBytecodeNumber);
break;
case ArraySlice: {
JSGlobalObject* globalObject = m_graph.globalObjectFor(node->origin.semantic);
// FIXME: We could do better here if we prove that the
// incoming value has only a single structure.
RegisteredStructureSet structureSet;
structureSet.add(m_graph.registerStructure(globalObject->originalArrayStructureForIndexingType(ArrayWithInt32)));
structureSet.add(m_graph.registerStructure(globalObject->originalArrayStructureForIndexingType(ArrayWithContiguous)));
structureSet.add(m_graph.registerStructure(globalObject->originalArrayStructureForIndexingType(ArrayWithDouble)));
forNode(node).set(m_graph, structureSet);
break;
}
case ArrayIndexOf: {
forNode(node).setType(SpecInt32Only);
break;
}
case ArrayPop:
clobberWorld(node->origin.semantic, clobberLimit);
forNode(node).makeHeapTop();
break;
case GetMyArgumentByVal:
case GetMyArgumentByValOutOfBounds: {
JSValue index = forNode(node->child2()).m_value;
InlineCallFrame* inlineCallFrame = node->child1()->origin.semantic.inlineCallFrame;
if (index && index.isInt32()) {
// This pretends to return TOP for accesses that are actually proven out-of-bounds because
// that's the conservative thing to do. Otherwise we'd need to write more code to mark such
// paths as unreachable, or to return undefined. We could implement that eventually.
unsigned argumentIndex = index.asUInt32() + node->numberOfArgumentsToSkip();
if (inlineCallFrame) {
if (argumentIndex < inlineCallFrame->arguments.size() - 1) {
forNode(node) = m_state.variables().operand(
virtualRegisterForArgument(argumentIndex + 1) + inlineCallFrame->stackOffset);
m_state.setFoundConstants(true);
break;
}
} else {
if (argumentIndex < m_state.variables().numberOfArguments() - 1) {
forNode(node) = m_state.variables().argument(argumentIndex + 1);
m_state.setFoundConstants(true);
break;
}
}
}
if (inlineCallFrame) {
// We have a bound on the types even though it's random access. Take advantage of this.
AbstractValue result;
for (unsigned i = 1 + node->numberOfArgumentsToSkip(); i < inlineCallFrame->arguments.size(); ++i) {
result.merge(
m_state.variables().operand(
virtualRegisterForArgument(i) + inlineCallFrame->stackOffset));
}
if (node->op() == GetMyArgumentByValOutOfBounds)
result.merge(SpecOther);
if (result.value())
m_state.setFoundConstants(true);
forNode(node) = result;
break;
}
forNode(node).makeHeapTop();
break;
}
case RegExpExec:
if (node->child2().useKind() == RegExpObjectUse
&& node->child3().useKind() == StringUse) {
// This doesn't clobber the world since there are no conversions to perform.
} else
clobberWorld(node->origin.semantic, clobberLimit);
if (JSValue globalObjectValue = forNode(node->child1()).m_value) {
if (JSGlobalObject* globalObject = jsDynamicCast<JSGlobalObject*>(m_vm, globalObjectValue)) {
if (!globalObject->isHavingABadTime()) {
m_graph.watchpoints().addLazily(globalObject->havingABadTimeWatchpoint());
Structure* structure = globalObject->regExpMatchesArrayStructure();
m_graph.registerStructure(structure);
forNode(node).set(m_graph, structure);
forNode(node).merge(SpecOther);
break;
}
}
}
forNode(node).setType(m_graph, SpecOther | SpecArray);
break;
case RegExpTest:
if (node->child2().useKind() == RegExpObjectUse
&& node->child3().useKind() == StringUse) {
// This doesn't clobber the world since there are no conversions to perform.
} else
clobberWorld(node->origin.semantic, clobberLimit);
forNode(node).setType(SpecBoolean);
break;
case StringReplace:
case StringReplaceRegExp:
if (node->child1().useKind() == StringUse
&& node->child2().useKind() == RegExpObjectUse
&& node->child3().useKind() == StringUse) {
// This doesn't clobber the world. It just reads and writes regexp state.
} else
clobberWorld(node->origin.semantic, clobberLimit);
forNode(node).set(m_graph, m_vm.stringStructure.get());
break;
case Jump:
break;
case Branch: {
Node* child = node->child1().node();
BooleanResult result = booleanResult(node, forNode(child));
if (result == DefinitelyTrue) {
m_state.setBranchDirection(TakeTrue);
break;
}
if (result == DefinitelyFalse) {
m_state.setBranchDirection(TakeFalse);
break;
}
// FIXME: The above handles the trivial cases of sparse conditional
// constant propagation, but we can do better:
// We can specialize the source variable's value on each direction of
// the branch.
m_state.setBranchDirection(TakeBoth);
break;
}
case Switch: {
// Nothing to do for now.
// FIXME: Do sparse conditional things.
break;
}
case Return:
m_state.setIsValid(false);
break;
case TailCall:
case DirectTailCall:
case TailCallVarargs:
case TailCallForwardVarargs:
clobberWorld(node->origin.semantic, clobberLimit);
m_state.setIsValid(false);
break;
case Throw:
case ThrowStaticError:
m_state.setIsValid(false);
break;
case ToPrimitive: {
JSValue childConst = forNode(node->child1()).value();
if (childConst && childConst.isNumber()) {
setConstant(node, childConst);
break;
}
ASSERT(node->child1().useKind() == UntypedUse);
if (!(forNode(node->child1()).m_type & ~(SpecFullNumber | SpecBoolean | SpecString | SpecSymbol))) {
m_state.setFoundConstants(true);
forNode(node) = forNode(node->child1());
break;
}
clobberWorld(node->origin.semantic, clobberLimit);
forNode(node).setType(m_graph, SpecHeapTop & ~SpecObject);
break;
}
case ToNumber: {
JSValue childConst = forNode(node->child1()).value();
if (childConst && childConst.isNumber()) {
setConstant(node, childConst);
break;
}
ASSERT(node->child1().useKind() == UntypedUse);
if (!(forNode(node->child1()).m_type & ~SpecBytecodeNumber)) {
m_state.setFoundConstants(true);
forNode(node) = forNode(node->child1());
break;
}
clobberWorld(node->origin.semantic, clobberLimit);
forNode(node).setType(m_graph, SpecBytecodeNumber);
break;
}
case ToString:
case CallStringConstructor: {
switch (node->child1().useKind()) {
case StringObjectUse:
// This also filters that the StringObject has the primordial StringObject
// structure.
