feat: Implement basic DES

This commit is contained in:
Trung Nguyen 2021-11-06 17:37:48 +07:00
parent 7d1d0bfda0
commit 222d3252a2
No known key found for this signature in database
GPG Key ID: 8C6357127C5190F6

View File

@ -1,86 +1,677 @@
/* Code adapted from */
/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
#include <corecrypto/ccdes.h>
#include <corecrypto/ccmode_factory.h>
#include <corecrypto/cc_error.h>
#include <stdio.h>
#include <string.h>
const struct ccmode_ecb *ccdes_ecb_decrypt_mode(void) {
printf("DARLING CRYPTO STUB: %s\n", __PRETTY_FUNCTION__);
CCMODE_GCM_FACTORY(des, encrypt);
CCMODE_GCM_FACTORY(des, decrypt);
CCMODE_CBC_FACTORY(des, encrypt);
CCMODE_CBC_FACTORY(des, decrypt);
CCMODE_CFB_FACTORY(des, cfb, encrypt);
CCMODE_CFB_FACTORY(des, cfb, decrypt);
CCMODE_CFB_FACTORY(des, cfb8, encrypt);
CCMODE_CFB_FACTORY(des, cfb8, decrypt);
CCMODE_XTS_FACTORY(des, encrypt);
CCMODE_XTS_FACTORY(des, decrypt);
CCMODE_CCM_FACTORY(des, encrypt);
CCMODE_CCM_FACTORY(des, decrypt);
CCMODE_CTR_FACTORY(des);
CCMODE_OFB_FACTORY(des);
static int ccdes_ecb_init(const struct ccmode_ecb* info, ccecb_ctx* ctx, size_t key_size, const void* key);
static int ccdes_ecb_encrypt(const ccecb_ctx* ctx, size_t block_count, const void* in, void* out);
static int ccdes_ecb_decrypt(const ccecb_ctx* ctx, size_t block_count, const void* in, void* out);
struct the_real_ccecb_ctx {
uint32_t ek[32], dk[32];
};
const struct ccmode_ecb ccdes_ltc_ecb_encrypt_mode = {
.block_size = 8,
.size = sizeof(struct the_real_ccecb_ctx),
.init = ccdes_ecb_init,
.ecb = ccdes_ecb_encrypt,
};
const struct ccmode_ecb ccdes_ltc_ecb_decrypt_mode = {
.block_size = 8,
.size = sizeof(struct the_real_ccecb_ctx),
.init = ccdes_ecb_init,
.ecb = ccdes_ecb_decrypt,
};
const struct ccmode_ecb* ccdes_ecb_encrypt_mode(void) {
return &ccdes_ltc_ecb_encrypt_mode;
};
const struct ccmode_ecb* ccdes_ecb_decrypt_mode(void) {
return &ccdes_ltc_ecb_decrypt_mode;
};
#define EN0 0
#define DE1 1
#define STORE32H(x, y) \
do { (y)[0] = (uint8_t)(((x)>>24)&255); (y)[1] = (uint8_t)(((x)>>16)&255); \
(y)[2] = (uint8_t)(((x)>>8)&255); (y)[3] = (uint8_t)((x)&255); } while(0)
#define LOAD32H(x, y) \
do { x = ((uint32_t)((y)[0] & 255)<<24) | \
((uint32_t)((y)[1] & 255)<<16) | \
((uint32_t)((y)[2] & 255)<<8) | \
((uint32_t)((y)[3] & 255)); } while(0)
#define ROL(x, y) ( (((uint32_t)(x)<<(uint32_t)((y)&31)) | (((uint32_t)(x)&0xFFFFFFFFUL)>>(uint32_t)((32-((y)&31))&31))) & 0xFFFFFFFFUL)
#define ROR(x, y) ( ((((uint32_t)(x)&0xFFFFFFFFUL)>>(uint32_t)((y)&31)) | ((uint32_t)(x)<<(uint32_t)((32-((y)&31))&31))) & 0xFFFFFFFFUL)
#define ROLc(x, y) ( (((uint32_t)(x)<<(uint32_t)((y)&31)) | (((uint32_t)(x)&0xFFFFFFFFUL)>>(uint32_t)((32-((y)&31))&31))) & 0xFFFFFFFFUL)
