mirror of
https://github.com/darlinghq/darling-JavaScriptCore.git
synced 2025-04-05 00:11:39 +00:00
547 lines
17 KiB
C++
547 lines
17 KiB
C++
/*
|
|
* Copyright (C) 2009-2021 Apple Inc. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
|
|
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
|
|
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
|
|
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
#include "JSCPtrTag.h"
|
|
#include <wtf/DataLog.h>
|
|
#include <wtf/MetaAllocatorHandle.h>
|
|
#include <wtf/PrintStream.h>
|
|
#include <wtf/RefPtr.h>
|
|
#include <wtf/text/CString.h>
|
|
|
|
// ASSERT_VALID_CODE_POINTER checks that ptr is a non-null pointer, and that it is a valid
|
|
// instruction address on the platform (for example, check any alignment requirements).
|
|
#if CPU(ARM_THUMB2) && ENABLE(JIT)
|
|
// ARM instructions must be 16-bit aligned. Thumb2 code pointers to be loaded into
|
|
// into the processor are decorated with the bottom bit set, while traditional ARM has
|
|
// the lower bit clear. Since we don't know what kind of pointer, we check for both
|
|
// decorated and undecorated null.
|
|
#define ASSERT_NULL_OR_VALID_CODE_POINTER(ptr) \
|
|
ASSERT(!ptr || reinterpret_cast<intptr_t>(ptr) & ~1)
|
|
#define ASSERT_VALID_CODE_POINTER(ptr) \
|
|
ASSERT(reinterpret_cast<intptr_t>(ptr) & ~1)
|
|
#define ASSERT_VALID_CODE_OFFSET(offset) \
|
|
ASSERT(!(offset & 1)) // Must be multiple of 2.
|
|
#else
|
|
#define ASSERT_NULL_OR_VALID_CODE_POINTER(ptr) // Anything goes!
|
|
#define ASSERT_VALID_CODE_POINTER(ptr) \
|
|
ASSERT(ptr)
|
|
#define ASSERT_VALID_CODE_OFFSET(offset) // Anything goes!
|
|
#endif
|
|
|
|
namespace JSC {
|
|
|
|
typedef WTF::MetaAllocatorHandle ExecutableMemoryHandle;
|
|
template<PtrTag> class MacroAssemblerCodePtr;
|
|
|
|
enum OpcodeID : unsigned;
|
|
|
|
// CFunctionPtr can only be used to hold C/C++ functions.
|
|
class CFunctionPtr {
|
|
public:
|
|
using Ptr = void(*)();
|
|
|
|
CFunctionPtr() { }
|
|
CFunctionPtr(std::nullptr_t) { }
|
|
|
|
template<typename ReturnType, typename... Arguments>
|
|
constexpr CFunctionPtr(ReturnType(&ptr)(Arguments...))
|
|
: m_ptr(reinterpret_cast<Ptr>(&ptr))
|
|
{ }
|
|
|
|
template<typename ReturnType, typename... Arguments>
|
|
explicit CFunctionPtr(ReturnType(*ptr)(Arguments...))
|
|
: m_ptr(reinterpret_cast<Ptr>(ptr))
|
|
{
|
|
assertIsCFunctionPtr(m_ptr);
|
|
}
|
|
|
|
// MSVC doesn't seem to treat functions with different calling conventions as
|
|
// different types; these methods are already defined for fastcall, below.
|
|
#if CALLING_CONVENTION_IS_STDCALL && !OS(WINDOWS)
|
|
template<typename ReturnType, typename... Arguments>
|
|
constexpr CFunctionPtr(ReturnType(CDECL &ptr)(Arguments...))
|
|
: m_ptr(reinterpret_cast<Ptr>(&ptr))
|
|
{ }
|
|
|
|
template<typename ReturnType, typename... Arguments>
|
|
explicit CFunctionPtr(ReturnType(CDECL *ptr)(Arguments...))