filter(
node->child1(),
m_graph.registerStructure(m_graph.globalObjectFor(node->origin.semantic)->stringObjectStructure()));
break;
case StringOrStringObjectUse:
case Int32Use:
case Int52RepUse:
case DoubleRepUse:
case NotCellUse:
break;
case CellUse:
case UntypedUse:
clobberWorld(node->origin.semantic, clobberLimit);
break;
default:
RELEASE_ASSERT_NOT_REACHED();
break;
}
forNode(node).set(m_graph, m_vm.stringStructure.get());
break;
}
case NumberToStringWithRadix:
clobberWorld(node->origin.semantic, clobberLimit);
forNode(node).set(m_graph, m_graph.m_vm.stringStructure.get());
break;
case NewStringObject: {
ASSERT(node->structure()->classInfo() == StringObject::info());
forNode(node).set(m_graph, node->structure());
break;
}
case NewArray:
forNode(node).set(
m_graph,
m_graph.globalObjectFor(node->origin.semantic)->arrayStructureForIndexingTypeDuringAllocation(node->indexingType()));
break;
case NewArrayWithSpread:
if (m_graph.isWatchingHavingABadTimeWatchpoint(node)) {
// We've compiled assuming we're not having a bad time, so to be consistent
// with StructureRegisterationPhase we must say we produce an original array
// allocation structure.
forNode(node).set(
m_graph,
m_graph.globalObjectFor(node->origin.semantic)->originalArrayStructureForIndexingType(ArrayWithContiguous));
} else {
forNode(node).set(
m_graph,
m_graph.globalObjectFor(node->origin.semantic)->arrayStructureForIndexingTypeDuringAllocation(ArrayWithContiguous));
}
break;
case Spread:
forNode(node).set(
m_graph, m_vm.fixedArrayStructure.get());
break;
case NewArrayBuffer:
forNode(node).set(
m_graph,
m_graph.globalObjectFor(node->origin.semantic)->arrayStructureForIndexingTypeDuringAllocation(node->indexingType()));
break;
case NewArrayWithSize:
forNode(node).setType(m_graph, SpecArray);
break;
case NewTypedArray:
switch (node->child1().useKind()) {
case Int32Use:
break;
case UntypedUse:
clobberWorld(node->origin.semantic, clobberLimit);
break;
default:
RELEASE_ASSERT_NOT_REACHED();
break;
}
forNode(node).set(
m_graph,
m_graph.globalObjectFor(node->origin.semantic)->typedArrayStructureConcurrently(
node->typedArrayType()));
break;
case NewRegexp:
forNode(node).set(m_graph, m_graph.globalObjectFor(node->origin.semantic)->regExpStructure());
break;
case ToThis: {
AbstractValue& source = forNode(node->child1());
AbstractValue& destination = forNode(node);
bool strictMode = m_graph.executableFor(node->origin.semantic)->isStrictMode();
if (isToThisAnIdentity(strictMode, source)) {
m_state.setFoundConstants(true);
destination = source;
break;
}
if (strictMode)
destination.makeHeapTop();
else {
destination = source;
destination.merge(SpecObject);
}
break;
}
case CreateThis: {
// FIXME: We can fold this to NewObject if the incoming callee is a constant.
forNode(node).setType(m_graph, SpecFinalObject);
break;
}
case NewObject:
ASSERT(!!node->structure().get());
forNode(node).set(m_graph, node->structure());
break;
case CallObjectConstructor: {
AbstractValue& source = forNode(node->child1());
AbstractValue& destination = forNode(node);
if (!(source.m_type & ~SpecObject)) {
m_state.setFoundConstants(true);
destination = source;
break;
}
forNode(node).setType(m_graph, SpecObject);
break;
}
case PhantomNewObject:
case PhantomNewFunction:
case PhantomNewGeneratorFunction:
case PhantomNewAsyncFunction:
case PhantomCreateActivation:
case PhantomDirectArguments:
case PhantomClonedArguments:
case PhantomCreateRest:
case PhantomSpread:
case PhantomNewArrayWithSpread:
case BottomValue:
m_state.setDidClobber(true); // Prevent constant folding.
// This claims to return bottom.