#define RORc(x, y) ( ((((uint32_t)(x)&0xFFFFFFFFUL)>>(uint32_t)((y)&31)) | ((uint32_t)(x)<<(uint32_t)((32-((y)&31))&31))) & 0xFFFFFFFFUL)
static const uint8_t pc1[56] = {
56, 48, 40, 32, 24, 16, 8, 0, 57, 49, 41, 33, 25, 17,
9, 1, 58, 50, 42, 34, 26, 18, 10, 2, 59, 51, 43, 35,
62, 54, 46, 38, 30, 22, 14, 6, 61, 53, 45, 37, 29, 21,
13, 5, 60, 52, 44, 36, 28, 20, 12, 4, 27, 19, 11, 3
};
static const uint8_t totrot[16] = {
1, 2, 4, 6,
8, 10, 12, 14,
15, 17, 19, 21,
23, 25, 27, 28
};
static const uint8_t pc2[48] = {
13, 16, 10, 23, 0, 4, 2, 27, 14, 5, 20, 9,
22, 18, 11, 3, 25, 7, 15, 6, 26, 19, 12, 1,
40, 51, 30, 36, 46, 54, 29, 39, 50, 44, 32, 47,
43, 48, 38, 55, 33, 52, 45, 41, 49, 35, 28, 31
};
static const uint32_t SP1[64] =
{
0x01010400UL, 0x00000000UL, 0x00010000UL, 0x01010404UL,
0x01010004UL, 0x00010404UL, 0x00000004UL, 0x00010000UL,
0x00000400UL, 0x01010400UL, 0x01010404UL, 0x00000400UL,
0x01000404UL, 0x01010004UL, 0x01000000UL, 0x00000004UL,
0x00000404UL, 0x01000400UL, 0x01000400UL, 0x00010400UL,
0x00010400UL, 0x01010000UL, 0x01010000UL, 0x01000404UL,
0x00010004UL, 0x01000004UL, 0x01000004UL, 0x00010004UL,
0x00000000UL, 0x00000404UL, 0x00010404UL, 0x01000000UL,
0x00010000UL, 0x01010404UL, 0x00000004UL, 0x01010000UL,
0x01010400UL, 0x01000000UL, 0x01000000UL, 0x00000400UL,
0x01010004UL, 0x00010000UL, 0x00010400UL, 0x01000004UL,
0x00000400UL, 0x00000004UL, 0x01000404UL, 0x00010404UL,
0x01010404UL, 0x00010004UL, 0x01010000UL, 0x01000404UL,
0x01000004UL, 0x00000404UL, 0x00010404UL, 0x01010400UL,
0x00000404UL, 0x01000400UL, 0x01000400UL, 0x00000000UL,
0x00010004UL, 0x00010400UL, 0x00000000UL, 0x01010004UL
};
static const uint32_t SP2[64] =
{
0x80108020UL, 0x80008000UL, 0x00008000UL, 0x00108020UL,
0x00100000UL, 0x00000020UL, 0x80100020UL, 0x80008020UL,
0x80000020UL, 0x80108020UL, 0x80108000UL, 0x80000000UL,
0x80008000UL, 0x00100000UL, 0x00000020UL, 0x80100020UL,
0x00108000UL, 0x00100020UL, 0x80008020UL, 0x00000000UL,
0x80000000UL, 0x00008000UL, 0x00108020UL, 0x80100000UL,
0x00100020UL, 0x80000020UL, 0x00000000UL, 0x00108000UL,
0x00008020UL, 0x80108000UL, 0x80100000UL, 0x00008020UL,
0x00000000UL, 0x00108020UL, 0x80100020UL, 0x00100000UL,
0x80008020UL, 0x80100000UL, 0x80108000UL, 0x00008000UL,
0x80100000UL, 0x80008000UL, 0x00000020UL, 0x80108020UL,
0x00108020UL, 0x00000020UL, 0x00008000UL, 0x80000000UL,
0x00008020UL, 0x80108000UL, 0x00100000UL, 0x80000020UL,
0x00100020UL, 0x80008020UL, 0x80000020UL, 0x00100020UL,
0x00108000UL, 0x00000000UL, 0x80008000UL, 0x00008020UL,
0x80000000UL, 0x80100020UL, 0x80108020UL, 0x00108000UL
};
static const uint32_t SP3[64] =
{
0x00000208UL, 0x08020200UL, 0x00000000UL, 0x08020008UL,
0x08000200UL, 0x00000000UL, 0x00020208UL, 0x08000200UL,
