mirror of
https://github.com/darlinghq/darling-JavaScriptCore.git
synced 2025-04-11 03:10:57 +00:00
412 lines
18 KiB
C++
412 lines
18 KiB
C++
/*
|
|
* Copyright (C) 2011, 2013-2016 Apple Inc. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
|
|
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
|
|
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
|
|
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include "config.h"
|
|
#include "DFGOSRExitCompiler.h"
|
|
|
|
#if ENABLE(DFG_JIT) && USE(JSVALUE32_64)
|
|
|
|
#include "DFGOperations.h"
|
|
#include "DFGOSRExitCompilerCommon.h"
|
|
#include "DFGSpeculativeJIT.h"
|
|
#include "JSCInlines.h"
|
|
#include <wtf/DataLog.h>
|
|
|
|
namespace JSC { namespace DFG {
|
|
|
|
void OSRExitCompiler::compileExit(VM& vm, const OSRExit& exit, const Operands<ValueRecovery>& operands, SpeculationRecovery* recovery)
|
|
{
|
|
// Pro-forma stuff.
|
|
if (Options::printEachOSRExit()) {
|
|
SpeculationFailureDebugInfo* debugInfo = new SpeculationFailureDebugInfo;
|
|
debugInfo->codeBlock = m_jit.codeBlock();
|
|
debugInfo->kind = exit.m_kind;
|
|
debugInfo->bytecodeOffset = exit.m_codeOrigin.bytecodeIndex;
|
|
|
|
m_jit.debugCall(vm, debugOperationPrintSpeculationFailure, debugInfo);
|
|
}
|
|
|
|
// Perform speculation recovery. This only comes into play when an operation
|
|
// starts mutating state before verifying the speculation it has already made.
|
|
|
|
if (recovery) {
|
|
switch (recovery->type()) {
|
|
case SpeculativeAdd:
|
|
m_jit.sub32(recovery->src(), recovery->dest());
|
|
break;
|
|
|
|
case SpeculativeAddImmediate:
|
|
m_jit.sub32(AssemblyHelpers::Imm32(recovery->immediate()), recovery->dest());
|
|
break;
|
|
|
|
case BooleanSpeculationCheck:
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Refine some value profile, if appropriate.
|
|
|
|
if (!!exit.m_jsValueSource) {
|
|
if (exit.m_kind == BadCache || exit.m_kind == BadIndexingType) {
|
|
// If the instruction that this originated from has an array profile, then
|
|
// refine it. If it doesn't, then do nothing. The latter could happen for
|
|
// hoisted checks, or checks emitted for operations that didn't have array
|
|
// profiling - either ops that aren't array accesses at all, or weren't
|
|
// known to be array acceses in the bytecode. The latter case is a FIXME
|
|
// while the former case is an outcome of a CheckStructure not knowing why
|
|
// it was emitted (could be either due to an inline cache of a property
|
|
// property access, or due to an array profile).
|
|
|
|
// Note: We are free to assume that the jsValueSource is already known to
|
|
// be a cell since both BadCache and BadIndexingType exits occur after
|
|
// the cell check would have already happened.
|
|
|
|
CodeOrigin codeOrigin = exit.m_codeOriginForExitProfile;
|
|
if (ArrayProfile* arrayProfile = m_jit.baselineCodeBlockFor(codeOrigin)->getArrayProfile(codeOrigin.bytecodeIndex)) {
|
|
GPRReg usedRegister1;
|
|
GPRReg usedRegister2;
|
|
if (exit.m_jsValueSource.isAddress()) {
|
|
usedRegister1 = exit.m_jsValueSource.base();
|
|
usedRegister2 = InvalidGPRReg;
|
|
} else {
|
|
usedRegister1 = exit.m_jsValueSource.payloadGPR();
|
|
if (exit.m_jsValueSource.hasKnownTag())
|
|
usedRegister2 = InvalidGPRReg;
|
|
else
|
|
usedRegister2 = exit.m_jsValueSource.tagGPR();
|
|
}
|
|
|
|
GPRReg scratch1;
|
|
GPRReg scratch2;
|
|
scratch1 = AssemblyHelpers::selectScratchGPR(usedRegister1, usedRegister2);
|
|
scratch2 = AssemblyHelpers::selectScratchGPR(usedRegister1, usedRegister2, scratch1);
|
|
|
|
m_jit.push(scratch1);
|
|
m_jit.push(scratch2);
|
|
|
|
GPRReg value;
|
|
if (exit.m_jsValueSource.isAddress()) {
|
|
value = scratch1;
|
|
m_jit.loadPtr(AssemblyHelpers::Address(exit.m_jsValueSource.asAddress()), value);
|
|
} else
|
|
value = exit.m_jsValueSource.payloadGPR();
|
|
|
|
m_jit.loadPtr(AssemblyHelpers::Address(value, JSCell::structureIDOffset()), scratch1);
|
|
m_jit.storePtr(scratch1, arrayProfile->addressOfLastSeenStructureID());
|
|
m_jit.load8(AssemblyHelpers::Address(scratch1, Structure::indexingTypeIncludingHistoryOffset()), scratch1);
|
|
m_jit.move(AssemblyHelpers::TrustedImm32(1), scratch2);
|
|
m_jit.lshift32(scratch1, scratch2);
|
|
m_jit.or32(scratch2, AssemblyHelpers::AbsoluteAddress(arrayProfile->addressOfArrayModes()));
|
|
|
|
m_jit.pop(scratch2);
|
|
m_jit.pop(scratch1);
|
|
}
|
|
}
|
|
|
|
if (MethodOfGettingAValueProfile profile = exit.m_valueProfile) {
|
|
if (exit.m_jsValueSource.isAddress()) {
|
|
// Save a register so we can use it.
