darling-dyld/dyld3/AllImages.cpp
2023-04-30 11:26:23 -07:00

1987 lines
76 KiB
C++

/*
* Copyright (c) 2017 Apple Inc. All rights reserved.
*
* @APPLE_LICENSE_HEADER_START@
*
* This file contains Original Code and/or Modifications of Original Code
* as defined in and that are subject to the Apple Public Source License
* Version 2.0 (the 'License'). You may not use this file except in
* compliance with the License. Please obtain a copy of the License at
* http://www.opensource.apple.com/apsl/ and read it before using this
* file.
*
* The Original Code and all software distributed under the License are
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
* Please see the License for the specific language governing rights and
* limitations under the License.
*
* @APPLE_LICENSE_HEADER_END@
*/
#include <stdint.h>
#include <fcntl.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/sysctl.h>
#include <mach/mach_time.h> // mach_absolute_time()
#include <libkern/OSAtomic.h>
#include <uuid/uuid.h>
#include <mach-o/dyld_images.h>
#include <libc_private.h>
#include <vector>
#include <algorithm>
#include "AllImages.h"
#include "libdyldEntryVector.h"
#include "Logging.h"
#include "Loading.h"
#include "Tracing.h"
#include "DyldSharedCache.h"
#include "PathOverrides.h"
#include "Closure.h"
#include "ClosureBuilder.h"
#include "ClosureFileSystemPhysical.h"
#include "RootsChecker.h"
#include "objc-shared-cache.h"
extern const char** appleParams;
// should be a header for these
struct __cxa_range_t {
const void* addr;
size_t length;
};
extern "C" void __cxa_finalize_ranges(const __cxa_range_t ranges[], unsigned int count);
extern "C" int __cxa_atexit(void (*func)(void *), void* arg, void* dso);
#ifdef DARLING
#define kdebug_is_enabled(...) 0
#endif
VIS_HIDDEN void* __ptrauth_dyld_address_auth gUseDyld3 = nullptr;
namespace dyld3 {
///////////////////// AllImages ////////////////////////////
AllImages gAllImages;
void AllImages::init(const closure::LaunchClosure* closure, const DyldSharedCache* dyldCacheLoadAddress, const char* dyldCachePath,
const Array<LoadedImage>& initialImages)
{
_mainClosure = closure;
_initialImages = &initialImages;
_dyldCacheAddress = dyldCacheLoadAddress;
_dyldCachePath = dyldCachePath;
if ( _dyldCacheAddress ) {
_dyldCacheSlide = (uint64_t)dyldCacheLoadAddress - dyldCacheLoadAddress->unslidLoadAddress();
_imagesArrays.push_back(dyldCacheLoadAddress->cachedDylibsImageArray());
if ( auto others = dyldCacheLoadAddress->otherOSImageArray() )
_imagesArrays.push_back(others);
}
_imagesArrays.push_back(_mainClosure->images());
// record first ImageNum to do use for dlopen() calls
_mainClosure->images()->forEachImage(^(const dyld3::closure::Image* image, bool& stop) {
closure::ImageNum num = image->imageNum();
if ( num >= _nextImageNum )
_nextImageNum = num+1;
});
// Make temporary old image array, so libSystem initializers can be debugged
STACK_ALLOC_ARRAY(dyld_image_info, oldDyldInfo, initialImages.count());
for (const LoadedImage& li : initialImages) {
oldDyldInfo.push_back({li.loadedAddress(), li.image()->path(), 0});
}
_oldAllImageInfos->infoArray = &oldDyldInfo[0];
_oldAllImageInfos->infoArrayCount = (uint32_t)oldDyldInfo.count();
_oldAllImageInfos->notification(dyld_image_adding, _oldAllImageInfos->infoArrayCount, _oldAllImageInfos->infoArray);
_oldAllImageInfos->infoArray = nullptr;
_oldAllImageInfos->infoArrayCount = 0;
_processDOFs = Loader::dtraceUserProbesEnabled();
}
void AllImages::setProgramVars(ProgramVars* vars, bool keysOff, bool osBinariesOnly)