0x00020008UL, 0x08000008UL, 0x08000008UL, 0x00020000UL,
0x08020208UL, 0x00020008UL, 0x08020000UL, 0x00000208UL,
0x08000000UL, 0x00000008UL, 0x08020200UL, 0x00000200UL,
0x00020200UL, 0x08020000UL, 0x08020008UL, 0x00020208UL,
0x08000208UL, 0x00020200UL, 0x00020000UL, 0x08000208UL,
0x00000008UL, 0x08020208UL, 0x00000200UL, 0x08000000UL,
0x08020200UL, 0x08000000UL, 0x00020008UL, 0x00000208UL,
0x00020000UL, 0x08020200UL, 0x08000200UL, 0x00000000UL,
0x00000200UL, 0x00020008UL, 0x08020208UL, 0x08000200UL,
0x08000008UL, 0x00000200UL, 0x00000000UL, 0x08020008UL,
0x08000208UL, 0x00020000UL, 0x08000000UL, 0x08020208UL,
0x00000008UL, 0x00020208UL, 0x00020200UL, 0x08000008UL,
0x08020000UL, 0x08000208UL, 0x00000208UL, 0x08020000UL,
0x00020208UL, 0x00000008UL, 0x08020008UL, 0x00020200UL
};
static const uint32_t SP4[64] =
{
0x00802001UL, 0x00002081UL, 0x00002081UL, 0x00000080UL,
0x00802080UL, 0x00800081UL, 0x00800001UL, 0x00002001UL,
0x00000000UL, 0x00802000UL, 0x00802000UL, 0x00802081UL,
0x00000081UL, 0x00000000UL, 0x00800080UL, 0x00800001UL,
0x00000001UL, 0x00002000UL, 0x00800000UL, 0x00802001UL,
0x00000080UL, 0x00800000UL, 0x00002001UL, 0x00002080UL,
0x00800081UL, 0x00000001UL, 0x00002080UL, 0x00800080UL,
0x00002000UL, 0x00802080UL, 0x00802081UL, 0x00000081UL,
0x00800080UL, 0x00800001UL, 0x00802000UL, 0x00802081UL,
0x00000081UL, 0x00000000UL, 0x00000000UL, 0x00802000UL,
0x00002080UL, 0x00800080UL, 0x00800081UL, 0x00000001UL,
0x00802001UL, 0x00002081UL, 0x00002081UL, 0x00000080UL,
0x00802081UL, 0x00000081UL, 0x00000001UL, 0x00002000UL,
0x00800001UL, 0x00002001UL, 0x00802080UL, 0x00800081UL,
0x00002001UL, 0x00002080UL, 0x00800000UL, 0x00802001UL,
0x00000080UL, 0x00800000UL, 0x00002000UL, 0x00802080UL
};
static const uint32_t SP5[64] =
{
0x00000100UL, 0x02080100UL, 0x02080000UL, 0x42000100UL,
0x00080000UL, 0x00000100UL, 0x40000000UL, 0x02080000UL,
0x40080100UL, 0x00080000UL, 0x02000100UL, 0x40080100UL,
0x42000100UL, 0x42080000UL, 0x00080100UL, 0x40000000UL,
0x02000000UL, 0x40080000UL, 0x40080000UL, 0x00000000UL,
0x40000100UL, 0x42080100UL, 0x42080100UL, 0x02000100UL,
0x42080000UL, 0x40000100UL, 0x00000000UL, 0x42000000UL,
0x02080100UL, 0x02000000UL, 0x42000000UL, 0x00080100UL,
0x00080000UL, 0x42000100UL, 0x00000100UL, 0x02000000UL,
0x40000000UL, 0x02080000UL, 0x42000100UL, 0x40080100UL,
0x02000100UL, 0x40000000UL, 0x42080000UL, 0x02080100UL,
0x40080100UL, 0x00000100UL, 0x02000000UL, 0x42080000UL,
0x42080100UL, 0x00080100UL, 0x42000000UL, 0x42080100UL,
0x02080000UL, 0x00000000UL, 0x40080000UL, 0x42000000UL,
0x00080100UL, 0x02000100UL, 0x40000100UL, 0x00080000UL,
0x00000000UL, 0x40080000UL, 0x02080100UL, 0x40000100UL
};
static const uint32_t SP6[64] =
{
0x20000010UL, 0x20400000UL, 0x00004000UL, 0x20404010UL,
