mirror of
https://github.com/darlinghq/darling-Libc.git
synced 2024-11-23 04:29:46 +00:00
9108e094e7
Based on Libc-1353.60.8
312 lines
9.1 KiB
C
312 lines
9.1 KiB
C
/*
|
|
* Copyright (c) 1999, 2003, 2006, 2007, 2010 Apple Inc. All rights reserved.
|
|
*
|
|
* @APPLE_LICENSE_HEADER_START@
|
|
*
|
|
* This file contains Original Code and/or Modifications of Original Code
|
|
* as defined in and that are subject to the Apple Public Source License
|
|
* Version 2.0 (the 'License'). You may not use this file except in
|
|
* compliance with the License. Please obtain a copy of the License at
|
|
* http://www.opensource.apple.com/apsl/ and read it before using this
|
|
* file.
|
|
*
|
|
* The Original Code and all software distributed under the License are
|
|
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
|
|
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
|
|
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
|
|
* Please see the License for the specific language governing rights and
|
|
* limitations under the License.
|
|
*
|
|
* @APPLE_LICENSE_HEADER_END@
|
|
*/
|
|
|
|
#include <errno.h>
|
|
#include <sys/time.h>
|
|
#include <mach/mach_error.h>
|
|
#include <mach/mach_time.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <TargetConditionals.h>
|
|
|
|
#if __DARWIN_UNIX03
|
|
#include <mach/clock.h>
|
|
#include <pthread.h>
|
|
#include <mach/mach.h>
|
|
#include <mach/mach_error.h>
|
|
|
|
#if !defined(BUILDING_VARIANT)
|
|
semaphore_t clock_sem = MACH_PORT_NULL;
|
|
mach_port_t clock_port = MACH_PORT_NULL;
|
|
|
|
void _init_clock_port(void);
|
|
|
|
void _init_clock_port(void) {
|
|
kern_return_t kr;
|
|
mach_port_t host = mach_host_self();
|
|
|
|
/* Get the clock service port for nanosleep */
|
|
kr = host_get_clock_service(host, SYSTEM_CLOCK, &clock_port);
|
|
if (kr != KERN_SUCCESS) {
|
|
abort();
|
|
}
|
|
|
|
kr = semaphore_create(mach_task_self(), &clock_sem, SYNC_POLICY_FIFO, 0);
|
|
if (kr != KERN_SUCCESS) {
|
|
abort();
|
|
}
|
|
mach_port_deallocate(mach_task_self(), host);
|
|
}
|
|
#else
|
|
extern semaphore_t clock_sem;
|
|
extern mach_port_t clock_port;
|
|
#endif /* !BUILDING_VARIANT */
|
|
|
|
extern int __unix_conforming;
|
|
#ifdef VARIANT_CANCELABLE
|
|
extern int __semwait_signal(int cond_sem, int mutex_sem, int timeout, int relative, __int64_t tv_sec, __int32_t tv_nsec);
|
|
#define SEMWAIT_SIGNAL __semwait_signal
|
|
#else /* !VARIANT_CANCELABLE */
|
|
extern int __semwait_signal_nocancel(int cond_sem, int mutex_sem, int timeout, int relative, __int64_t tv_sec, __int32_t tv_nsec);
|
|
#define SEMWAIT_SIGNAL __semwait_signal_nocancel
|
|
#endif /* VARIANT_CANCELABLE */
|
|
|
|
int
|
|
nanosleep(const struct timespec *requested_time, struct timespec *remaining_time) {
|
|
kern_return_t kret;
|
|
int ret;
|
|
mach_timespec_t current;
|
|
mach_timespec_t completion;
|
|
|
|
if (__unix_conforming == 0)
|
|
__unix_conforming = 1;
|
|
|
|
#ifdef VARIANT_CANCELABLE
|
|
pthread_testcancel();
|
|
#endif /* VARIANT_CANCELABLE */
|
|
|
|