{
_programVars = vars;
_archs = &GradedArchs::forCurrentOS(keysOff, osBinariesOnly);
}
void AllImages::setLaunchMode(uint32_t flags)
{
_launchMode = flags;
}
AllImages::MainFunc AllImages::getDriverkitMain()
{
return _driverkitMain;
}
void AllImages::setDriverkitMain(MainFunc mainFunc)
{
_driverkitMain = mainFunc;
}
void AllImages::setRestrictions(bool allowAtPaths, bool allowEnvPaths)
{
_allowAtPaths = allowAtPaths;
_allowEnvPaths = allowEnvPaths;
}
void AllImages::setHasCacheOverrides(bool someCacheImageOverriden)
{
_someImageOverridden = someCacheImageOverriden;
}
bool AllImages::hasCacheOverrides() const {
return _someImageOverridden;
}
void AllImages::applyInitialImages()
{
addImages(*_initialImages);
runImageNotifiers(*_initialImages);
runImageCallbacks(*_initialImages);
_initialImages = nullptr; // this was stack allocated
}
void AllImages::withReadLock(void (^work)()) const
{
#ifdef OS_UNFAIR_RECURSIVE_LOCK_INIT
os_unfair_recursive_lock_lock(&_globalLock);
work();
os_unfair_recursive_lock_unlock(&_globalLock);
#else
pthread_mutex_lock(&_globalLock);
work();
pthread_mutex_unlock(&_globalLock);
#endif
}
void AllImages::withWriteLock(void (^work)())
{
#ifdef OS_UNFAIR_RECURSIVE_LOCK_INIT
os_unfair_recursive_lock_lock(&_globalLock);
work();
os_unfair_recursive_lock_unlock(&_globalLock);
#else
pthread_mutex_lock(&_globalLock);
work();
pthread_mutex_unlock(&_globalLock);
#endif
}
void AllImages::withNotifiersLock(void (^work)()) const
{
#ifdef OS_UNFAIR_RECURSIVE_LOCK_INIT
os_unfair_recursive_lock_lock(&_globalLock);
work();
os_unfair_recursive_lock_unlock(&_globalLock);
#else
pthread_mutex_lock(&_globalLock);
work();
pthread_mutex_unlock(&_globalLock);
#endif
}
void AllImages::mirrorToOldAllImageInfos()
{
withReadLock(^(){
// set infoArray to NULL to denote it is in-use
_oldAllImageInfos->infoArray = nullptr;
// if array not large enough, re-alloc it
uint32_t imageCount = (uint32_t)_loadedImages.count();
if ( _oldArrayAllocCount < imageCount ) {
uint32_t newAllocCount = imageCount + 16;
dyld_image_info* newArray = (dyld_image_info*)::malloc(sizeof(dyld_image_info)*newAllocCount);
if ( _oldAllImageArray != nullptr ) {
::memcpy(newArray, _oldAllImageArray, sizeof(dyld_image_info)*_oldAllImageInfos->infoArrayCount);
::free(_oldAllImageArray);
}
_oldAllImageArray = newArray;
_oldArrayAllocCount = newAllocCount;
}
// fill out array to mirror current image list
int index = 0;
for (const LoadedImage& li : _loadedImages) {
_oldAllImageArray[index].imageLoadAddress = li.loadedAddress();
_oldAllImageArray[index].imageFilePath = imagePath(li.image());
_oldAllImageArray[index].imageFileModDate = 0;
++index;
}
// set infoArray back to base address of array (so other process can now read)
_oldAllImageInfos->infoArrayCount = imageCount;
_oldAllImageInfos->infoArrayChangeTimestamp = mach_absolute_time();
_oldAllImageInfos->infoArray = _oldAllImageArray;
// <radr://problem/42668846> update UUID array if needed
uint32_t nonCachedCount = 1; // always add dyld
for (const LoadedImage& li : _loadedImages) {
if ( _oldAllImageInfos->processDetachedFromSharedRegion || !li.loadedAddress()->inDyldCache())
++nonCachedCount;
}
if ( nonCachedCount != _oldAllImageInfos->uuidArrayCount ) {
// set infoArray to NULL to denote it is in-use
_oldAllImageInfos->uuidArray = nullptr;
// make sure allocation can hold all uuids
if ( _oldUUIDAllocCount < nonCachedCount ) {
uint32_t newAllocCount = (nonCachedCount + 3) & (-4); // round up to multiple of 4