0x20400000UL, 0x00000010UL, 0x20404010UL, 0x00400000UL,
0x20004000UL, 0x00404010UL, 0x00400000UL, 0x20000010UL,
0x00400010UL, 0x20004000UL, 0x20000000UL, 0x00004010UL,
0x00000000UL, 0x00400010UL, 0x20004010UL, 0x00004000UL,
0x00404000UL, 0x20004010UL, 0x00000010UL, 0x20400010UL,
0x20400010UL, 0x00000000UL, 0x00404010UL, 0x20404000UL,
0x00004010UL, 0x00404000UL, 0x20404000UL, 0x20000000UL,
0x20004000UL, 0x00000010UL, 0x20400010UL, 0x00404000UL,
0x20404010UL, 0x00400000UL, 0x00004010UL, 0x20000010UL,
0x00400000UL, 0x20004000UL, 0x20000000UL, 0x00004010UL,
0x20000010UL, 0x20404010UL, 0x00404000UL, 0x20400000UL,
0x00404010UL, 0x20404000UL, 0x00000000UL, 0x20400010UL,
0x00000010UL, 0x00004000UL, 0x20400000UL, 0x00404010UL,
0x00004000UL, 0x00400010UL, 0x20004010UL, 0x00000000UL,
0x20404000UL, 0x20000000UL, 0x00400010UL, 0x20004010UL
};
static const uint32_t SP7[64] =
{
0x00200000UL, 0x04200002UL, 0x04000802UL, 0x00000000UL,
0x00000800UL, 0x04000802UL, 0x00200802UL, 0x04200800UL,
0x04200802UL, 0x00200000UL, 0x00000000UL, 0x04000002UL,
0x00000002UL, 0x04000000UL, 0x04200002UL, 0x00000802UL,
0x04000800UL, 0x00200802UL, 0x00200002UL, 0x04000800UL,
0x04000002UL, 0x04200000UL, 0x04200800UL, 0x00200002UL,
0x04200000UL, 0x00000800UL, 0x00000802UL, 0x04200802UL,
0x00200800UL, 0x00000002UL, 0x04000000UL, 0x00200800UL,
0x04000000UL, 0x00200800UL, 0x00200000UL, 0x04000802UL,
0x04000802UL, 0x04200002UL, 0x04200002UL, 0x00000002UL,
0x00200002UL, 0x04000000UL, 0x04000800UL, 0x00200000UL,
0x04200800UL, 0x00000802UL, 0x00200802UL, 0x04200800UL,
0x00000802UL, 0x04000002UL, 0x04200802UL, 0x04200000UL,
0x00200800UL, 0x00000000UL, 0x00000002UL, 0x04200802UL,
0x00000000UL, 0x00200802UL, 0x04200000UL, 0x00000800UL,
0x04000002UL, 0x04000800UL, 0x00000800UL, 0x00200002UL
};
static const uint32_t SP8[64] =
{
0x10001040UL, 0x00001000UL, 0x00040000UL, 0x10041040UL,
0x10000000UL, 0x10001040UL, 0x00000040UL, 0x10000000UL,
0x00040040UL, 0x10040000UL, 0x10041040UL, 0x00041000UL,
0x10041000UL, 0x00041040UL, 0x00001000UL, 0x00000040UL,
0x10040000UL, 0x10000040UL, 0x10001000UL, 0x00001040UL,
0x00041000UL, 0x00040040UL, 0x10040040UL, 0x10041000UL,
0x00001040UL, 0x00000000UL, 0x00000000UL, 0x10040040UL,
0x10000040UL, 0x10001000UL, 0x00041040UL, 0x00040000UL,
0x00041040UL, 0x00040000UL, 0x10041000UL, 0x00001000UL,
0x00000040UL, 0x10040040UL, 0x00001000UL, 0x00041040UL,
0x10001000UL, 0x00000040UL, 0x10000040UL, 0x10040000UL,
0x10040040UL, 0x10000000UL, 0x00040000UL, 0x10001040UL,
0x00000000UL, 0x10041040UL, 0x00040040UL, 0x10000040UL,
0x10040000UL, 0x10001000UL, 0x10001040UL, 0x00000000UL,
0x10041040UL, 0x00041000UL, 0x00041000UL, 0x00001040UL,
0x00001040UL, 0x00040040UL, 0x10000000UL, 0x10041000UL
};
static const uint32_t bytebit[8] =