|
|
: m_ptr(reinterpret_cast<Ptr>(ptr))
|
|
{
|
|
assertIsCFunctionPtr(m_ptr);
|
|
}
|
|
|
|
#endif // CALLING_CONVENTION_IS_STDCALL && !OS(WINDOWS)
|
|
|
|
#if COMPILER_SUPPORTS(FASTCALL_CALLING_CONVENTION)
|
|
template<typename ReturnType, typename... Arguments>
|
|
constexpr CFunctionPtr(ReturnType(FASTCALL &ptr)(Arguments...))
|
|
: m_ptr(reinterpret_cast<Ptr>(&ptr))
|
|
{ }
|
|
|
|
template<typename ReturnType, typename... Arguments>
|
|
explicit CFunctionPtr(ReturnType(FASTCALL *ptr)(Arguments...))
|
|
: m_ptr(reinterpret_cast<Ptr>(ptr))
|
|
{
|
|
assertIsCFunctionPtr(m_ptr);
|
|
}
|
|
#endif // COMPILER_SUPPORTS(FASTCALL_CALLING_CONVENTION)
|
|
|
|
constexpr Ptr get() const { return m_ptr; }
|
|
void* address() const { return reinterpret_cast<void*>(m_ptr); }
|
|
|
|
explicit operator bool() const { return !!m_ptr; }
|
|
bool operator!() const { return !m_ptr; }
|
|
|
|
bool operator==(const CFunctionPtr& other) const { return m_ptr == other.m_ptr; }
|
|
bool operator!=(const CFunctionPtr& other) const { return m_ptr != other.m_ptr; }
|
|
|
|
private:
|
|
Ptr m_ptr { nullptr };
|
|
};
|
|
|
|
|
|
// FunctionPtr:
|
|
//
|
|
// FunctionPtr should be used to wrap pointers to C/C++ functions in JSC
|
|
// (particularly, the stub functions).
|
|
template<PtrTag tag = CFunctionPtrTag>
|
|
class FunctionPtr {
|
|
public:
|
|
FunctionPtr() { }
|
|
FunctionPtr(std::nullptr_t) { }
|
|
|
|
template<typename ReturnType, typename... Arguments>
|
|
FunctionPtr(ReturnType(*value)(Arguments...))
|
|
: m_value(tagCFunctionPtr<void*, tag>(value))
|
|
{
|
|
assertIsNullOrCFunctionPtr(value);
|
|
ASSERT_NULL_OR_VALID_CODE_POINTER(m_value);
|
|
}
|
|
|
|
// MSVC doesn't seem to treat functions with different calling conventions as
|
|
// different types; these methods already defined for fastcall, below.
|
|
#if CALLING_CONVENTION_IS_STDCALL && !OS(WINDOWS)
|
|
|
|
template<typename ReturnType, typename... Arguments>
|
|
FunctionPtr(ReturnType(CDECL *value)(Arguments...))
|
|
: m_value(tagCFunctionPtr<void*, tag>(value))
|
|
{
|
|
assertIsNullOrCFunctionPtr(value);
|
|
ASSERT_NULL_OR_VALID_CODE_POINTER(m_value);
|
|
}
|
|
|
|
#endif // CALLING_CONVENTION_IS_STDCALL && !OS(WINDOWS)
|
|
|
|
#if COMPILER_SUPPORTS(FASTCALL_CALLING_CONVENTION)
|
|
|
|
template<typename ReturnType, typename... Arguments>
|
|
FunctionPtr(ReturnType(FASTCALL *value)(Arguments...))
|
|
: m_value(tagCFunctionPtr<void*, tag>(value))
|
|
{
|
|
assertIsNullOrCFunctionPtr(value);
|
|
ASSERT_NULL_OR_VALID_CODE_POINTER(m_value);
|
|
}
|
|
|
|
#endif // COMPILER_SUPPORTS(FASTCALL_CALLING_CONVENTION)
|
|
|
|
template<typename PtrType, typename = std::enable_if_t<std::is_pointer<PtrType>::value && !std::is_function<typename std::remove_pointer<PtrType>::type>::value>>
|
|
explicit FunctionPtr(PtrType value)
|
|
// Using a C-ctyle cast here to avoid compiler error on RVTC:
|
|
// Error: #694: reinterpret_cast cannot cast away const or other type qualifiers
|
|
// (I guess on RVTC function pointers have a different constness to GCC/MSVC?)