|
|
GPRReg scratchPayload = AssemblyHelpers::selectScratchGPR(exit.m_jsValueSource.base());
|
|
GPRReg scratchTag = AssemblyHelpers::selectScratchGPR(exit.m_jsValueSource.base(), scratchPayload);
|
|
m_jit.pushToSave(scratchPayload);
|
|
m_jit.pushToSave(scratchTag);
|
|
|
|
JSValueRegs scratch(scratchTag, scratchPayload);
|
|
|
|
m_jit.loadValue(exit.m_jsValueSource.asAddress(), scratch);
|
|
profile.emitReportValue(m_jit, scratch);
|
|
|
|
m_jit.popToRestore(scratchTag);
|
|
m_jit.popToRestore(scratchPayload);
|
|
} else if (exit.m_jsValueSource.hasKnownTag()) {
|
|
GPRReg scratchTag = AssemblyHelpers::selectScratchGPR(exit.m_jsValueSource.payloadGPR());
|
|
m_jit.pushToSave(scratchTag);
|
|
m_jit.move(AssemblyHelpers::TrustedImm32(exit.m_jsValueSource.tag()), scratchTag);
|
|
JSValueRegs value(scratchTag, exit.m_jsValueSource.payloadGPR());
|
|
profile.emitReportValue(m_jit, value);
|
|
m_jit.popToRestore(scratchTag);
|
|
} else
|
|
profile.emitReportValue(m_jit, exit.m_jsValueSource.regs());
|
|
}
|
|
}
|
|
|
|
// Do a simplified OSR exit. See DFGOSRExitCompiler64.cpp's comment regarding how and wny we
|
|
// do this simple approach.
|
|
|
|
// Save all state from GPRs into the scratch buffer.
|
|
|
|
ScratchBuffer* scratchBuffer = vm.scratchBufferForSize(sizeof(EncodedJSValue) * operands.size());
|
|
EncodedJSValue* scratch = scratchBuffer ? static_cast<EncodedJSValue*>(scratchBuffer->dataBuffer()) : 0;
|
|
|
|
for (size_t index = 0; index < operands.size(); ++index) {
|
|
const ValueRecovery& recovery = operands[index];
|
|
|
|
switch (recovery.technique()) {
|
|
case UnboxedInt32InGPR:
|
|
case UnboxedBooleanInGPR:
|
|
case UnboxedCellInGPR:
|
|
m_jit.store32(
|
|
recovery.gpr(),
|
|
&bitwise_cast<EncodedValueDescriptor*>(scratch + index)->asBits.payload);
|
|
break;
|
|
|
|
case InPair:
|
|
m_jit.store32(
|
|
recovery.tagGPR(),
|
|
&bitwise_cast<EncodedValueDescriptor*>(scratch + index)->asBits.tag);
|
|
m_jit.store32(
|
|
recovery.payloadGPR(),
|
|
&bitwise_cast<EncodedValueDescriptor*>(scratch + index)->asBits.payload);
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Now all GPRs are free to reuse.
|
|
|
|
// Save all state from FPRs into the scratch buffer.
|
|
|
|
for (size_t index = 0; index < operands.size(); ++index) {
|
|
const ValueRecovery& recovery = operands[index];
|
|
|
|
switch (recovery.technique()) {
|
|
case UnboxedDoubleInFPR:
|
|
case InFPR:
|
|
m_jit.move(AssemblyHelpers::TrustedImmPtr(scratch + index), GPRInfo::regT0);
|
|
m_jit.storeDouble(recovery.fpr(), MacroAssembler::Address(GPRInfo::regT0));
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Now all FPRs are free to reuse.
|
|
|
|
// Save all state from the stack into the scratch buffer. For simplicity we
|
|
// do this even for state that's already in the right place on the stack.