{
0200, 0100, 040, 020, 010, 04, 02, 01
};
static const uint32_t bigbyte[24] =
{
0x800000UL, 0x400000UL, 0x200000UL, 0x100000UL,
0x80000UL, 0x40000UL, 0x20000UL, 0x10000UL,
0x8000UL, 0x4000UL, 0x2000UL, 0x1000UL,
0x800UL, 0x400UL, 0x200UL, 0x100UL,
0x80UL, 0x40UL, 0x20UL, 0x10UL,
0x8UL, 0x4UL, 0x2UL, 0x1L
};
CC_INLINE
void cookey(const uint32_t *raw1, uint32_t *keyout) {
uint32_t *cook;
const uint32_t *raw0;
uint32_t dough[32];
int i;
cook = dough;
for(i=0; i < 16; i++, raw1++)
{
raw0 = raw1++;
*cook = (*raw0 & 0x00fc0000L) << 6;
*cook |= (*raw0 & 0x00000fc0L) << 10;
*cook |= (*raw1 & 0x00fc0000L) >> 10;
*cook++ |= (*raw1 & 0x00000fc0L) >> 6;
*cook = (*raw0 & 0x0003f000L) << 12;
*cook |= (*raw0 & 0x0000003fL) << 16;
*cook |= (*raw1 & 0x0003f000L) >> 4;
*cook++ |= (*raw1 & 0x0000003fL);
}
memcpy(keyout, dough, sizeof(dough));
}
const struct ccmode_ecb *ccdes_ecb_encrypt_mode(void) {
printf("DARLING CRYPTO STUB: %s\n", __PRETTY_FUNCTION__);
CC_INLINE
void deskey(const uint8_t *key, short edf, uint32_t *keyout) {
uint32_t i, j, l, m, n, kn[32];
uint8_t pc1m[56], pcr[56];
for (j=0; j < 56; j++) {
l = (uint32_t)pc1[j];
m = l & 7;
pc1m[j] = (uint8_t)((key[l >> 3U] & bytebit[m]) == bytebit[m] ? 1 : 0);
}
for (i=0; i < 16; i++) {
if (edf == DE1) {
m = (15 - i) << 1;
} else {
m = i << 1;
}
n = m + 1;
kn[m] = kn[n] = 0L;
for (j=0; j < 28; j++) {
l = j + (uint32_t)totrot[i];
if (l < 28) {
pcr[j] = pc1m[l];
} else {
pcr[j] = pc1m[l - 28];
}
}
for (/*j = 28*/; j < 56; j++) {
l = j + (uint32_t)totrot[i];
if (l < 56) {
pcr[j] = pc1m[l];
} else {
pcr[j] = pc1m[l - 28];
}
}
for (j=0; j < 24; j++) {
if ((int)pcr[(int)pc2[j]] != 0) {
kn[m] |= bigbyte[j];
}
if ((int)pcr[(int)pc2[j+24]] != 0) {
kn[n] |= bigbyte[j];
}
}
}
cookey(kn, keyout);
}
const struct ccmode_cbc *ccdes_cbc_decrypt_mode(void) {
printf("DARLING CRYPTO STUB: %s\n", __PRETTY_FUNCTION__);
CC_INLINE
void desfunc(uint32_t *block, const uint32_t *keys) {
uint32_t work, right, leftt;
int cur_round;
leftt = block[0];
right = block[1];
work = ((leftt >> 4) ^ right) & 0x0f0f0f0fL;
right ^= work;
leftt ^= (work << 4);
work = ((leftt >> 16) ^ right) & 0x0000ffffL;
right ^= work;
leftt ^= (work << 16);
work = ((right >> 2) ^ leftt) & 0x33333333L;
leftt ^= work;
right ^= (work << 2);
work = ((right >> 8) ^ leftt) & 0x00ff00ffL;
leftt ^= work;
right ^= (work << 8);
right = ROLc(right, 1);
work = (leftt ^ right) & 0xaaaaaaaaL;
leftt ^= work;
right ^= work;
leftt = ROLc(leftt, 1);
for (cur_round = 0; cur_round < 8; cur_round++) {
work = RORc(right, 4) ^ *keys++;
leftt ^= SP7[work & 0x3fL]
^ SP5[(work >> 8) & 0x3fL]
^ SP3[(work >> 16) & 0x3fL]
^ SP1[(work >> 24) & 0x3fL];
work = right ^ *keys++;
leftt ^= SP8[ work & 0x3fL]
^ SP6[(work >> 8) & 0x3fL]