break;
case PutHint:
break;
case MaterializeNewObject: {
forNode(node).set(m_graph, node->structureSet());
break;
}
case CreateActivation:
case MaterializeCreateActivation:
forNode(node).set(
m_graph, m_codeBlock->globalObjectFor(node->origin.semantic)->activationStructure());
break;
case CreateDirectArguments:
forNode(node).set(m_graph, m_codeBlock->globalObjectFor(node->origin.semantic)->directArgumentsStructure());
break;
case CreateScopedArguments:
forNode(node).set(m_graph, m_codeBlock->globalObjectFor(node->origin.semantic)->scopedArgumentsStructure());
break;
case CreateClonedArguments:
if (!m_graph.isWatchingHavingABadTimeWatchpoint(node)) {
forNode(node).setType(m_graph, SpecObject);
break;
}
forNode(node).set(m_graph, m_codeBlock->globalObjectFor(node->origin.semantic)->clonedArgumentsStructure());
break;
case NewGeneratorFunction:
forNode(node).set(
m_graph, m_codeBlock->globalObjectFor(node->origin.semantic)->generatorFunctionStructure());
break;
case NewAsyncFunction:
forNode(node).set(
m_graph, m_codeBlock->globalObjectFor(node->origin.semantic)->asyncFunctionStructure());
break;
case NewFunction:
forNode(node).set(
m_graph, m_codeBlock->globalObjectFor(node->origin.semantic)->functionStructure());
break;
case GetCallee:
if (FunctionExecutable* executable = jsDynamicCast<FunctionExecutable*>(m_vm, m_codeBlock->ownerExecutable())) {
InferredValue* singleton = executable->singletonFunction();
if (JSValue value = singleton->inferredValue()) {
m_graph.watchpoints().addLazily(singleton);
JSFunction* function = jsCast<JSFunction*>(value);
setConstant(node, *m_graph.freeze(function));
break;
}
}
forNode(node).setType(m_graph, SpecFunction);
break;
case GetArgumentCountIncludingThis:
forNode(node).setType(SpecInt32Only);
break;
case GetRestLength:
forNode(node).setType(SpecInt32Only);
break;
case GetGetter: {
JSValue base = forNode(node->child1()).m_value;
if (base) {
GetterSetter* getterSetter = jsCast<GetterSetter*>(base);
if (!getterSetter->isGetterNull()) {
setConstant(node, *m_graph.freeze(getterSetter->getterConcurrently()));
break;
}
}
forNode(node).setType(m_graph, SpecObject);
break;
}
case GetSetter: {
JSValue base = forNode(node->child1()).m_value;
if (base) {
GetterSetter* getterSetter = jsCast<GetterSetter*>(base);
if (!getterSetter->isSetterNull()) {
setConstant(node, *m_graph.freeze(getterSetter->setterConcurrently()));
break;
}
}
forNode(node).setType(m_graph, SpecObject);
break;
}
case GetScope:
if (JSValue base = forNode(node->child1()).m_value) {
if (JSFunction* function = jsDynamicCast<JSFunction*>(m_vm, base)) {
setConstant(node, *m_graph.freeze(function->scope()));
break;
}
}
forNode(node).setType(m_graph, SpecObjectOther);
break;
case SkipScope: {
JSValue child = forNode(node->child1()).value();
if (child) {
setConstant(node, *m_graph.freeze(JSValue(jsCast<JSScope*>(child.asCell())->next())));
break;
}
forNode(node).setType(m_graph, SpecObjectOther);
break;
}
case GetGlobalObject: {
JSValue child = forNode(node->child1()).value();
if (child) {
setConstant(node, *m_graph.freeze(JSValue(asObject(child)->globalObject())));
break;
}
if (forNode(node->child1()).m_structure.isFinite()) {
JSGlobalObject* globalObject = nullptr;
bool ok = true;
forNode(node->child1()).m_structure.forEach(
[&] (RegisteredStructure structure) {
if (!globalObject)
globalObject = structure->globalObject();
else if (globalObject != structure->globalObject())
ok = false;
});
if (globalObject && ok) {
setConstant(node, *m_graph.freeze(JSValue(globalObject)));
break;
}
}
forNode(node).setType(m_graph, SpecObjectOther);
break;
}
case GetClosureVar:
if (JSValue value = m_graph.tryGetConstantClosureVar(forNode(node->child1()), node->scopeOffset())) {
setConstant(node, *m_graph.freeze(value));
break;
}
forNode(node).makeBytecodeTop();
break;
case PutClosureVar:
break;
case GetRegExpObjectLastIndex:
forNode(node).makeHeapTop();
break;
case SetRegExpObjectLastIndex:
case RecordRegExpCachedResult:
break;
case GetFromArguments:
forNode(node).makeHeapTop();
break;
case PutToArguments:
break;
case GetArgument:
forNode(node).makeHeapTop();
break;
case TryGetById:
// FIXME: This should constant fold at least as well as the normal GetById case.
// https://bugs.webkit.org/show_bug.cgi?id=156422
forNode(node).makeHeapTop();
break;
case GetById:
case GetByIdFlush: {
if (!node->prediction()) {
m_state.setIsValid(false);
break;
}
AbstractValue& value = forNode(node->child1());
if (value.m_structure.isFinite()
&& (node->child1().useKind() == CellUse || !(value.m_type & ~SpecCell))) {
UniquedStringImpl* uid = m_graph.identifiers()[node->identifierNumber()];
GetByIdStatus status = GetByIdStatus::computeFor(value.m_structure.toStructureSet(), uid);
if (status.isSimple()) {
// Figure out what the result is going to be - is it TOP, a constant, or maybe
// something more subtle?
AbstractValue result;
for (unsigned i = status.numVariants(); i--;) {
// This thing won't give us a variant that involves prototypes. If it did, we'd
// have more work to do here.
DFG_ASSERT(m_graph, node, status[i].conditionSet().isEmpty());
result.merge(
m_graph.inferredValueForProperty(
value, uid, status[i].offset(), m_state.structureClobberState()));
}
m_state.setFoundConstants(true);
forNode(node) = result;
break;
}
}
clobberWorld(node->origin.semantic, clobberLimit);
forNode(node).makeHeapTop();
break;
}
case GetByValWithThis:
case GetByIdWithThis:
clobberWorld(node->origin.semantic, clobberLimit);
forNode(node).makeHeapTop();
break;
case GetArrayLength: {
JSArrayBufferView* view = m_graph.tryGetFoldableView(
forNode(node->child1()).m_value, node->arrayMode());
if (view) {
setConstant(node, jsNumber(view->length()));
break;
}
forNode(node).setType(SpecInt32Only);
break;
}
case GetVectorLength: {
forNode(node).setType(SpecInt32Only);
break;
}
case DeleteById:
case DeleteByVal: {
// FIXME: This could decide if the delete will be successful based on the set of structures that
// we get from our base value. https://bugs.webkit.org/show_bug.cgi?id=156611
clobberWorld(node->origin.semantic, clobberLimit);
forNode(node).setType(SpecBoolean);
break;
}
case CheckStructure: {
AbstractValue& value = forNode(node->child1());
const RegisteredStructureSet& set = node->structureSet();
// It's interesting that we could have proven that the object has a larger structure set
// that includes the set we're testing. In that case we could make the structure check
// more efficient. We currently don't.
if (value.m_structure.isSubsetOf(set))
m_state.setFoundConstants(true);
SpeculatedType admittedTypes = SpecNone;
switch (node->child1().useKind()) {
case CellUse:
case KnownCellUse:
admittedTypes = SpecNone;
break;
case CellOrOtherUse:
admittedTypes = SpecOther;
break;
default:
DFG_CRASH(m_graph, node, "Bad use kind");
break;
}
filter(value, set, admittedTypes);
break;
}
case CheckStructureImmediate: {
// FIXME: This currently can only reason about one structure at a time.