dyld_uuid_info* newArray = (dyld_uuid_info*)::malloc(sizeof(dyld_uuid_info)*newAllocCount);
if ( _oldUUIDArray != nullptr )
::free(_oldUUIDArray);
_oldUUIDArray = newArray;
_oldUUIDAllocCount = newAllocCount;
}
// add dyld then all images not in dyld cache
const MachOFile* dyldMF = (MachOFile*)_oldAllImageInfos->dyldImageLoadAddress;
_oldUUIDArray[0].imageLoadAddress = dyldMF;
dyldMF->getUuid(_oldUUIDArray[0].imageUUID);
index = 1;
for (const LoadedImage& li : _loadedImages) {
if ( _oldAllImageInfos->processDetachedFromSharedRegion || !li.loadedAddress()->inDyldCache() ) {
_oldUUIDArray[index].imageLoadAddress = li.loadedAddress();
li.loadedAddress()->getUuid(_oldUUIDArray[index].imageUUID);
++index;
}
}
// set uuidArray back to base address of array (so kernel can now read)
_oldAllImageInfos->uuidArray = _oldUUIDArray;
_oldAllImageInfos->uuidArrayCount = nonCachedCount;
}
});
}
void AllImages::addImages(const Array<LoadedImage>& newImages)
{
// copy into _loadedImages
withWriteLock(^(){
_loadedImages.append(newImages);
});
}
void AllImages::addImmutableRange(uintptr_t start, uintptr_t end)
{
//fprintf(stderr, "AllImages::addImmutableRange(0x%09lX, 0x%09lX)\n", start, end);
// first look in existing range buckets for empty slot
ImmutableRanges* lastRange = nullptr;
for (ImmutableRanges* ranges = &_immutableRanges; ranges != nullptr; ranges = ranges->next.load(std::memory_order_acquire)) {
lastRange = ranges;
for (uintptr_t i=0; i < ranges->arraySize; ++i) {
if ( ranges->array[i].start.load(std::memory_order_acquire) == 0 ) {
// set 'end' before 'start' so readers always see consistent state
ranges->array[i].end.store(end, std::memory_order_release);
ranges->array[i].start.store(start, std::memory_order_release);
return;
}
}
}
// if we got here, there are no empty slots, so add new ImmutableRanges
const uintptr_t newSize = 15; // allocation is 256 bytes on 64-bit processes
ImmutableRanges* newRange = (ImmutableRanges*)calloc(offsetof(ImmutableRanges,array[newSize]), 1);
newRange->arraySize = newSize;
newRange->array[0].end.store(end, std::memory_order_release);
newRange->array[0].start.store(start, std::memory_order_release);
// tie into previous list last
lastRange->next.store(newRange, std::memory_order_release);
}
void AllImages::runImageNotifiers(const Array<LoadedImage>& newImages)
{
uint32_t count = (uint32_t)newImages.count();
assert(count != 0);
if ( _oldAllImageInfos != nullptr ) {
// sync to old all image infos struct
mirrorToOldAllImageInfos();
// tell debugger about new images
dyld_image_info oldDyldInfo[count];
for (uint32_t i=0; i < count; ++i) {
oldDyldInfo[i].imageLoadAddress = newImages[i].loadedAddress();
oldDyldInfo[i].imageFilePath = imagePath(newImages[i].image());
oldDyldInfo[i].imageFileModDate = 0;
}
_oldAllImageInfos->notification(dyld_image_adding, count, oldDyldInfo);
}
// if any image not in the shared cache added, recompute bounds
for (const LoadedImage& li : newImages) {
if ( !((MachOAnalyzer*)li.loadedAddress())->inDyldCache() ) {
recomputeBounds();
break;
}
}
// update immutable ranges
for (const LoadedImage& li : newImages) {
if ( !li.image()->inDyldCache() && li.image()->neverUnload() ) {
uintptr_t baseAddr = (uintptr_t)li.loadedAddress();
li.image()->forEachDiskSegment(^(uint32_t segIndex, uint32_t fileOffset, uint32_t fileSize, int64_t vmOffset, uint64_t vmSize, uint8_t permissions, bool laterReadOnly, bool &stop) {
if ( (permissions & (VM_PROT_READ|VM_PROT_WRITE)) == VM_PROT_READ ) {
