darling-Libc/gen/nanosleep.c
Thomas A 9108e094e7 Add Libc Code From Darling Repo
Based on Libc-1353.60.8
2022-04-09 16:07:55 -07:00

312 lines
9.1 KiB
C

/*
* Copyright (c) 1999, 2003, 2006, 2007, 2010 Apple Inc. All rights reserved.
*
* @APPLE_LICENSE_HEADER_START@
*
* This file contains Original Code and/or Modifications of Original Code
* as defined in and that are subject to the Apple Public Source License
* Version 2.0 (the 'License'). You may not use this file except in
* compliance with the License. Please obtain a copy of the License at
* http://www.opensource.apple.com/apsl/ and read it before using this
* file.
*
* The Original Code and all software distributed under the License are
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
* Please see the License for the specific language governing rights and
* limitations under the License.
*
* @APPLE_LICENSE_HEADER_END@
*/
#include <errno.h>
#include <sys/time.h>
#include <mach/mach_error.h>
#include <mach/mach_time.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <TargetConditionals.h>
#if __DARWIN_UNIX03
#include <mach/clock.h>
#include <pthread.h>
#include <mach/mach.h>
#include <mach/mach_error.h>
#if !defined(BUILDING_VARIANT)
semaphore_t clock_sem = MACH_PORT_NULL;
mach_port_t clock_port = MACH_PORT_NULL;
void _init_clock_port(void);
void _init_clock_port(void) {
kern_return_t kr;
mach_port_t host = mach_host_self();
/* Get the clock service port for nanosleep */
kr = host_get_clock_service(host, SYSTEM_CLOCK, &clock_port);
if (kr != KERN_SUCCESS) {
abort();
}
kr = semaphore_create(mach_task_self(), &clock_sem, SYNC_POLICY_FIFO, 0);
if (kr != KERN_SUCCESS) {
abort();
}
mach_port_deallocate(mach_task_self(), host);
}
#else
extern semaphore_t clock_sem;
extern mach_port_t clock_port;
#endif /* !BUILDING_VARIANT */
extern int __unix_conforming;
#ifdef VARIANT_CANCELABLE
extern int __semwait_signal(int cond_sem, int mutex_sem, int timeout, int relative, __int64_t tv_sec, __int32_t tv_nsec);
#define SEMWAIT_SIGNAL __semwait_signal
#else /* !VARIANT_CANCELABLE */
extern int __semwait_signal_nocancel(int cond_sem, int mutex_sem, int timeout, int relative, __int64_t tv_sec, __int32_t tv_nsec);
#define SEMWAIT_SIGNAL __semwait_signal_nocancel
#endif /* VARIANT_CANCELABLE */
int
nanosleep(const struct timespec *requested_time, struct timespec *remaining_time) {
kern_return_t kret;
int ret;
mach_timespec_t current;
mach_timespec_t completion;
if (__unix_conforming == 0)
__unix_conforming = 1;
#ifdef VARIANT_CANCELABLE
pthread_testcancel();
#endif /* VARIANT_CANCELABLE */
if ((requested_time == NULL) || (requested_time->tv_sec < 0) || (requested_time->tv_nsec >= NSEC_PER_SEC)) {
errno = EINVAL;
return -1;
}
if (remaining_time != NULL) {
/* once we add requested_time, this will be the completion time */
kret = clock_get_time(clock_port, &completion);
if (kret != KERN_SUCCESS) {
fprintf(stderr, "clock_get_time() failed: %s\n", mach_error_string(kret));
errno = EINVAL;
return -1;
}
}
ret = SEMWAIT_SIGNAL(clock_sem, MACH_PORT_NULL, 1, 1, (int64_t)requested_time->tv_sec, (int32_t)requested_time->tv_nsec);
if (ret < 0) {
if (errno == ETIMEDOUT) {
return 0;
} else if (errno == EINTR) {
if (remaining_time != NULL) {
ret = clock_get_time(clock_port, &current);
if (ret != KERN_SUCCESS) {
fprintf(stderr, "clock_get_time() failed: %s\n", mach_error_string(ret));
return -1;
}
/* This depends on the layout of a mach_timespec_t and timespec_t being equivalent */
ADD_MACH_TIMESPEC(&completion, requested_time);
/* We have to compare first, since mach_timespect_t contains unsigned integers */
if(CMP_MACH_TIMESPEC(&completion, &current) > 0) {
SUB_MACH_TIMESPEC(&completion, &current);
remaining_time->tv_sec = completion.tv_sec;
remaining_time->tv_nsec = completion.tv_nsec;
} else {
bzero(remaining_time, sizeof(*remaining_time));
}
}
} else {
errno = EINVAL;
}
}
return -1;
}
#else /* !__DARWIN_UNIX03 */
typedef struct {
uint64_t high;
uint64_t low;
} uint128_t;
/* 128-bit addition: acc += add */
static inline void
add128_128(uint128_t *acc, uint128_t *add)
{
acc->high += add->high;
acc->low += add->low;
if(acc->low < add->low)
acc->high++; // carry
}
/* 128-bit subtraction: acc -= sub */
static inline void
sub128_128(uint128_t *acc, uint128_t *sub)
{
acc->high -= sub->high;
if(acc->low < sub->low)
acc->high--; // borrow
acc->low -= sub->low;
}
#define TWO64 (((double)(1ULL << 32)) * ((double)(1ULL << 32)))
static inline double
uint128_double(uint128_t *u)
{
return TWO64 * u->high + u->low; // may loses precision
}
/* 64x64 -> 128 bit multiplication */
static inline void
mul64x64(uint64_t x, uint64_t y, uint128_t *prod)
{
uint128_t add;
/*
* Split the two 64-bit multiplicands into 32-bit parts:
* x => 2^32 * x1 + x2
* y => 2^32 * y1 + y2
*/
uint32_t x1 = (uint32_t)(x >> 32);
uint32_t x2 = (uint32_t)x;
uint32_t y1 = (uint32_t)(y >> 32);
uint32_t y2 = (uint32_t)y;
/*
* direct multiplication:
* x * y => 2^64 * (x1 * y1) + 2^32 (x1 * y2 + x2 * y1) + (x2 * y2)
* The first and last terms are direct assignmenet into the uint128_t
* structure. Then we add the middle two terms separately, to avoid
* 64-bit overflow. (We could use the Karatsuba algorithm to save
* one multiply, but it is harder to deal with 64-bit overflows.)