// https://bugs.webkit.org/show_bug.cgi?id=136988
AbstractValue& value = forNode(node->child1());
const RegisteredStructureSet& set = node->structureSet();
if (value.value()) {
if (Structure* structure = jsDynamicCast<Structure*>(m_vm, value.value())) {
if (set.contains(m_graph.registerStructure(structure))) {
m_state.setFoundConstants(true);
break;
}
}
m_state.setIsValid(false);
break;
}
if (m_phiChildren) {
bool allGood = true;
m_phiChildren->forAllTransitiveIncomingValues(
node,
[&] (Node* incoming) {
if (Structure* structure = incoming->dynamicCastConstant<Structure*>(m_vm)) {
if (set.contains(m_graph.registerStructure(structure)))
return;
}
allGood = false;
});
if (allGood) {
m_state.setFoundConstants(true);
break;
}
}
if (RegisteredStructure structure = set.onlyStructure()) {
filterByValue(node->child1(), *m_graph.freeze(structure.get()));
break;
}
// Aw shucks, we can't do anything!
break;
}
case PutStructure:
if (!forNode(node->child1()).m_structure.isClear()) {
if (forNode(node->child1()).m_structure.onlyStructure() == node->transition()->next)
m_state.setFoundConstants(true);
else {
observeTransition(
clobberLimit, node->transition()->previous, node->transition()->next);
forNode(node->child1()).changeStructure(m_graph, node->transition()->next);
}
}
break;
case GetButterfly:
case AllocatePropertyStorage:
case ReallocatePropertyStorage:
case NukeStructureAndSetButterfly:
// FIXME: We don't model the fact that the structureID is nuked, simply because currently
// nobody would currently benefit from having that information. But it's a bug nonetheless.
forNode(node).clear(); // The result is not a JS value.
break;
case CheckSubClass: {
JSValue constant = forNode(node->child1()).value();
if (constant) {
if (constant.isCell() && constant.asCell()->inherits(m_vm, node->classInfo())) {
m_state.setFoundConstants(true);
ASSERT(constant);
break;
}
}
AbstractValue& value = forNode(node->child1());
if (value.m_structure.isSubClassOf(node->classInfo()))
m_state.setFoundConstants(true);
filterClassInfo(value, node->classInfo());
break;
}
case CallDOMGetter: {
CallDOMGetterData* callDOMGetterData = node->callDOMGetterData();
DOMJIT::CallDOMGetterSnippet* snippet = callDOMGetterData->snippet;
if (snippet->effect.writes)
clobberWorld(node->origin.semantic, clobberLimit);
forNode(node).setType(m_graph, callDOMGetterData->domJIT->resultType());
break;
}
case CallDOM: {
const DOMJIT::Signature* signature = node->signature();
if (signature->effect.writes)
clobberWorld(node->origin.semantic, clobberLimit);
forNode(node).setType(m_graph, signature->result);
break;
}
case CheckArray: {
if (node->arrayMode().alreadyChecked(m_graph, node, forNode(node->child1()))) {
m_state.setFoundConstants(true);
break;
}
switch (node->arrayMode().type()) {
case Array::String:
filter(node->child1(), SpecString);
break;
case Array::Int32:
case Array::Double:
case Array::Contiguous:
case Array::Undecided:
case Array::ArrayStorage:
case Array::SlowPutArrayStorage:
break;
case Array::DirectArguments:
filter(node->child1(), SpecDirectArguments);
break;
case Array::ScopedArguments:
filter(node->child1(), SpecScopedArguments);
break;
case Array::Int8Array:
filter(node->child1(), SpecInt8Array);
break;
case Array::Int16Array:
filter(node->child1(), SpecInt16Array);
break;
case Array::Int32Array:
filter(node->child1(), SpecInt32Array);
break;
case Array::Uint8Array:
filter(node->child1(), SpecUint8Array);
break;
case Array::Uint8ClampedArray:
filter(node->child1(), SpecUint8ClampedArray);
break;
case Array::Uint16Array:
filter(node->child1(), SpecUint16Array);
break;
case Array::Uint32Array:
filter(node->child1(), SpecUint32Array);
break;
case Array::Float32Array:
filter(node->child1(), SpecFloat32Array);
break;
case Array::Float64Array:
filter(node->child1(), SpecFloat64Array);
break;
case Array::AnyTypedArray:
filter(node->child1(), SpecTypedArrayView);
break;
default:
RELEASE_ASSERT_NOT_REACHED();
break;
}
filterArrayModes(node->child1(), node->arrayMode().arrayModesThatPassFiltering());
break;
}
case Arrayify: {
if (node->arrayMode().alreadyChecked(m_graph, node, forNode(node->child1()))) {
m_state.setFoundConstants(true);
break;
}
ASSERT(node->arrayMode().conversion() == Array::Convert);
clobberStructures(clobberLimit);
filterArrayModes(node->child1(), node->arrayMode().arrayModesThatPassFiltering());
break;
}
case ArrayifyToStructure: {
AbstractValue& value = forNode(node->child1());
if (value.m_structure.isSubsetOf(RegisteredStructureSet(node->structure())))
m_state.setFoundConstants(true);
clobberStructures(clobberLimit);
// We have a bunch of options of how to express the abstract set at this point. Let set S
// be the set of structures that the value had before clobbering and assume that all of
// them are watchable. The new value should be the least expressible upper bound of the
// intersection of "values that currently have structure = node->structure()" and "values
// that have structure in S plus any structure transition-reachable from S". Assume that
// node->structure() is not in S but it is transition-reachable from S. Then we would
// like to say that the result is "values that have structure = node->structure() until
// we invalidate", but there is no way to express this using the AbstractValue syntax. So
// we must choose between:
//
// 1) "values that currently have structure = node->structure()". This is a valid
// superset of the value that we really want, and it's specific enough to satisfy the
// preconditions of the array access that this is guarding. It's also specific enough
// to allow relevant optimizations in the case that we didn't have a contradiction
// like in this example. Notice that in the abscence of any contradiction, this result
// is precise rather than being a conservative LUB.