addImmutableRange(baseAddr + (uintptr_t)vmOffset, (uintptr_t)(baseAddr + vmOffset + vmSize));
}
});
}
}
// log loads
for (const LoadedImage& li : newImages) {
const char *path = imagePath(li.image());
uuid_t imageUUID;
if ( li.image()->getUuid(imageUUID)) {
uuid_string_t imageUUIDStr;
uuid_unparse_upper(imageUUID, imageUUIDStr);
log_loads("dyld: <%s> %s\n", imageUUIDStr, path);
}
else {
log_loads("dyld: %s\n", path);
}
}
// call kdebug trace for each image
if (kdebug_is_enabled(KDBG_CODE(DBG_DYLD, DBG_DYLD_UUID, DBG_DYLD_UUID_MAP_A))) {
for (const LoadedImage& li : newImages) {
const closure::Image* image = li.image();
struct stat stat_buf;
const char *path = imagePath(image);
uuid_t uuid;
image->getUuid(uuid);
fsid_t fsid = {{ 0, 0 }};
fsobj_id_t fsobjid = { 0, 0 };
if ( !li.loadedAddress()->inDyldCache() && (dyld3::stat(path, &stat_buf) == 0) ) {
fsobjid = *(fsobj_id_t*)&stat_buf.st_ino;
fsid = {{ stat_buf.st_dev, 0 }};
}
kdebug_trace_dyld_image(DBG_DYLD_UUID_MAP_A, path, &uuid, fsobjid, fsid, li.loadedAddress());
}
}
}
void AllImages::runImageCallbacks(const Array<LoadedImage>& newImages)
{
uint32_t count = (uint32_t)newImages.count();
assert(count != 0);
// call each _dyld_register_func_for_add_image function with each image
withNotifiersLock(^{
for (NotifyFunc func : _loadNotifiers) {
for (const LoadedImage& li : newImages) {
dyld3::ScopedTimer timer(DBG_DYLD_TIMING_FUNC_FOR_ADD_IMAGE, (uint64_t)li.loadedAddress(), (uint64_t)func, 0);
log_notifications("dyld: add notifier %p called with mh=%p\n", func, li.loadedAddress());
if ( li.image()->inDyldCache() )
func(li.loadedAddress(), (uintptr_t)_dyldCacheSlide);
else
func(li.loadedAddress(), li.loadedAddress()->getSlide());
}
}
for (LoadNotifyFunc func : _loadNotifiers2) {
for (const LoadedImage& li : newImages) {
dyld3::ScopedTimer timer(DBG_DYLD_TIMING_FUNC_FOR_ADD_IMAGE, (uint64_t)li.loadedAddress(), (uint64_t)func, 0);
log_notifications("dyld: add notifier %p called with mh=%p\n", func, li.loadedAddress());
if ( li.image()->inDyldCache() )
func(li.loadedAddress(), li.image()->path(), false);
else
func(li.loadedAddress(), li.image()->path(), !li.image()->neverUnload());
}
}
for (BulkLoadNotifier func : _loadBulkNotifiers) {
const mach_header* mhs[count];
const char* paths[count];
for (unsigned i=0; i < count; ++i) {
mhs[i] = newImages[i].loadedAddress();
paths[i] = newImages[i].image()->path();
}
dyld3::ScopedTimer timer(DBG_DYLD_TIMING_FUNC_FOR_ADD_IMAGE, (uint64_t)mhs[0], (uint64_t)func, 0);
log_notifications("dyld: add notifier %p called with %d images\n", func, count);
func(count, mhs, paths);
}
});
// call objc about images that use objc
if ( _objcNotifyMapped != nullptr ) {
const char* pathsBuffer[count];
const mach_header* mhBuffer[count];
uint32_t imagesWithObjC = 0;
for (const LoadedImage& li : newImages) {
const closure::Image* image = li.image();
if ( image->hasObjC() ) {
pathsBuffer[imagesWithObjC] = imagePath(image);
mhBuffer[imagesWithObjC] = li.loadedAddress();
++imagesWithObjC;
}
}
if ( imagesWithObjC != 0 ) {
dyld3::ScopedTimer timer(DBG_DYLD_TIMING_OBJC_MAP, 0, 0, 0);
(*_objcNotifyMapped)(imagesWithObjC, pathsBuffer, mhBuffer);
if ( log_notifications("dyld: objc-mapped-notifier called with %d images:\n", imagesWithObjC) ) {
for (uint32_t i=0; i < imagesWithObjC; ++i) {
log_notifications("dyld: objc-mapped: %p %s\n", mhBuffer[i], pathsBuffer[i]);
}
}
}
}
#if !TARGET_OS_DRIVERKIT
// FIXME: This may make more sense in runImageCallbacks, but the present order
// is after callbacks. Can we safely move it?