|
|
: m_value(tagCFunctionPtr<void*, tag>(value))
|
|
{
|
|
assertIsNullOrCFunctionPtr(value);
|
|
ASSERT_NULL_OR_VALID_CODE_POINTER(m_value);
|
|
}
|
|
|
|
explicit FunctionPtr(MacroAssemblerCodePtr<tag>);
|
|
|
|
template<PtrTag otherTag>
|
|
FunctionPtr<otherTag> retagged() const
|
|
{
|
|
if (!m_value)
|
|
return FunctionPtr<otherTag>();
|
|
return FunctionPtr<otherTag>(*this);
|
|
}
|
|
|
|
void* executableAddress() const
|
|
{
|
|
return m_value;
|
|
}
|
|
|
|
template<PtrTag newTag>
|
|
void* retaggedExecutableAddress() const
|
|
{
|
|
return retagCodePtr<tag, newTag>(m_value);
|
|
}
|
|
|
|
explicit operator bool() const { return !!m_value; }
|
|
bool operator!() const { return !m_value; }
|
|
|
|
bool operator==(const FunctionPtr& other) const { return m_value == other.m_value; }
|
|
bool operator!=(const FunctionPtr& other) const { return m_value != other.m_value; }
|
|
|
|
private:
|
|
template<PtrTag otherTag>
|
|
explicit FunctionPtr(const FunctionPtr<otherTag>& other)
|
|
: m_value(retagCodePtr<otherTag, tag>(other.executableAddress()))
|
|
{
|
|
ASSERT_NULL_OR_VALID_CODE_POINTER(m_value);
|
|
}
|
|
|
|
void* m_value { nullptr };
|
|
|
|
template<PtrTag> friend class FunctionPtr;
|
|
};
|
|
|
|
static_assert(sizeof(FunctionPtr<CFunctionPtrTag>) == sizeof(void*), "");
|
|
#if COMPILER_SUPPORTS(BUILTIN_IS_TRIVIALLY_COPYABLE)
|
|
static_assert(__is_trivially_copyable(FunctionPtr<CFunctionPtrTag>), "");
|
|
#endif
|
|
|
|
// ReturnAddressPtr:
|
|
//
|
|
// ReturnAddressPtr should be used to wrap return addresses generated by processor
|
|
// 'call' instructions exectued in JIT code. We use return addresses to look up
|
|
// exception and optimization information, and to repatch the call instruction
|
|
// that is the source of the return address.
|
|
class ReturnAddressPtr {
|
|
public:
|
|
ReturnAddressPtr() { }
|
|
|
|
explicit ReturnAddressPtr(const void* returnAddress)
|
|
{
|
|
#if CPU(ARM64E)
|
|
assertIsNotTagged(returnAddress);
|
|
returnAddress = retagCodePtr<NoPtrTag, ReturnAddressPtrTag>(returnAddress);
|
|
#endif
|
|
m_value = returnAddress;
|
|
ASSERT_VALID_CODE_POINTER(m_value);
|
|
}
|
|
|
|
const void* value() const
|
|
{
|
|
return m_value;
|
|
}
|
|
|
|
const void* untaggedValue() const
|
|
{
|
|
return untagCodePtr<ReturnAddressPtrTag>(m_value);
|
|
}
|
|
|
|
void dump(PrintStream& out) const
|
|
{
|
|
out.print(RawPointer(m_value));
|
|
}
|
|
|
|
private:
|
|
const void* m_value { nullptr };
|
|
};
|
|
|
|
// MacroAssemblerCodePtr:
|
|
//
|
|
// MacroAssemblerCodePtr should be used to wrap pointers to JIT generated code.