|
|
// It makes things simpler later.
|
|
|
|
for (size_t index = 0; index < operands.size(); ++index) {
|
|
const ValueRecovery& recovery = operands[index];
|
|
|
|
switch (recovery.technique()) {
|
|
case DisplacedInJSStack:
|
|
case Int32DisplacedInJSStack:
|
|
case DoubleDisplacedInJSStack:
|
|
case CellDisplacedInJSStack:
|
|
case BooleanDisplacedInJSStack:
|
|
m_jit.load32(
|
|
AssemblyHelpers::tagFor(recovery.virtualRegister()),
|
|
GPRInfo::regT0);
|
|
m_jit.load32(
|
|
AssemblyHelpers::payloadFor(recovery.virtualRegister()),
|
|
GPRInfo::regT1);
|
|
m_jit.store32(
|
|
GPRInfo::regT0,
|
|
&bitwise_cast<EncodedValueDescriptor*>(scratch + index)->asBits.tag);
|
|
m_jit.store32(
|
|
GPRInfo::regT1,
|
|
&bitwise_cast<EncodedValueDescriptor*>(scratch + index)->asBits.payload);
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Need to ensure that the stack pointer accounts for the worst-case stack usage at exit. This
|
|
// could toast some stack that the DFG used. We need to do it before storing to stack offsets
|
|
// used by baseline.
|
|
m_jit.addPtr(
|
|
CCallHelpers::TrustedImm32(
|
|
-m_jit.codeBlock()->jitCode()->dfgCommon()->requiredRegisterCountForExit * sizeof(Register)),
|
|
CCallHelpers::framePointerRegister, CCallHelpers::stackPointerRegister);
|
|
|
|
// Restore the DFG callee saves and then save the ones the baseline JIT uses.
|
|
m_jit.emitRestoreCalleeSaves();
|
|
m_jit.emitSaveCalleeSavesFor(m_jit.baselineCodeBlock());
|
|
|
|
if (exit.isExceptionHandler())
|
|
m_jit.copyCalleeSavesToVMEntryFrameCalleeSavesBuffer(vm);
|
|
|
|
// Do all data format conversions and store the results into the stack.
|
|
|
|
for (size_t index = 0; index < operands.size(); ++index) {
|
|
const ValueRecovery& recovery = operands[index];
|
|
VirtualRegister reg = operands.virtualRegisterForIndex(index);
|
|
|
|
if (reg.isLocal() && reg.toLocal() < static_cast<int>(m_jit.baselineCodeBlock()->calleeSaveSpaceAsVirtualRegisters()))
|
|
continue;
|
|
|
|
int operand = reg.offset();
|
|
|
|
switch (recovery.technique()) {
|
|
case InPair:
|
|
case DisplacedInJSStack:
|
|
case InFPR:
|
|
m_jit.load32(
|
|
&bitwise_cast<EncodedValueDescriptor*>(scratch + index)->asBits.tag,
|
|
GPRInfo::regT0);
|
|
m_jit.load32(
|
|
&bitwise_cast<EncodedValueDescriptor*>(scratch + index)->asBits.payload,
|
|
GPRInfo::regT1);
|
|
m_jit.store32(
|
|
GPRInfo::regT0,
|
|
AssemblyHelpers::tagFor(operand));
|
|
m_jit.store32(
|
|
GPRInfo::regT1,
|
|
AssemblyHelpers::payloadFor(operand));
|
|
break;
|
|
|
|
case UnboxedDoubleInFPR:
|
|
case DoubleDisplacedInJSStack:
|
|
m_jit.move(AssemblyHelpers::TrustedImmPtr(scratch + index), GPRInfo::regT0);
|
|
m_jit.loadDouble(MacroAssembler::Address(GPRInfo::regT0), FPRInfo::fpRegT0);
|
|
m_jit.purifyNaN(FPRInfo::fpRegT0);
|
|
m_jit.storeDouble(FPRInfo::fpRegT0, AssemblyHelpers::addressFor(operand));
|
|
break;
|
|
|
|
case UnboxedInt32InGPR:
|
|
case Int32DisplacedInJSStack:
|
|
m_jit.load32(
|
|
&bitwise_cast<EncodedValueDescriptor*>(scratch + index)->asBits.payload,
|
|
GPRInfo::regT0);
|
|
m_jit.store32(
|
|
AssemblyHelpers::TrustedImm32(JSValue::Int32Tag),
|
|
AssemblyHelpers::tagFor(operand));
|
|
m_jit.store32(
|
|
GPRInfo::regT0,
|
|
AssemblyHelpers::payloadFor(operand));
|
|
break;
|
|
|
|
case UnboxedCellInGPR:
|
|
case CellDisplacedInJSStack:
|
|
m_jit.load32(
|
|
&bitwise_cast<EncodedValueDescriptor*>(scratch + index)->asBits.payload,
|
|
GPRInfo::regT0);
|
|
m_jit.store32(
|
|
AssemblyHelpers::TrustedImm32(JSValue::CellTag),
|
|
AssemblyHelpers::tagFor(operand));
|
|
m_jit.store32(
|
|
GPRInfo::regT0,
|
|
AssemblyHelpers::payloadFor(operand));
|
|
break;
|
|
|
|
case UnboxedBooleanInGPR:
|
|
case BooleanDisplacedInJSStack:
|
|
m_jit.load32(