if ((requested_time == NULL) || (requested_time->tv_sec < 0) || (requested_time->tv_nsec >= NSEC_PER_SEC)) {
|
|
errno = EINVAL;
|
|
return -1;
|
|
}
|
|
|
|
|
|
if (remaining_time != NULL) {
|
|
/* once we add requested_time, this will be the completion time */
|
|
kret = clock_get_time(clock_port, &completion);
|
|
if (kret != KERN_SUCCESS) {
|
|
fprintf(stderr, "clock_get_time() failed: %s\n", mach_error_string(kret));
|
|
errno = EINVAL;
|
|
return -1;
|
|
}
|
|
}
|
|
ret = SEMWAIT_SIGNAL(clock_sem, MACH_PORT_NULL, 1, 1, (int64_t)requested_time->tv_sec, (int32_t)requested_time->tv_nsec);
|
|
if (ret < 0) {
|
|
if (errno == ETIMEDOUT) {
|
|
return 0;
|
|
} else if (errno == EINTR) {
|
|
if (remaining_time != NULL) {
|
|
ret = clock_get_time(clock_port, ¤t);
|
|
if (ret != KERN_SUCCESS) {
|
|
fprintf(stderr, "clock_get_time() failed: %s\n", mach_error_string(ret));
|
|
return -1;
|
|
}
|
|
/* This depends on the layout of a mach_timespec_t and timespec_t being equivalent */
|
|
ADD_MACH_TIMESPEC(&completion, requested_time);
|
|
/* We have to compare first, since mach_timespect_t contains unsigned integers */
|
|
if(CMP_MACH_TIMESPEC(&completion, ¤t) > 0) {
|
|
SUB_MACH_TIMESPEC(&completion, ¤t);
|
|
remaining_time->tv_sec = completion.tv_sec;
|
|
remaining_time->tv_nsec = completion.tv_nsec;
|
|
} else {
|
|
bzero(remaining_time, sizeof(*remaining_time));
|
|
}
|
|
}
|
|
} else {
|
|
errno = EINVAL;
|
|
}
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
|
|
#else /* !__DARWIN_UNIX03 */
|
|
|
|
typedef struct {
|
|
uint64_t high;
|
|
uint64_t low;
|
|
} uint128_t;
|
|
|
|
/* 128-bit addition: acc += add */
|
|
static inline void
|
|
add128_128(uint128_t *acc, uint128_t *add)
|
|
{
|
|
acc->high += add->high;
|
|
acc->low += add->low;
|
|
if(acc->low < add->low)
|
|
acc->high++; // carry
|
|
}
|
|
|
|
/* 128-bit subtraction: acc -= sub */
|
|
static inline void
|
|
sub128_128(uint128_t *acc, uint128_t *sub)
|
|
{
|
|
acc->high -= sub->high;
|
|
if(acc->low < sub->low)
|
|
acc->high--; // borrow
|
|
acc->low -= sub->low;
|
|
}
|
|
|
|
#define TWO64 (((double)(1ULL << 32)) * ((double)(1ULL << 32)))
|
|
|
|
static inline double
|
|
uint128_double(uint128_t *u)
|
|
{
|
|
return TWO64 * u->high + u->low; // may loses precision
|
|
}
|
|
|
|
/* 64x64 -> 128 bit multiplication */
|
|
static inline void
|
|
mul64x64(uint64_t x, uint64_t y, uint128_t *prod)
|
|
{
|
|
uint128_t add;
|
|
/*
|
|
* Split the two 64-bit multiplicands into 32-bit parts:
|
|
* x => 2^32 * x1 + x2
|
|
* y => 2^32 * y1 + y2
|
|
*/
|
|
uint32_t x1 = (uint32_t)(x >> 32);
|
|
uint32_t x2 = (uint32_t)x;
|
|
uint32_t y1 = (uint32_t)(y >> 32);
|
|
uint32_t y2 = (uint32_t)y;
|
|
/*
|
|
* direct multiplication:
|
|
* x * y => 2^64 * (x1 * y1) + 2^32 (x1 * y2 + x2 * y1) + (x2 * y2)
|
|
* The first and last terms are direct assignmenet into the uint128_t
|
|
* structure. Then we add the middle two terms separately, to avoid
|
|
* 64-bit overflow. (We could use the Karatsuba algorithm to save
|
|
* one multiply, but it is harder to deal with 64-bit overflows.)