//
// 2) "values that currently hava structure in S plus any structure transition-reachable
// from S". This is also a valid superset of the value that we really want, but it's
// not specific enough to satisfy the preconditions of the array access that this is
// guarding - so playing such shenanigans would preclude us from having assertions on
// the typing preconditions of any array accesses. This would also not be a desirable
// answer in the absence of a contradiction.
//
// Note that it's tempting to simply say that the resulting value is BOTTOM because of
// the contradiction. That would be wrong, since we haven't hit an invalidation point,
// yet.
value.set(m_graph, node->structure());
break;
}
case GetIndexedPropertyStorage: {
JSArrayBufferView* view = m_graph.tryGetFoldableView(
forNode(node->child1()).m_value, node->arrayMode());
if (view)
m_state.setFoundConstants(true);
forNode(node).clear();
break;
}
case ConstantStoragePointer: {
forNode(node).clear();
break;
}
case GetTypedArrayByteOffset: {
JSArrayBufferView* view = m_graph.tryGetFoldableView(forNode(node->child1()).m_value);
if (view) {
setConstant(node, jsNumber(view->byteOffset()));
break;
}
forNode(node).setType(SpecInt32Only);
break;
}
case GetByOffset: {
StorageAccessData& data = node->storageAccessData();
UniquedStringImpl* uid = m_graph.identifiers()[data.identifierNumber];
// FIXME: The part of this that handles inferred property types relies on AI knowing the structure
// right now. That's probably not optimal. In some cases, we may perform an optimization (usually
// by something other than AI, maybe by CSE for example) that obscures AI's view of the structure
// at the point where GetByOffset runs. Currently, when that happens, we'll have to rely entirely
// on the type that ByteCodeParser was able to prove.
AbstractValue value = m_graph.inferredValueForProperty(
forNode(node->child2()), uid, data.offset, m_state.structureClobberState());
// It's possible that the type that ByteCodeParser came up with is better.
AbstractValue typeFromParsing;
typeFromParsing.set(m_graph, data.inferredType, m_state.structureClobberState());
value.filter(typeFromParsing);
// If we decide that there does not exist any value that this can return, then it's probably
// because the compilation was already invalidated.
if (value.isClear())
m_state.setIsValid(false);
forNode(node) = value;
if (value.m_value)
m_state.setFoundConstants(true);
break;
}
case GetGetterSetterByOffset: {
StorageAccessData& data = node->storageAccessData();
JSValue result = m_graph.tryGetConstantProperty(forNode(node->child2()), data.offset);
if (result && jsDynamicCast<GetterSetter*>(m_vm, result)) {
setConstant(node, *m_graph.freeze(result));
break;
}
forNode(node).set(m_graph, m_graph.globalObjectFor(node->origin.semantic)->getterSetterStructure());
break;
}
case MultiGetByOffset: {
// This code will filter the base value in a manner that is possibly different (either more
// or less precise) than the way it would be filtered if this was strength-reduced to a
// CheckStructure. This is fine. It's legal for different passes over the code to prove
// different things about the code, so long as all of them are sound. That even includes
// one guy proving that code should never execute (due to a contradiction) and another guy
// not finding that contradiction. If someone ever proved that there would be a
// contradiction then there must always be a contradiction even if subsequent passes don't
// realize it. This is the case here.
// Ordinarily you have to be careful with calling setFoundConstants()
// because of the effect on compile times, but this node is FTL-only.
m_state.setFoundConstants(true);
UniquedStringImpl* uid = m_graph.identifiers()[node->multiGetByOffsetData().identifierNumber];
AbstractValue base = forNode(node->child1());
RegisteredStructureSet baseSet;
AbstractValue result;
for (const MultiGetByOffsetCase& getCase : node->multiGetByOffsetData().cases) {
RegisteredStructureSet set = getCase.set();
set.filter(base);
if (set.isEmpty())
continue;
baseSet.merge(set);
switch (getCase.method().kind()) {
case GetByOffsetMethod::Constant: {
AbstractValue thisResult;
thisResult.set(
m_graph,
*getCase.method().constant(),
m_state.structureClobberState());
result.merge(thisResult);
break;
}
case GetByOffsetMethod::Load: {
result.merge(
m_graph.inferredValueForProperty(
set, uid, m_state.structureClobberState()));
break;
}
default: {
result.makeHeapTop();
break;
} }
}
if (forNode(node->child1()).changeStructure(m_graph, baseSet) == Contradiction)
m_state.setIsValid(false);
forNode(node) = result;
break;
}
case PutByOffset: {
break;
}
case MultiPutByOffset: {
RegisteredStructureSet newSet;
TransitionVector transitions;
// Ordinarily you have to be careful with calling setFoundConstants()
// because of the effect on compile times, but this node is FTL-only.
m_state.setFoundConstants(true);
AbstractValue base = forNode(node->child1());
AbstractValue originalValue = forNode(node->child2());
AbstractValue resultingValue;
for (unsigned i = node->multiPutByOffsetData().variants.size(); i--;) {
const PutByIdVariant& variant = node->multiPutByOffsetData().variants[i];
RegisteredStructureSet thisSet = *m_graph.addStructureSet(variant.oldStructure());
thisSet.filter(base);
if (thisSet.isEmpty())
continue;
AbstractValue thisValue = originalValue;
thisValue.filter(m_graph, variant.requiredType());
resultingValue.merge(thisValue);
if (variant.kind() == PutByIdVariant::Transition) {
RegisteredStructure newStructure = m_graph.registerStructure(variant.newStructure());
if (thisSet.onlyStructure() != newStructure) {
transitions.append(
Transition(m_graph.registerStructure(variant.oldStructureForTransition()), newStructure));
} // else this is really a replace.