// notify any processes tracking loads in this process
notifyMonitorLoads(newImages);
#endif
}
void AllImages::removeImages(const Array<LoadedImage>& unloadImages)
{
// call each _dyld_register_func_for_remove_image function with each image
withNotifiersLock(^{
for (NotifyFunc func : _unloadNotifiers) {
for (const LoadedImage& li : unloadImages) {
dyld3::ScopedTimer timer(DBG_DYLD_TIMING_FUNC_FOR_REMOVE_IMAGE, (uint64_t)li.loadedAddress(), (uint64_t)func, 0);
log_notifications("dyld: remove notifier %p called with mh=%p\n", func, li.loadedAddress());
if ( li.image()->inDyldCache() )
func(li.loadedAddress(), (uintptr_t)_dyldCacheSlide);
else
func(li.loadedAddress(), li.loadedAddress()->getSlide());
}
}
});
// call objc about images going away
if ( _objcNotifyUnmapped != nullptr ) {
for (const LoadedImage& li : unloadImages) {
if ( li.image()->hasObjC() ) {
(*_objcNotifyUnmapped)(imagePath(li.image()), li.loadedAddress());
log_notifications("dyld: objc-unmapped-notifier called with image %p %s\n", li.loadedAddress(), imagePath(li.image()));
}
}
}
// call kdebug trace for each image
if (kdebug_is_enabled(KDBG_CODE(DBG_DYLD, DBG_DYLD_UUID, DBG_DYLD_UUID_MAP_A))) {
for (const LoadedImage& li : unloadImages) {
const closure::Image* image = li.image();
struct stat stat_buf;
const char *path = imagePath(image);
uuid_t uuid;
image->getUuid(uuid);
fsid_t fsid = {{ 0, 0 }};
fsobj_id_t fsobjid = { 0, 0 };
if ( dyld3::stat(path, &stat_buf) == 0 ) {
fsobjid = *(fsobj_id_t*)&stat_buf.st_ino;
fsid = {{ stat_buf.st_dev, 0 }};
}
kdebug_trace_dyld_image(DBG_DYLD_UUID_UNMAP_A, path, &uuid, fsobjid, fsid, li.loadedAddress());
}
}
// remove each from _loadedImages
withWriteLock(^(){
for (const LoadedImage& uli : unloadImages) {
for (LoadedImage& li : _loadedImages) {
if ( uli.loadedAddress() == li.loadedAddress() ) {
_loadedImages.erase(li);
break;
}
}
}
recomputeBounds();
});
// sync to old all image infos struct
mirrorToOldAllImageInfos();
// tell debugger about removed images
STACK_ALLOC_ARRAY(dyld_image_info, oldDyldInfo, unloadImages.count());
for (const LoadedImage& li : unloadImages) {
oldDyldInfo.push_back({li.loadedAddress(), li.image()->path(), 0});
}
_oldAllImageInfos->notification(dyld_image_removing, (uint32_t)oldDyldInfo.count(), &oldDyldInfo[0]);
// notify any processes tracking loads in this process
notifyMonitorUnloads(unloadImages);
// finally, unmap images
for (const LoadedImage& li : unloadImages) {
if ( li.leaveMapped() ) {
log_loads("dyld: unloaded but left mmapped %s\n", imagePath(li.image()));
}
else {
// unmapImage() modifies parameter, so use copy
LoadedImage copy = li;
Loader::unmapImage(copy);
log_loads("dyld: unloaded %s\n", imagePath(li.image()));
}
}
}
// must be called with writeLock held
void AllImages::recomputeBounds()
{
_lowestNonCached = UINTPTR_MAX;
_highestNonCached = 0;
for (const LoadedImage& li : _loadedImages) {
const MachOLoaded* ml = li.loadedAddress();
uintptr_t start = (uintptr_t)ml;
if ( !((MachOAnalyzer*)ml)->inDyldCache() ) {
if ( start < _lowestNonCached )
_lowestNonCached = start;
uintptr_t end = start + (uintptr_t)(li.image()->vmSizeToMap());
if ( end > _highestNonCached )
_highestNonCached = end;
}
}
}
uint32_t AllImages::count() const
{
return (uint32_t)_loadedImages.count();
}
bool AllImages::dyldCacheHasPath(const char* path) const
{
uint32_t dyldCacheImageIndex;
if ( _dyldCacheAddress != nullptr )
return _dyldCacheAddress->hasImagePath(path, dyldCacheImageIndex);
return false;
}
const char* AllImages::imagePathByIndex(uint32_t index) const
{
__block const char* result = nullptr;
withReadLock(^{
if ( index < _loadedImages.count() ) {
result = imagePath(_loadedImages[index].image());
return;
}
});
return result;
}
const mach_header* AllImages::imageLoadAddressByIndex(uint32_t index) const
{
__block const mach_header* result = nullptr;
withReadLock(^{