|
|
class MacroAssemblerCodePtrBase {
|
|
protected:
|
|
static void dumpWithName(void* executableAddress, void* dataLocation, const char* name, PrintStream& out);
|
|
};
|
|
|
|
// FIXME: Make JSC MacroAssemblerCodePtr injerit from MetaAllocatorPtr.
|
|
// https://bugs.webkit.org/show_bug.cgi?id=185145
|
|
template<PtrTag tag>
|
|
class MacroAssemblerCodePtr : private MacroAssemblerCodePtrBase {
|
|
public:
|
|
MacroAssemblerCodePtr() = default;
|
|
MacroAssemblerCodePtr(std::nullptr_t) : m_value(nullptr) { }
|
|
|
|
explicit MacroAssemblerCodePtr(const void* value)
|
|
#if CPU(ARM_THUMB2)
|
|
// Decorate the pointer as a thumb code pointer.
|
|
: m_value(reinterpret_cast<const char*>(value) + 1)
|
|
#else
|
|
: m_value(value)
|
|
#endif
|
|
{
|
|
assertIsTaggedWith<tag>(value);
|
|
ASSERT(value);
|
|
#if CPU(ARM_THUMB2)
|
|
ASSERT(!(reinterpret_cast<uintptr_t>(value) & 1));
|
|
#endif
|
|
ASSERT_VALID_CODE_POINTER(m_value);
|
|
}
|
|
|
|
static MacroAssemblerCodePtr createFromExecutableAddress(const void* value)
|
|
{
|
|
ASSERT(value);
|
|
ASSERT_VALID_CODE_POINTER(value);
|
|
assertIsTaggedWith<tag>(value);
|
|
MacroAssemblerCodePtr result;
|
|
result.m_value = value;
|
|
return result;
|
|
}
|
|
|
|
explicit MacroAssemblerCodePtr(ReturnAddressPtr ra)
|
|
: m_value(retagCodePtr<ReturnAddressPtrTag, tag>(ra.value()))
|
|
{
|
|
ASSERT(ra.untaggedValue());
|
|
ASSERT_VALID_CODE_POINTER(m_value);
|
|
}
|
|
|
|
template<PtrTag newTag>
|
|
MacroAssemblerCodePtr<newTag> retagged() const
|
|
{
|
|
if (!m_value)
|
|
return MacroAssemblerCodePtr<newTag>();
|
|
return MacroAssemblerCodePtr<newTag>::createFromExecutableAddress(retaggedExecutableAddress<newTag>());
|
|
}
|
|
|
|
template<typename T = void*>
|
|
T executableAddress() const
|
|
{
|
|
return bitwise_cast<T>(m_value);
|
|
}
|
|
|
|
template<typename T = void*>
|
|
T untaggedExecutableAddress() const
|
|
{
|
|
return untagCodePtr<T, tag>(m_value);
|
|
}
|
|
|
|
template<PtrTag newTag, typename T = void*>
|
|
T retaggedExecutableAddress() const
|
|
{
|
|
return retagCodePtr<T, tag, newTag>(m_value);
|
|
}
|
|
|
|
#if CPU(ARM_THUMB2)
|
|
// To use this pointer as a data address remove the decoration.
|
|
template<typename T = void*>
|
|
T dataLocation() const
|
|
{
|
|
ASSERT_VALID_CODE_POINTER(m_value);
|
|
return bitwise_cast<T>(m_value ? bitwise_cast<char*>(m_value) - 1 : nullptr);
|
|
}
|
|
#else
|
|
template<typename T = void*>
|
|
T dataLocation() const
|
|
{
|
|
ASSERT_VALID_CODE_POINTER(m_value);
|
|
return untagCodePtr<T, tag>(m_value);
|
|
}
|
|
#endif
|
|
|
|
bool operator!() const
|
|
{
|
|
return !m_value;
|
|
}
|
|
explicit operator bool() const { return !(!*this); }
|
|
|
|
bool operator==(const MacroAssemblerCodePtr& other) const
|
|
{
|
|
return m_value == other.m_value;
|
|
}
|
|
|
|
// Disallow any casting operations (except for booleans). Instead, the client
|
|
// should be asking executableAddress() explicitly.