|
|
*/
|
|
prod->high = (uint64_t)x1 * (uint64_t)y1;
|
|
prod->low = (uint64_t)x2 * (uint64_t)y2;
|
|
add.low = (uint64_t)x1 * (uint64_t)y2;
|
|
add.high = (add.low >> 32);
|
|
add.low <<= 32;
|
|
add128_128(prod, &add);
|
|
add.low = (uint64_t)x2 * (uint64_t)y1;
|
|
add.high = (add.low >> 32);
|
|
add.low <<= 32;
|
|
add128_128(prod, &add);
|
|
}
|
|
|
|
/* calculate (x * y / divisor), using 128-bit internal calculations */
|
|
static int
|
|
muldiv128(uint64_t x, uint64_t y, uint64_t divisor, uint64_t *res)
|
|
{
|
|
uint128_t temp;
|
|
uint128_t divisor128 = {0, divisor};
|
|
uint64_t result = 0;
|
|
double recip;
|
|
|
|
/* calculate (x * y) */
|
|
mul64x64(x, y, &temp);
|
|
/*
|
|
* Now divide by the divisor. We use floating point to calculate an
|
|
* approximate answer and update the results. Then we iterate and
|
|
* calculate a correction from the difference.
|
|
*/
|
|
recip = 1.0 / ((double)divisor);
|
|
while(temp.high || temp.low >= divisor) {
|
|
uint128_t backmul;
|
|
uint64_t uapprox;
|
|
double approx = uint128_double(&temp) * recip;
|
|
|
|
if(approx > __LONG_LONG_MAX__)
|
|
return 0; // answer overflows 64-bits
|
|
uapprox = (uint64_t)approx;
|
|
mul64x64(uapprox, divisor, &backmul);
|
|
/*
|
|
* Because we are using unsigned integers, we need to approach the
|
|
* answer from the lesser side. So if our estimate is too large
|
|
* we need to decrease it until it is smaller.
|
|
*/
|
|
while(backmul.high > temp.high || (backmul.high == temp.high && backmul.low > temp.low)) {
|
|
sub128_128(&backmul, &divisor128);
|
|
uapprox--;
|
|
}
|
|
sub128_128(&temp, &backmul);
|
|
result += uapprox;
|
|
}
|
|
*res = result;
|
|
return 1;
|
|
}
|
|
|
|
int
|
|
nanosleep(const struct timespec *requested_time, struct timespec *remaining_time) {
|
|
kern_return_t ret;
|
|
uint64_t end, units;
|
|
static struct mach_timebase_info info = {0, 0};
|
|
static int unity;
|
|
|
|
if ((requested_time == NULL) || (requested_time->tv_sec < 0) || (requested_time->tv_nsec > NSEC_PER_SEC)) {
|
|
errno = EINVAL;
|
|
return -1;
|
|
}
|
|
|
|
if (info.denom == 0) {
|
|
ret = mach_timebase_info(&info);
|
|
if (ret != KERN_SUCCESS) {
|
|
fprintf(stderr, "mach_timebase_info() failed: %s\n", mach_error_string(ret));
|
|
errno = EAGAIN;
|
|
return -1;
|
|
}
|
|
/* If numer == denom == 1 (as in intel), no conversion needed */
|
|
unity = (info.numer == info.denom);
|
|
}
|
|
|
|
if(unity)
|
|
units = (uint64_t)requested_time->tv_sec * NSEC_PER_SEC;
|
|
else if(!muldiv128((uint64_t)info.denom * NSEC_PER_SEC,
|
|
(uint64_t)requested_time->tv_sec,
|
|
(uint64_t)info.numer,
|
|
&units))
|
|
{
|
|
errno = EINVAL;
|
|
return -1;
|
|
}
|
|
end = mach_absolute_time()
|
|
+ units
|
|
+ (uint64_t)info.denom * requested_time->tv_nsec / info.numer;
|
|
ret = mach_wait_until(end);
|
|
if (ret != KERN_SUCCESS) {
|
|
if (ret == KERN_ABORTED) {
|
|
errno = EINTR;
|
|
if (remaining_time != NULL) {
|
|
uint64_t now = mach_absolute_time();
|
|
if (now >= end) {
|
|
remaining_time->tv_sec = 0;
|
|
remaining_time->tv_nsec = 0;
|
|
} else {
|
|
if(unity)
|
|
units = (end - now);
|
|
else
|
|
muldiv128((uint64_t)info.numer,
|
|
(end - now),
|
|
(uint64_t)info.denom,
|
|
&units); // this can't overflow
|
|
remaining_time->tv_sec = units / NSEC_PER_SEC;
|
|
remaining_time->tv_nsec = units % NSEC_PER_SEC;
|
|
}
|
|
}
|
|
} else {
|
|
errno = EINVAL;
|
|
}
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
#endif /* __DARWIN_UNIX03 */
|