if ( index < _loadedImages.count() ) {
result = _loadedImages[index].loadedAddress();
return;
}
});
return result;
}
bool AllImages::findImage(const mach_header* loadAddress, LoadedImage& foundImage) const
{
__block bool result = false;
withReadLock(^(){
for (const LoadedImage& li : _loadedImages) {
if ( li.loadedAddress() == loadAddress ) {
foundImage = li;
result = true;
break;
}
}
});
return result;
}
void AllImages::forEachImage(void (^handler)(const LoadedImage& loadedImage, bool& stop)) const
{
if ( _initialImages != nullptr ) {
// being called during libSystem initialization, so _loadedImages not allocated yet
bool stop = false;
for (const LoadedImage& li : *_initialImages) {
handler(li, stop);
if ( stop )
break;
}
return;
}
withReadLock(^{
bool stop = false;
for (const LoadedImage& li : _loadedImages) {
handler(li, stop);
if ( stop )
break;
}
});
}
const char* AllImages::pathForImageMappedAt(const void* addr) const
{
if ( _initialImages != nullptr ) {
// being called during libSystem initialization, so _loadedImages not allocated yet
for (const LoadedImage& li : *_initialImages) {
uint8_t permissions;
if ( li.image()->containsAddress(addr, li.loadedAddress(), &permissions) ) {
return li.image()->path();
}
}
return nullptr;
}
// if address is in cache, do fast search of TEXT segments in cache
__block const char* result = nullptr;
if ( (_dyldCacheAddress != nullptr) && (addr > _dyldCacheAddress) ) {
if ( addr < (void*)((uint8_t*)_dyldCacheAddress+_dyldCacheAddress->mappedSize()) ) {
uint64_t cacheSlide = (uint64_t)_dyldCacheAddress - _dyldCacheAddress->unslidLoadAddress();
uint64_t unslidTargetAddr = (uint64_t)addr - cacheSlide;
_dyldCacheAddress->forEachImageTextSegment(^(uint64_t loadAddressUnslid, uint64_t textSegmentSize, const unsigned char* dylibUUID, const char* installName, bool& stop) {
if ( (loadAddressUnslid <= unslidTargetAddr) && (unslidTargetAddr < loadAddressUnslid+textSegmentSize) ) {
result = installName;
stop = true;
}
});
if ( result != nullptr )
return result;
}
}
// slow path - search image list
infoForImageMappedAt(addr, ^(const LoadedImage& foundImage, uint8_t permissions) {
result = foundImage.image()->path();
});
return result;
}
void AllImages::infoForImageMappedAt(const void* addr, void (^handler)(const LoadedImage& foundImage, uint8_t permissions)) const
{
__block uint8_t permissions;
if ( _initialImages != nullptr ) {
// being called during libSystem initialization, so _loadedImages not allocated yet
for (const LoadedImage& li : *_initialImages) {
if ( li.image()->containsAddress(addr, li.loadedAddress(), &permissions) ) {
handler(li, permissions);
break;
}
}
return;
}
withReadLock(^{
for (const LoadedImage& li : _loadedImages) {
if ( li.image()->containsAddress(addr, li.loadedAddress(), &permissions) ) {
handler(li, permissions);
break;
}
}
});
}
bool AllImages::infoForImageMappedAt(const void* addr, const MachOLoaded** ml, uint64_t* textSize, const char** path) const
{
if ( _initialImages != nullptr ) {
// being called during libSystem initialization, so _loadedImages not allocated yet
for (const LoadedImage& li : *_initialImages) {
uint8_t permissions;
if ( li.image()->containsAddress(addr, li.loadedAddress(), &permissions) ) {
if ( ml != nullptr )
*ml = li.loadedAddress();
if ( path != nullptr )
*path = li.image()->path();
if ( textSize != nullptr ) {
*textSize = li.image()->textSize();
}
return true;
}
}
return false;
}
// if address is in cache, do fast search of TEXT segments in cache
__block bool result = false;
if ( (_dyldCacheAddress != nullptr) && (addr > _dyldCacheAddress) ) {
if ( addr < (void*)((uint8_t*)_dyldCacheAddress+_dyldCacheAddress->mappedSize()) ) {
uint64_t cacheSlide = (uint64_t)_dyldCacheAddress - _dyldCacheAddress->unslidLoadAddress();
uint64_t unslidTargetAddr = (uint64_t)addr - cacheSlide;