|
|
&bitwise_cast<EncodedValueDescriptor*>(scratch + index)->asBits.payload,
|
|
GPRInfo::regT0);
|
|
m_jit.store32(
|
|
AssemblyHelpers::TrustedImm32(JSValue::BooleanTag),
|
|
AssemblyHelpers::tagFor(operand));
|
|
m_jit.store32(
|
|
GPRInfo::regT0,
|
|
AssemblyHelpers::payloadFor(operand));
|
|
break;
|
|
|
|
case Constant:
|
|
m_jit.store32(
|
|
AssemblyHelpers::TrustedImm32(recovery.constant().tag()),
|
|
AssemblyHelpers::tagFor(operand));
|
|
m_jit.store32(
|
|
AssemblyHelpers::TrustedImm32(recovery.constant().payload()),
|
|
AssemblyHelpers::payloadFor(operand));
|
|
break;
|
|
|
|
case DirectArgumentsThatWereNotCreated:
|
|
case ClonedArgumentsThatWereNotCreated:
|
|
// Don't do this, yet.
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Now that things on the stack are recovered, do the arguments recovery. We assume that arguments
|
|
// recoveries don't recursively refer to each other. But, we don't try to assume that they only
|
|
// refer to certain ranges of locals. Hence why we need to do this here, once the stack is sensible.
|
|
// Note that we also roughly assume that the arguments might still be materialized outside of its
|
|
// inline call frame scope - but for now the DFG wouldn't do that.
|
|
|
|
emitRestoreArguments(operands);
|
|
|
|
// Adjust the old JIT's execute counter. Since we are exiting OSR, we know
|
|
// that all new calls into this code will go to the new JIT, so the execute
|
|
// counter only affects call frames that performed OSR exit and call frames
|
|
// that were still executing the old JIT at the time of another call frame's
|
|
// OSR exit. We want to ensure that the following is true:
|
|
//
|
|
// (a) Code the performs an OSR exit gets a chance to reenter optimized
|
|
// code eventually, since optimized code is faster. But we don't
|
|
// want to do such reentery too aggressively (see (c) below).
|
|
//
|
|
// (b) If there is code on the call stack that is still running the old
|
|
// JIT's code and has never OSR'd, then it should get a chance to
|
|
// perform OSR entry despite the fact that we've exited.
|
|
//
|
|
// (c) Code the performs an OSR exit should not immediately retry OSR
|
|
// entry, since both forms of OSR are expensive. OSR entry is
|
|
// particularly expensive.
|
|
//
|
|
// (d) Frequent OSR failures, even those that do not result in the code
|
|
// running in a hot loop, result in recompilation getting triggered.
|
|
//
|
|
// To ensure (c), we'd like to set the execute counter to
|
|
// counterValueForOptimizeAfterWarmUp(). This seems like it would endanger
|
|
// (a) and (b), since then every OSR exit would delay the opportunity for
|
|
// every call frame to perform OSR entry. Essentially, if OSR exit happens
|
|
// frequently and the function has few loops, then the counter will never
|
|
// become non-negative and OSR entry will never be triggered. OSR entry
|
|
// will only happen if a loop gets hot in the old JIT, which does a pretty
|
|
// good job of ensuring (a) and (b). But that doesn't take care of (d),
|
|
// since each speculation failure would reset the execute counter.
|
|
// So we check here if the number of speculation failures is significantly
|
|
// larger than the number of successes (we want 90% success rate), and if
|
|
// there have been a large enough number of failures. If so, we set the
|
|
// counter to 0; otherwise we set the counter to
|
|
// counterValueForOptimizeAfterWarmUp().
|
|
|
|
handleExitCounts(m_jit, exit);
|
|
|
|
// Reify inlined call frames.
|
|
|
|
reifyInlinedCallFrames(m_jit, exit);
|
|
|
|
// And finish.
|
|
adjustAndJumpToTarget(vm, m_jit, exit);
|
|
}
|
|
|
|
} } // namespace JSC::DFG
|
|
|
|
#endif // ENABLE(DFG_JIT) && USE(JSVALUE32_64)
|