|
|
template<typename T, typename = std::enable_if_t<!std::is_same<T, bool>::value>>
|
|
operator T() = delete;
|
|
|
|
void dumpWithName(const char* name, PrintStream& out) const
|
|
{
|
|
MacroAssemblerCodePtrBase::dumpWithName(executableAddress(), dataLocation(), name, out);
|
|
}
|
|
|
|
void dump(PrintStream& out) const { dumpWithName("CodePtr", out); }
|
|
|
|
enum EmptyValueTag { EmptyValue };
|
|
enum DeletedValueTag { DeletedValue };
|
|
|
|
MacroAssemblerCodePtr(EmptyValueTag)
|
|
: m_value(emptyValue())
|
|
{ }
|
|
|
|
MacroAssemblerCodePtr(DeletedValueTag)
|
|
: m_value(deletedValue())
|
|
{ }
|
|
|
|
bool isEmptyValue() const { return m_value == emptyValue(); }
|
|
bool isDeletedValue() const { return m_value == deletedValue(); }
|
|
|
|
unsigned hash() const { return PtrHash<const void*>::hash(m_value); }
|
|
|
|
static void initialize();
|
|
|
|
private:
|
|
static const void* emptyValue() { return bitwise_cast<void*>(static_cast<intptr_t>(1)); }
|
|
static const void* deletedValue() { return bitwise_cast<void*>(static_cast<intptr_t>(2)); }
|
|
|
|
const void* m_value { nullptr };
|
|
};
|
|
|
|
template<PtrTag tag>
|
|
struct MacroAssemblerCodePtrHash {
|
|
static unsigned hash(const MacroAssemblerCodePtr<tag>& ptr) { return ptr.hash(); }
|
|
static bool equal(const MacroAssemblerCodePtr<tag>& a, const MacroAssemblerCodePtr<tag>& b)
|
|
{
|
|
return a == b;
|
|
}
|
|
static constexpr bool safeToCompareToEmptyOrDeleted = true;
|
|
};
|
|
|
|
// MacroAssemblerCodeRef:
|
|
//
|
|
// A reference to a section of JIT generated code. A CodeRef consists of a
|
|
// pointer to the code, and a ref pointer to the pool from within which it
|
|
// was allocated.
|
|
class MacroAssemblerCodeRefBase {
|
|
protected:
|
|
static bool tryToDisassemble(MacroAssemblerCodePtr<DisassemblyPtrTag>, size_t, const char* prefix, PrintStream& out);
|
|
static bool tryToDisassemble(MacroAssemblerCodePtr<DisassemblyPtrTag>, size_t, const char* prefix);
|
|
JS_EXPORT_PRIVATE static CString disassembly(MacroAssemblerCodePtr<DisassemblyPtrTag>, size_t);
|
|
};
|
|
|
|
template<PtrTag tag>
|
|
class MacroAssemblerCodeRef : private MacroAssemblerCodeRefBase {
|
|
private:
|
|
// This is private because it's dangerous enough that we want uses of it
|
|
// to be easy to find - hence the static create method below.
|
|
explicit MacroAssemblerCodeRef(MacroAssemblerCodePtr<tag> codePtr)
|
|
: m_codePtr(codePtr)
|
|
{
|
|
ASSERT(m_codePtr);
|
|
}
|
|
|
|
public:
|
|
MacroAssemblerCodeRef() = default;
|
|
|
|
MacroAssemblerCodeRef(Ref<ExecutableMemoryHandle>&& executableMemory)
|
|
: m_codePtr(executableMemory->start().retaggedPtr<tag>())
|
|
, m_executableMemory(WTFMove(executableMemory))
|
|
{
|
|
ASSERT(m_executableMemory->start());
|
|
ASSERT(m_codePtr);
|
|
}
|
|
|
|
template<PtrTag otherTag>
|
|
MacroAssemblerCodeRef& operator=(const MacroAssemblerCodeRef<otherTag>& otherCodeRef)
|
|
{
|
|
m_codePtr = MacroAssemblerCodePtr<tag>::createFromExecutableAddress(otherCodeRef.code().template retaggedExecutableAddress<tag>());
|
|
m_executableMemory = otherCodeRef.m_executableMemory;
|
|
return *this;
|
|
}
|
|
|
|
// Use this only when you know that the codePtr refers to code that is
|
|
// already being kept alive through some other means. Typically this means
|
|
// that codePtr is immortal.