*/
prod->high = (uint64_t)x1 * (uint64_t)y1;
prod->low = (uint64_t)x2 * (uint64_t)y2;
add.low = (uint64_t)x1 * (uint64_t)y2;
add.high = (add.low >> 32);
add.low <<= 32;
add128_128(prod, &add);
add.low = (uint64_t)x2 * (uint64_t)y1;
add.high = (add.low >> 32);
add.low <<= 32;
add128_128(prod, &add);
}
/* calculate (x * y / divisor), using 128-bit internal calculations */
static int
muldiv128(uint64_t x, uint64_t y, uint64_t divisor, uint64_t *res)
{
uint128_t temp;
uint128_t divisor128 = {0, divisor};
uint64_t result = 0;
double recip;
/* calculate (x * y) */
mul64x64(x, y, &temp);
/*
* Now divide by the divisor. We use floating point to calculate an
* approximate answer and update the results. Then we iterate and
* calculate a correction from the difference.
*/
recip = 1.0 / ((double)divisor);
while(temp.high || temp.low >= divisor) {
uint128_t backmul;
uint64_t uapprox;
double approx = uint128_double(&temp) * recip;
if(approx > __LONG_LONG_MAX__)
return 0; // answer overflows 64-bits
uapprox = (uint64_t)approx;
mul64x64(uapprox, divisor, &backmul);
/*
* Because we are using unsigned integers, we need to approach the
* answer from the lesser side. So if our estimate is too large
* we need to decrease it until it is smaller.
*/
while(backmul.high > temp.high || (backmul.high == temp.high && backmul.low > temp.low)) {
sub128_128(&backmul, &divisor128);
uapprox--;
}
sub128_128(&temp, &backmul);
result += uapprox;
}
*res = result;
return 1;
}
int
nanosleep(const struct timespec *requested_time, struct timespec *remaining_time) {
kern_return_t ret;
uint64_t end, units;
static struct mach_timebase_info info = {0, 0};
static int unity;
if ((requested_time == NULL) || (requested_time->tv_sec < 0) || (requested_time->tv_nsec > NSEC_PER_SEC)) {
errno = EINVAL;
return -1;
}
if (info.denom == 0) {
ret = mach_timebase_info(&info);
if (ret != KERN_SUCCESS) {
fprintf(stderr, "mach_timebase_info() failed: %s\n", mach_error_string(ret));
errno = EAGAIN;
return -1;
}
/* If numer == denom == 1 (as in intel), no conversion needed */
unity = (info.numer == info.denom);
}
if(unity)
units = (uint64_t)requested_time->tv_sec * NSEC_PER_SEC;
else if(!muldiv128((uint64_t)info.denom * NSEC_PER_SEC,
(uint64_t)requested_time->tv_sec,
(uint64_t)info.numer,
&units))
{
errno = EINVAL;
return -1;
}
end = mach_absolute_time()
+ units
+ (uint64_t)info.denom * requested_time->tv_nsec / info.numer;
ret = mach_wait_until(end);
if (ret != KERN_SUCCESS) {
if (ret == KERN_ABORTED) {
errno = EINTR;
if (remaining_time != NULL) {
uint64_t now = mach_absolute_time();
if (now >= end) {
remaining_time->tv_sec = 0;
remaining_time->tv_nsec = 0;
} else {
if(unity)
units = (end - now);
else
muldiv128((uint64_t)info.numer,
(end - now),
(uint64_t)info.denom,
&units); // this can't overflow
remaining_time->tv_sec = units / NSEC_PER_SEC;
remaining_time->tv_nsec = units % NSEC_PER_SEC;
}
}
} else {
errno = EINVAL;
}
return -1;
}
return 0;
}
#endif /* __DARWIN_UNIX03 */