newSet.add(newStructure);
} else {
ASSERT(variant.kind() == PutByIdVariant::Replace);
newSet.merge(thisSet);
}
}
observeTransitions(clobberLimit, transitions);
if (forNode(node->child1()).changeStructure(m_graph, newSet) == Contradiction)
m_state.setIsValid(false);
forNode(node->child2()) = resultingValue;
if (!!originalValue && !resultingValue)
m_state.setIsValid(false);
break;
}
case GetExecutable: {
JSValue value = forNode(node->child1()).value();
if (value) {
JSFunction* function = jsDynamicCast<JSFunction*>(m_vm, value);
if (function) {
setConstant(node, *m_graph.freeze(function->executable()));
break;
}
}
forNode(node).setType(m_graph, SpecCellOther);
break;
}
case CheckCell: {
JSValue value = forNode(node->child1()).value();
if (value == node->cellOperand()->value()) {
m_state.setFoundConstants(true);
ASSERT(value);
break;
}
filterByValue(node->child1(), *node->cellOperand());
break;
}
case CheckNotEmpty: {
AbstractValue& value = forNode(node->child1());
if (!(value.m_type & SpecEmpty)) {
m_state.setFoundConstants(true);
break;
}
filter(value, ~SpecEmpty);
break;
}
case CheckStringIdent: {
AbstractValue& value = forNode(node->child1());
UniquedStringImpl* uid = node->uidOperand();
ASSERT(!(value.m_type & ~SpecStringIdent)); // Edge filtering should have already ensured this.
JSValue childConstant = value.value();
if (childConstant) {
ASSERT(childConstant.isString());
if (asString(childConstant)->tryGetValueImpl() == uid) {
m_state.setFoundConstants(true);
break;
}
}
filter(value, SpecStringIdent);
break;
}
case CheckInBounds: {
JSValue left = forNode(node->child1()).value();
JSValue right = forNode(node->child2()).value();
if (left && right && left.isInt32() && right.isInt32()
&& static_cast<uint32_t>(left.asInt32()) < static_cast<uint32_t>(right.asInt32())) {
m_state.setFoundConstants(true);
break;
}
break;
}
case PutById:
case PutByIdFlush:
case PutByIdDirect: {
AbstractValue& value = forNode(node->child1());
if (value.m_structure.isFinite()) {
PutByIdStatus status = PutByIdStatus::computeFor(
m_graph.globalObjectFor(node->origin.semantic),
value.m_structure.toStructureSet(),
m_graph.identifiers()[node->identifierNumber()],
node->op() == PutByIdDirect);
if (status.isSimple()) {
RegisteredStructureSet newSet;
TransitionVector transitions;
for (unsigned i = status.numVariants(); i--;) {
const PutByIdVariant& variant = status[i];
if (variant.kind() == PutByIdVariant::Transition) {
RegisteredStructure newStructure = m_graph.registerStructure(variant.newStructure());
transitions.append(
Transition(
m_graph.registerStructure(variant.oldStructureForTransition()), newStructure));
newSet.add(newStructure);
} else {
ASSERT(variant.kind() == PutByIdVariant::Replace);
newSet.merge(*m_graph.addStructureSet(variant.oldStructure()));
}
}
if (status.numVariants() == 1 || isFTL(m_graph.m_plan.mode))
m_state.setFoundConstants(true);
observeTransitions(clobberLimit, transitions);
if (forNode(node->child1()).changeStructure(m_graph, newSet) == Contradiction)
m_state.setIsValid(false);
break;
}
}
clobberWorld(node->origin.semantic, clobberLimit);
break;
}
case PutByValWithThis:
case PutByIdWithThis:
clobberWorld(node->origin.semantic, clobberLimit);
break;
case PutGetterById:
case PutSetterById:
case PutGetterSetterById:
case PutGetterByVal:
case PutSetterByVal: {
clobberWorld(node->origin.semantic, clobberLimit);
break;
}
case DefineDataProperty:
case DefineAccessorProperty:
clobberWorld(node->origin.semantic, clobberLimit);
break;
case In: {
// FIXME: We can determine when the property definitely exists based on abstract
// value information.
clobberWorld(node->origin.semantic, clobberLimit);
forNode(node).setType(SpecBoolean);
break;
}
case HasOwnProperty: {
clobberWorld(node->origin.semantic, clobberLimit);
forNode(node).setType(SpecBoolean);
break;
}
case GetEnumerableLength: {
forNode(node).setType(SpecInt32Only);
break;
}
case HasGenericProperty: {
forNode(node).setType(SpecBoolean);
break;
}
case HasStructureProperty: {
forNode(node).setType(SpecBoolean);
break;
}
case HasIndexedProperty: {
ArrayMode mode = node->arrayMode();
switch (mode.type()) {
case Array::Int32:
case Array::Double:
case Array::Contiguous:
case Array::ArrayStorage: {
break;
}
default: {
clobberWorld(node->origin.semantic, clobberLimit);
break;
}
}
forNode(node).setType(SpecBoolean);
break;
}
case GetDirectPname: {
clobberWorld(node->origin.semantic, clobberLimit);
forNode(node).makeHeapTop();
break;
}
case GetPropertyEnumerator: {
forNode(node).setType(m_graph, SpecCell);
break;
}
case GetEnumeratorStructurePname: {
forNode(node).setType(m_graph, SpecString | SpecOther);
break;
}
case GetEnumeratorGenericPname: {
forNode(node).setType(m_graph, SpecString | SpecOther);
break;
}
case ToIndexString: {
forNode(node).setType(m_graph, SpecString);
break;
}
case GetGlobalVar:
forNode(node).makeHeapTop();
break;
case GetGlobalLexicalVariable:
forNode(node).makeBytecodeTop();
break;
case GetDynamicVar:
clobberWorld(node->origin.semantic, clobberLimit);
forNode(node).makeBytecodeTop();
break;
case PutDynamicVar:
clobberWorld(node->origin.semantic, clobberLimit);
break;
case ResolveScope:
clobberWorld(node->origin.semantic, clobberLimit);
forNode(node).setType(m_graph, SpecObject);
break;
case ResolveScopeForHoistingFuncDeclInEval:
clobberWorld(node->origin.semantic, clobberLimit);
forNode(node).makeBytecodeTop();
break;
case PutGlobalVariable:
case NotifyWrite:
break;
case OverridesHasInstance:
forNode(node).setType(SpecBoolean);
break;
case InstanceOf:
// Sadly, we don't propagate the fact that we've done InstanceOf
forNode(node).setType(SpecBoolean);
break;
case InstanceOfCustom:
clobberWorld(node->origin.semantic, clobberLimit);
forNode(node).setType(SpecBoolean);
break;
case Phi:
RELEASE_ASSERT(m_graph.m_form == SSA);
forNode(node) = forNode(NodeFlowProjection(node, NodeFlowProjection::Shadow));
// The state of this node would have already been decided, but it may have become a
// constant, in which case we'd like to know.