_dyldCacheAddress->forEachImageTextSegment(^(uint64_t loadAddressUnslid, uint64_t textSegmentSize, const unsigned char* dylibUUID, const char* installName, bool& stop) {
if ( (loadAddressUnslid <= unslidTargetAddr) && (unslidTargetAddr < loadAddressUnslid+textSegmentSize) ) {
if ( ml != nullptr )
*ml = (MachOLoaded*)(loadAddressUnslid + cacheSlide);
if ( path != nullptr )
*path = installName;
if ( textSize != nullptr )
*textSize = textSegmentSize;
stop = true;
result = true;
}
});
if ( result )
return result;
// in shared cache, but not in a TEXT segment, do slow search of all loaded cache images
withReadLock(^{
for (const LoadedImage& li : _loadedImages) {
if ( ((MachOAnalyzer*)li.loadedAddress())->inDyldCache() ) {
uint8_t permissions;
if ( li.image()->containsAddress(addr, li.loadedAddress(), &permissions) ) {
if ( ml != nullptr )
*ml = li.loadedAddress();
if ( path != nullptr )
*path = li.image()->path();
if ( textSize != nullptr )
*textSize = li.image()->textSize();
result = true;
break;
}
}
}
});
return result;
}
}
// address not in dyld cache, check each non-cache image
infoForNonCachedImageMappedAt(addr, ^(const LoadedImage& foundImage, uint8_t permissions) {
if ( ml != nullptr )
*ml = foundImage.loadedAddress();
if ( path != nullptr )
*path = foundImage.image()->path();
if ( textSize != nullptr )
*textSize = foundImage.image()->textSize();
result = true;
});
return result;
}
// same as infoForImageMappedAt(), but only look at images not in the dyld cache
void AllImages::infoForNonCachedImageMappedAt(const void* addr, void (^handler)(const LoadedImage& foundImage, uint8_t permissions)) const
{
__block uint8_t permissions;
if ( _initialImages != nullptr ) {
// being called during libSystem initialization, so _loadedImages not allocated yet
for (const LoadedImage& li : *_initialImages) {
if ( !((MachOAnalyzer*)li.loadedAddress())->inDyldCache() ) {
if ( li.image()->containsAddress(addr, li.loadedAddress(), &permissions) ) {
handler(li, permissions);
break;
}
}
}
return;
}
withReadLock(^{
for (const LoadedImage& li : _loadedImages) {
if ( !((MachOAnalyzer*)li.loadedAddress())->inDyldCache() ) {
if ( li.image()->containsAddress(addr, li.loadedAddress(), &permissions) ) {
handler(li, permissions);
break;
}
}
}
});
}
bool AllImages::immutableMemory(const void* addr, size_t length) const
{
// check to see if in shared cache
if ( _dyldCacheAddress != nullptr ) {
bool readOnly;
if ( _dyldCacheAddress->inCache(addr, length, readOnly) ) {
return readOnly;
}
}
// check to see if it is outside the range of any loaded image
if ( ((uintptr_t)addr < _lowestNonCached) || ((uintptr_t)addr+length > _highestNonCached) ) {
return false;
}
// check immutable ranges
for (const ImmutableRanges* ranges = &_immutableRanges; ranges != nullptr; ranges = ranges->next.load(std::memory_order_acquire)) {
for (uintptr_t i=0; i < ranges->arraySize; ++i) {
if ( ranges->array[i].start.load(std::memory_order_acquire) == 0 )
break; // no more entries in use
if ( (ranges->array[i].start.load(std::memory_order_acquire) <= (uintptr_t)addr)
&& (ranges->array[i].end.load(std::memory_order_acquire) > ((uintptr_t)addr)+length) )
return true;
}
}
return false;
}
uintptr_t AllImages::resolveTarget(closure::Image::ResolvedSymbolTarget target) const
{
switch ( target.sharedCache.kind ) {
case closure::Image::ResolvedSymbolTarget::kindSharedCache:
assert(_dyldCacheAddress != nullptr);
return (uintptr_t)_dyldCacheAddress + (uintptr_t)target.sharedCache.offset;
case closure::Image::ResolvedSymbolTarget::kindImage: {
LoadedImage info;
bool foundImage = findImageNum(target.image.imageNum, info);
assert(foundImage);
return (uintptr_t)(info.loadedAddress()) + (uintptr_t)target.image.offset;
}
case closure::Image::ResolvedSymbolTarget::kindAbsolute:
if ( target.absolute.value & (1ULL << 62) )
return (uintptr_t)(target.absolute.value | 0xC000000000000000ULL);
else
return (uintptr_t)target.absolute.value;
}