|
|
static MacroAssemblerCodeRef createSelfManagedCodeRef(MacroAssemblerCodePtr<tag> codePtr)
|
|
{
|
|
return MacroAssemblerCodeRef(codePtr);
|
|
}
|
|
|
|
ExecutableMemoryHandle* executableMemory() const
|
|
{
|
|
return m_executableMemory.get();
|
|
}
|
|
|
|
MacroAssemblerCodePtr<tag> code() const
|
|
{
|
|
return m_codePtr;
|
|
}
|
|
|
|
template<PtrTag newTag>
|
|
MacroAssemblerCodePtr<newTag> retaggedCode() const
|
|
{
|
|
return m_codePtr.template retagged<newTag>();
|
|
}
|
|
|
|
template<PtrTag newTag>
|
|
MacroAssemblerCodeRef<newTag> retagged() const
|
|
{
|
|
return MacroAssemblerCodeRef<newTag>(*this);
|
|
}
|
|
|
|
size_t size() const
|
|
{
|
|
if (!m_executableMemory)
|
|
return 0;
|
|
return m_executableMemory->sizeInBytes();
|
|
}
|
|
|
|
bool tryToDisassemble(PrintStream& out, const char* prefix = "") const
|
|
{
|
|
return tryToDisassemble(retaggedCode<DisassemblyPtrTag>(), size(), prefix, out);
|
|
}
|
|
|
|
bool tryToDisassemble(const char* prefix = "") const
|
|
{
|
|
return tryToDisassemble(retaggedCode<DisassemblyPtrTag>(), size(), prefix);
|
|
}
|
|
|
|
CString disassembly() const
|
|
{
|
|
return MacroAssemblerCodeRefBase::disassembly(retaggedCode<DisassemblyPtrTag>(), size());
|
|
}
|
|
|
|
explicit operator bool() const { return !!m_codePtr; }
|
|
|
|
void dump(PrintStream& out) const
|
|
{
|
|
m_codePtr.dumpWithName("CodeRef", out);
|
|
}
|
|
|
|
private:
|
|
template<PtrTag otherTag>
|
|
MacroAssemblerCodeRef(const MacroAssemblerCodeRef<otherTag>& otherCodeRef)
|
|
{
|
|
*this = otherCodeRef;
|
|
}
|
|
|
|
MacroAssemblerCodePtr<tag> m_codePtr;
|
|
RefPtr<ExecutableMemoryHandle> m_executableMemory;
|
|
|
|
template<PtrTag> friend class MacroAssemblerCodeRef;
|
|
};
|
|
|
|
template<PtrTag tag>
|
|
inline FunctionPtr<tag>::FunctionPtr(MacroAssemblerCodePtr<tag> ptr)
|
|
: m_value(ptr.executableAddress())
|
|
{
|
|
}
|
|
|
|
} // namespace JSC
|
|
|
|
namespace WTF {
|
|
|
|
template<typename T> struct DefaultHash;
|
|
template<JSC::PtrTag tag> struct DefaultHash<JSC::MacroAssemblerCodePtr<tag>> : JSC::MacroAssemblerCodePtrHash<tag> { };
|
|
|
|
template<typename T> struct HashTraits;
|
|
template<JSC::PtrTag tag> struct HashTraits<JSC::MacroAssemblerCodePtr<tag>> : public CustomHashTraits<JSC::MacroAssemblerCodePtr<tag>> { };
|
|
|
|
} // namespace WTF
|