if (forNode(node).m_value)
m_state.setFoundConstants(true);
break;
case Upsilon: {
NodeFlowProjection shadow(node->phi(), NodeFlowProjection::Shadow);
if (shadow.isStillValid()) {
m_state.createValueForNode(shadow);
forNode(shadow) = forNode(node->child1());
}
break;
}
case Flush:
case PhantomLocal:
break;
case Call:
case TailCallInlinedCaller:
case Construct:
case CallVarargs:
case CallForwardVarargs:
case TailCallVarargsInlinedCaller:
case ConstructVarargs:
case ConstructForwardVarargs:
case TailCallForwardVarargsInlinedCaller:
case CallEval:
case DirectCall:
case DirectConstruct:
case DirectTailCallInlinedCaller:
clobberWorld(node->origin.semantic, clobberLimit);
forNode(node).makeHeapTop();
break;
case ForceOSRExit:
case CheckBadCell:
m_state.setIsValid(false);
break;
case InvalidationPoint:
forAllValues(clobberLimit, AbstractValue::observeInvalidationPointFor);
m_state.setStructureClobberState(StructuresAreWatched);
break;
case CheckTraps:
case LogShadowChickenPrologue:
case LogShadowChickenTail:
break;
case ProfileType:
case ProfileControlFlow:
case Phantom:
case CountExecution:
case CheckTierUpInLoop:
case CheckTierUpAtReturn:
case CheckTypeInfoFlags:
break;
case ParseInt: {
AbstractValue value = forNode(node->child1());
if (value.m_type && !(value.m_type & ~SpecInt32Only)) {
JSValue radix;
if (!node->child2())
radix = jsNumber(0);
else
radix = forNode(node->child2()).m_value;
if (radix.isNumber()
&& (radix.asNumber() == 0 || radix.asNumber() == 10)) {
m_state.setFoundConstants(true);
forNode(node).setType(SpecInt32Only);
break;
}
}
if (node->child1().useKind() == UntypedUse)
clobberWorld(node->origin.semantic, clobberLimit);
forNode(node).setType(m_graph, SpecBytecodeNumber);
break;
}
case CreateRest:
if (!m_graph.isWatchingHavingABadTimeWatchpoint(node)) {
// This means we're already having a bad time.
clobberWorld(node->origin.semantic, clobberLimit);
forNode(node).setType(m_graph, SpecArray);
break;
}
forNode(node).set(
m_graph,
m_graph.globalObjectFor(node->origin.semantic)->restParameterStructure());
break;
case Check: {
// Simplify out checks that don't actually do checking.
for (unsigned i = 0; i < AdjacencyList::Size; ++i) {
Edge edge = node->children.child(i);
if (!edge)
break;
if (edge.isProved() || edge.willNotHaveCheck()) {
m_state.setFoundConstants(true);
break;
}
}
break;
}
case SetFunctionName: {
clobberWorld(node->origin.semantic, clobberLimit);
break;
}
case StoreBarrier:
case FencedStoreBarrier: {
filter(node->child1(), SpecCell);
break;
}
case CheckTierUpAndOSREnter:
case LoopHint:
case ZombieHint:
case ExitOK:
break;
case Unreachable:
// It may be that during a previous run of AI we proved that something was unreachable, but
// during this run of AI we forget that it's unreachable. AI's proofs don't have to get
// monotonically stronger over time. So, we don't assert that AI doesn't reach the
// Unreachable. We have no choice but to take our past proof at face value. Otherwise we'll
// crash whenever AI fails to be as powerful on run K as it was on run K-1.