^ SP4[(work >> 16) & 0x3fL]
^ SP2[(work >> 24) & 0x3fL];
work = RORc(leftt, 4) ^ *keys++;
right ^= SP7[ work & 0x3fL]
^ SP5[(work >> 8) & 0x3fL]
^ SP3[(work >> 16) & 0x3fL]
^ SP1[(work >> 24) & 0x3fL];
work = leftt ^ *keys++;
right ^= SP8[ work & 0x3fL]
^ SP6[(work >> 8) & 0x3fL]
^ SP4[(work >> 16) & 0x3fL]
^ SP2[(work >> 24) & 0x3fL];
}
right = RORc(right, 1);
work = (leftt ^ right) & 0xaaaaaaaaL;
leftt ^= work;
right ^= work;
leftt = RORc(leftt, 1);
work = ((leftt >> 8) ^ right) & 0x00ff00ffL;
right ^= work;
leftt ^= (work << 8);
/* -- */
work = ((leftt >> 2) ^ right) & 0x33333333L;
right ^= work;
leftt ^= (work << 2);
work = ((right >> 16) ^ leftt) & 0x0000ffffL;
leftt ^= work;
right ^= (work << 16);
work = ((right >> 4) ^ leftt) & 0x0f0f0f0fL;
leftt ^= work;
right ^= (work << 4);
block[0] = right;
block[1] = leftt;
}
const struct ccmode_cbc *ccdes_cbc_encrypt_mode(void) {
printf("DARLING CRYPTO STUB: %s\n", __PRETTY_FUNCTION__);
}
static int ccdes_ecb_init(const struct ccmode_ecb* info, ccecb_ctx* ctx, size_t key_size, const void* key) {
if (ctx == NULL) {
return CCERR_PARAMETER;
}
const struct ccmode_cfb *ccdes_cfb_decrypt_mode(void) {
printf("DARLING CRYPTO STUB: %s\n", __PRETTY_FUNCTION__);
}
if (key == NULL) {
return CCERR_PARAMETER;
}
const struct ccmode_cfb *ccdes_cfb_encrypt_mode(void) {
printf("DARLING CRYPTO STUB: %s\n", __PRETTY_FUNCTION__);
}
if (key_size != 8) {
return CCERR_PARAMETER;
}
const struct ccmode_cfb8 *ccdes_cfb8_decrypt_mode(void) {
printf("DARLING CRYPTO STUB: %s\n", __PRETTY_FUNCTION__);
}
struct the_real_ccecb_ctx* real_ctx = (struct the_real_ccecb_ctx*)ctx;
const struct ccmode_cfb8 *ccdes_cfb8_encrypt_mode(void) {
printf("DARLING CRYPTO STUB: %s\n", __PRETTY_FUNCTION__);
}
deskey((const uint8_t*)key, EN0, real_ctx->ek);
deskey((const uint8_t*)key, DE1, real_ctx->dk);
const struct ccmode_ctr *ccdes_ctr_crypt_mode(void) {
printf("DARLING CRYPTO STUB: %s\n", __PRETTY_FUNCTION__);
}
return CCERR_OK;
};
const struct ccmode_ofb *ccdes_ofb_crypt_mode(void) {
printf("DARLING CRYPTO STUB: %s\n", __PRETTY_FUNCTION__);
}
static int ccdes_ecb_encrypt(const ccecb_ctx* ctx, size_t block_count, const void* in, void* out) {
if (ctx == NULL) {
return CCERR_PARAMETER;
}
if (in == NULL) {
return CCERR_PARAMETER;
}
const struct ccmode_ecb *ccdes3_ecb_decrypt_mode(void) {
printf("DARLING CRYPTO STUB: %s\n", __PRETTY_FUNCTION__);
}
if (out == NULL) {
return CCERR_PARAMETER;
}
const struct ccmode_ecb *ccdes3_ecb_encrypt_mode(void) {
printf("DARLING CRYPTO STUB: %s\n", __PRETTY_FUNCTION__);
}
struct the_real_ccecb_ctx* real_ctx = (struct the_real_ccecb_ctx*)ctx;
const struct ccmode_cbc *ccdes3_cbc_decrypt_mode(void) {
printf("DARLING CRYPTO STUB: %s\n", __PRETTY_FUNCTION__);