m_state.setIsValid(false);
break;
case LastNodeType:
case ArithIMul:
case FiatInt52:
DFG_CRASH(m_graph, node, "Unexpected node type");
break;
}
return m_state.isValid();
}
template<typename AbstractStateType>
bool AbstractInterpreter<AbstractStateType>::executeEffects(unsigned indexInBlock)
{
return executeEffects(indexInBlock, m_state.block()->at(indexInBlock));
}
template<typename AbstractStateType>
bool AbstractInterpreter<AbstractStateType>::execute(unsigned indexInBlock)
{
Node* node = m_state.block()->at(indexInBlock);
startExecuting();
executeEdges(node);
return executeEffects(indexInBlock, node);
}
template<typename AbstractStateType>
bool AbstractInterpreter<AbstractStateType>::execute(Node* node)
{
startExecuting();
executeEdges(node);
return executeEffects(UINT_MAX, node);
}
template<typename AbstractStateType>
void AbstractInterpreter<AbstractStateType>::clobberWorld(
const CodeOrigin&, unsigned clobberLimit)
{
clobberStructures(clobberLimit);
}
template<typename AbstractStateType>
template<typename Functor>
void AbstractInterpreter<AbstractStateType>::forAllValues(
unsigned clobberLimit, Functor& functor)
{
if (clobberLimit >= m_state.block()->size())
clobberLimit = m_state.block()->size();
else
clobberLimit++;
ASSERT(clobberLimit <= m_state.block()->size());
for (size_t i = clobberLimit; i--;) {
NodeFlowProjection::forEach(
m_state.block()->at(i),
[&] (NodeFlowProjection nodeProjection) {
functor(forNode(nodeProjection));
});
}
if (m_graph.m_form == SSA) {
for (NodeFlowProjection node : m_state.block()->ssa->liveAtHead) {
if (node.isStillValid())
functor(forNode(node));
}
}
for (size_t i = m_state.variables().numberOfArguments(); i--;)
functor(m_state.variables().argument(i));
for (size_t i = m_state.variables().numberOfLocals(); i--;)
functor(m_state.variables().local(i));
}
template<typename AbstractStateType>
void AbstractInterpreter<AbstractStateType>::clobberStructures(unsigned clobberLimit)
{
forAllValues(clobberLimit, AbstractValue::clobberStructuresFor);
setDidClobber();
}
template<typename AbstractStateType>
void AbstractInterpreter<AbstractStateType>::observeTransition(
unsigned clobberLimit, RegisteredStructure from, RegisteredStructure to)
{
AbstractValue::TransitionObserver transitionObserver(from, to);
forAllValues(clobberLimit, transitionObserver);
ASSERT(!from->dfgShouldWatch()); // We don't need to claim to be in a clobbered state because 'from' was never watchable (during the time we were compiling), hence no constants ever introduced into the DFG IR that ever had a watchable structure would ever have the same structure as from.
}
template<typename AbstractStateType>
void AbstractInterpreter<AbstractStateType>::observeTransitions(
unsigned clobberLimit, const TransitionVector& vector)
{
AbstractValue::TransitionsObserver transitionsObserver(vector);
forAllValues(clobberLimit, transitionsObserver);
if (!ASSERT_DISABLED) {
// We don't need to claim to be in a clobbered state because none of the Transition::previous structures are watchable.
for (unsigned i = vector.size(); i--;)
ASSERT(!vector[i].previous->dfgShouldWatch());
}
}
template<typename AbstractStateType>
void AbstractInterpreter<AbstractStateType>::setDidClobber()
{
m_state.setDidClobber(true);
m_state.setStructureClobberState(StructuresAreClobbered);
}
template<typename AbstractStateType>
void AbstractInterpreter<AbstractStateType>::dump(PrintStream& out) const
{
const_cast<AbstractInterpreter<AbstractStateType>*>(this)->dump(out);
}
template<typename AbstractStateType>
void AbstractInterpreter<AbstractStateType>::dump(PrintStream& out)
{
CommaPrinter comma(" ");
HashSet<NodeFlowProjection> seen;
if (m_graph.m_form == SSA) {
for (NodeFlowProjection node : m_state.block()->ssa->liveAtHead) {
seen.add(node);
AbstractValue& value = forNode(node);
if (value.isClear())
continue;
out.print(comma, node, ":", value);
}
}
for (size_t i = 0; i < m_state.block()->size(); ++i) {
NodeFlowProjection::forEach(
m_state.block()->at(i), [&] (NodeFlowProjection nodeProjection) {
seen.add(nodeProjection);
AbstractValue& value = forNode(nodeProjection);
if (value.isClear())
return;
out.print(comma, nodeProjection, ":", value);
});
}
if (m_graph.m_form == SSA) {
for (NodeFlowProjection node : m_state.block()->ssa->liveAtTail) {
if (seen.contains(node))
continue;
AbstractValue& value = forNode(node);
if (value.isClear())
continue;
out.print(comma, node, ":", value);
}
}
}
template<typename AbstractStateType>
FiltrationResult AbstractInterpreter<AbstractStateType>::filter(
AbstractValue& value, const RegisteredStructureSet& set, SpeculatedType admittedTypes)
{
if (value.filter(m_graph, set, admittedTypes) == FiltrationOK)
return FiltrationOK;
m_state.setIsValid(false);
return Contradiction;
}
template<typename AbstractStateType>
FiltrationResult AbstractInterpreter<AbstractStateType>::filterArrayModes(
AbstractValue& value, ArrayModes arrayModes)
{
if (value.filterArrayModes(arrayModes) == FiltrationOK)
return FiltrationOK;
m_state.setIsValid(false);
return Contradiction;
}
template<typename AbstractStateType>
FiltrationResult AbstractInterpreter<AbstractStateType>::filter(
AbstractValue& value, SpeculatedType type)
{
if (value.filter(type) == FiltrationOK)
return FiltrationOK;
m_state.setIsValid(false);
return Contradiction;
}
template<typename AbstractStateType>
FiltrationResult AbstractInterpreter<AbstractStateType>::filterByValue(
AbstractValue& abstractValue, FrozenValue concreteValue)
{
if (abstractValue.filterByValue(concreteValue) == FiltrationOK)
return FiltrationOK;
m_state.setIsValid(false);
return Contradiction;
}
template<typename AbstractStateType>
FiltrationResult AbstractInterpreter<AbstractStateType>::filterClassInfo(
AbstractValue& value, const ClassInfo* classInfo)
{
if (value.filterClassInfo(m_graph, classInfo) == FiltrationOK)
return FiltrationOK;
m_state.setIsValid(false);
return Contradiction;
}
template<typename AbstractStateType>
void AbstractInterpreter<AbstractStateType>::executeDoubleUnaryOpEffects(Node* node, double(*equivalentFunction)(double))
{
JSValue child = forNode(node->child1()).value();
if (std::optional<double> number = child.toNumberFromPrimitive()) {
setConstant(node, jsDoubleNumber(equivalentFunction(*number)));
return;
}
SpeculatedType type = SpecFullNumber;
if (node->child1().useKind() == DoubleRepUse)
type = typeOfDoubleUnaryOp(forNode(node->child1()).m_type);
forNode(node).setType(type);
}
} } // namespace JSC::DFG
#endif // ENABLE(DFG_JIT)