}
while (block_count > 0) {
const uint8_t* pt = (const uint8_t*)in;
uint8_t* ct = (uint8_t*)out;
uint32_t work[2];
const struct ccmode_cbc *ccdes3_cbc_encrypt_mode(void) {
printf("DARLING CRYPTO STUB: %s\n", __PRETTY_FUNCTION__);
}
LOAD32H(work[0], pt+0);
LOAD32H(work[1], pt+4);
desfunc(work, real_ctx->ek);
STORE32H(work[0],ct+0);
STORE32H(work[1],ct+4);
const struct ccmode_cfb *ccdes3_cfb_decrypt_mode(void) {
printf("DARLING CRYPTO STUB: %s\n", __PRETTY_FUNCTION__);
}
in += 8;
out += 8;
--block_count;
}
const struct ccmode_cfb *ccdes3_cfb_encrypt_mode(void) {
printf("DARLING CRYPTO STUB: %s\n", __PRETTY_FUNCTION__);
}
return CCERR_OK;
};
const struct ccmode_cfb8 *ccdes3_cfb8_decrypt_mode(void) {
printf("DARLING CRYPTO STUB: %s\n", __PRETTY_FUNCTION__);
}
static int ccdes_ecb_decrypt(const ccecb_ctx* ctx, size_t block_count, const void* in, void* out) {
if (ctx == NULL) {
return CCERR_PARAMETER;
}
const struct ccmode_cfb8 *ccdes3_cfb8_encrypt_mode(void) {
printf("DARLING CRYPTO STUB: %s\n", __PRETTY_FUNCTION__);
}
if (in == NULL) {
return CCERR_PARAMETER;
}
const struct ccmode_ctr *ccdes3_ctr_crypt_mode(void) {
printf("DARLING CRYPTO STUB: %s\n", __PRETTY_FUNCTION__);
}
if (out == NULL) {
return CCERR_PARAMETER;
}
const struct ccmode_ofb *ccdes3_ofb_crypt_mode(void) {
printf("DARLING CRYPTO STUB: %s\n", __PRETTY_FUNCTION__);
}
struct the_real_ccecb_ctx* real_ctx = (struct the_real_ccecb_ctx*)ctx;
while (block_count > 0) {
const uint8_t* ct = (const uint8_t*)in;
uint8_t* pt = (uint8_t*)out;
uint32_t work[2];
LOAD32H(work[0], ct+0);
LOAD32H(work[1], ct+4);
desfunc(work, real_ctx->dk);
STORE32H(work[0],pt+0);
STORE32H(work[1],pt+4);
in += 8;
out += 8;
--block_count;
}
return CCERR_OK;
};
CCMODE_GCM_FACTORY(des3, encrypt);
CCMODE_GCM_FACTORY(des3, decrypt);
CCMODE_CBC_FACTORY(des3, encrypt);
CCMODE_CBC_FACTORY(des3, decrypt);
CCMODE_CFB_FACTORY(des3, cfb, encrypt);
CCMODE_CFB_FACTORY(des3, cfb, decrypt);
CCMODE_CFB_FACTORY(des3, cfb8, encrypt);
CCMODE_CFB_FACTORY(des3, cfb8, decrypt);
CCMODE_XTS_FACTORY(des3, encrypt);
CCMODE_XTS_FACTORY(des3, decrypt);
CCMODE_CCM_FACTORY(des3, encrypt);
CCMODE_CCM_FACTORY(des3, decrypt);
CCMODE_CTR_FACTORY(des3);
CCMODE_OFB_FACTORY(des3);
static int ccdes3_ecb_init(const struct ccmode_ecb* info, ccecb_ctx* ctx, size_t key_size, const void* key);
static int ccdes3_ecb_encrypt(const ccecb_ctx* ctx, size_t block_count, const void* in, void* out);
static int ccdes3_ecb_decrypt(const ccecb_ctx* ctx, size_t block_count, const void* in, void* out);
struct the_real_ccecb_ctx_3 {
uint32_t ek[3][32], dk[3][32];
};
const struct ccmode_ecb ccdes3_ltc_ecb_encrypt_mode = {
.block_size = 8,
.size = sizeof(struct the_real_ccecb_ctx_3),
.init = ccdes3_ecb_init,
.ecb = ccdes3_ecb_encrypt,
};
const struct ccmode_ecb ccdes3_ltc_ecb_decrypt_mode = {
.block_size = 8,
.size = sizeof(struct the_real_ccecb_ctx_3),
.init = ccdes3_ecb_init,
.ecb = ccdes3_ecb_decrypt,
};
const struct ccmode_ecb* ccdes3_ecb_encrypt_mode(void) {
return &ccdes3_ltc_ecb_encrypt_mode;
};
const struct ccmode_ecb* ccdes3_ecb_decrypt_mode(void) {
return &ccdes3_ltc_ecb_decrypt_mode;
};
static int ccdes3_ecb_init(const struct ccmode_ecb* info, ccecb_ctx* ctx, size_t key_size, const void* key) {
if (ctx == NULL) {
return CCERR_PARAMETER;
}
if (key == NULL) {
return CCERR_PARAMETER;
}
if (key_size != 16 && key_size != 24) {
return CCERR_PARAMETER;
}
struct the_real_ccecb_ctx_3* real_ctx = (struct the_real_ccecb_ctx_3*)ctx;
deskey((const uint8_t*)key, EN0, real_ctx->ek[0]);
deskey((const uint8_t*)key+8, DE1, real_ctx->ek[1]);
if (key_size == 24) {
deskey(key+16, EN0, real_ctx->ek[2]);
} else {
/* two-key 3DES: K3=K1 */
deskey((const uint8_t*)key, EN0, real_ctx->ek[2]);
}
deskey((const uint8_t*)key, DE1, real_ctx->dk[2]);
deskey((const uint8_t*)key+8, EN0, real_ctx->dk[1]);
if (key_size == 24) {
deskey((const uint8_t*)key+16, DE1, real_ctx->dk[0]);
} else {
/* two-key 3DES: K3=K1 */
deskey((const uint8_t*)key, DE1, real_ctx->dk[0]);
}
return CCERR_OK;
};
static int ccdes3_ecb_encrypt(const ccecb_ctx* ctx, size_t block_count, const void* in, void* out) {
if (ctx == NULL) {
return CCERR_PARAMETER;
}
if (in == NULL) {
return CCERR_PARAMETER;
}
if (out == NULL) {
return CCERR_PARAMETER;
}
struct the_real_ccecb_ctx_3* real_ctx = (struct the_real_ccecb_ctx_3*)ctx;
while (block_count > 0) {
const uint8_t* pt = (const uint8_t*)in;
uint8_t* ct = (uint8_t*)out;
uint32_t work[2];
LOAD32H(work[0], pt+0);
LOAD32H(work[1], pt+4);
desfunc(work, real_ctx->ek[0]);
desfunc(work, real_ctx->ek[1]);
desfunc(work, real_ctx->ek[2]);
STORE32H(work[0],ct+0);
STORE32H(work[1],ct+4);
in += 8;
out += 8;
--block_count;
}
return CCERR_OK;
};
static int ccdes3_ecb_decrypt(const ccecb_ctx* ctx, size_t block_count, const void* in, void* out) {
if (ctx == NULL) {
return CCERR_PARAMETER;
}
if (in == NULL) {
return CCERR_PARAMETER;
}
if (out == NULL) {
return CCERR_PARAMETER;
}
struct the_real_ccecb_ctx_3* real_ctx = (struct the_real_ccecb_ctx_3*)ctx;
while (block_count > 0) {
const uint8_t* ct = (const uint8_t*)in;
uint8_t* pt = (uint8_t*)out;
uint32_t work[2];
LOAD32H(work[0], ct+0);
LOAD32H(work[1], ct+4);
desfunc(work, real_ctx->dk[0]);
desfunc(work, real_ctx->dk[1]);
desfunc(work, real_ctx->dk[2]);
STORE32H(work[0],pt+0);
STORE32H(work[1],pt+4);
in += 8;
out += 8;
--block_count;
}
return CCERR_OK;
};
int ccdes_key_is_weak(void *key, size_t length) {
printf("DARLING CRYPTO STUB: %s\n", __PRETTY_FUNCTION__);