assert(0 && "malformed ResolvedSymbolTarget");
return 0;
}
void* AllImages::interposeValue(void *value) const {
if ( !_mainClosure->hasInterposings() )
return value;
__block void* replacementValue = nullptr;
__block bool foundReplacement = false;
_mainClosure->forEachInterposingTuple(^(const closure::InterposingTuple& tuple, bool& stop) {
void* stockPointer = (void*)resolveTarget(tuple.stockImplementation);
if ( stockPointer == value) {
replacementValue = (void*)resolveTarget(tuple.newImplementation);
foundReplacement = true;
stop = true;
}
});
if ( foundReplacement )
return replacementValue;
return value;
}
void AllImages::infoForImageWithLoadAddress(const MachOLoaded* mh, void (^handler)(const LoadedImage& foundImage)) const
{
withReadLock(^{
for (const LoadedImage& li : _loadedImages) {
if ( li.loadedAddress() == mh ) {
handler(li);
break;
}
}
});
}
bool AllImages::findImageNum(closure::ImageNum imageNum, LoadedImage& foundImage) const
{
if ( _initialImages != nullptr ) {
// being called during libSystem initialization, so _loadedImages not allocated yet
for (const LoadedImage& li : *_initialImages) {
if ( li.image()->representsImageNum(imageNum) ) {
foundImage = li;
return true;
}
}
return false;
}
bool result = false;
for (const LoadedImage& li : _loadedImages) {
if ( li.image()->representsImageNum(imageNum) ) {
foundImage = li;
result = true;
break;
}
}
return result;
}
const MachOLoaded* AllImages::findDependent(const MachOLoaded* mh, uint32_t depIndex)
{
__block const MachOLoaded* result = nullptr;
withReadLock(^{
for (const LoadedImage& li : _loadedImages) {
if ( li.loadedAddress() == mh ) {
closure::ImageNum depImageNum = li.image()->dependentImageNum(depIndex);
LoadedImage depLi;
if ( findImageNum(depImageNum, depLi) )
result = depLi.loadedAddress();
break;
}
}
});
return result;
}
void AllImages::breadthFirstRecurseDependents(Array<closure::ImageNum>& visited, const LoadedImage& nodeLi, bool& stopped, void (^handler)(const LoadedImage& aLoadedImage, bool& stop)) const
{
// call handler on all direct dependents (unless already visited)
STACK_ALLOC_ARRAY(LoadedImage, dependentsToRecurse, 256);
nodeLi.image()->forEachDependentImage(^(uint32_t depIndex, closure::Image::LinkKind kind, closure::ImageNum depImageNum, bool& depStop) {
if ( kind == closure::Image::LinkKind::upward )
return;
if ( visited.contains(depImageNum) )
return;
LoadedImage depLi;
if ( !findImageNum(depImageNum, depLi) )
return;
handler(depLi, depStop);
// <rdar://58466613> if there is an override of some dyld cache dylib, we need to store the override ImageNum in the visited set
if ( depImageNum != depLi.image()->imageNum() ) {
depImageNum = depLi.image()->imageNum();
if ( visited.contains(depImageNum) )
return;
}
visited.push_back(depImageNum);
if ( depStop ) {
stopped = true;
return;
}
dependentsToRecurse.push_back(depLi);
});
if ( stopped )
return;
// recurse on all dependents just visited
for (LoadedImage& depLi : dependentsToRecurse) {
breadthFirstRecurseDependents(visited, depLi, stopped, handler);
}
}
void AllImages::visitDependentsTopDown(const LoadedImage& start, void (^handler)(const LoadedImage& aLoadedImage, bool& stop)) const
{
withReadLock(^{
STACK_ALLOC_ARRAY(closure::ImageNum, visited, count());
bool stop = false;
handler(start, stop);
if ( stop )
return;
visited.push_back(start.image()->imageNum());
breadthFirstRecurseDependents(visited, start, stop, handler);
});
}
const MachOLoaded* AllImages::mainExecutable() const
{
assert(_programVars != nullptr);
return (const MachOLoaded*)_programVars->mh;
}
const closure::Image* AllImages::mainExecutableImage() const
{
assert(_mainClosure != nullptr);
return _mainClosure->images()->imageForNum(_mainClosure->topImageNum());
}
void AllImages::setMainPath(const char* path )
{
_mainExeOverridePath = path;
}
const char* AllImages::imagePath(const closure::Image* image) const
{
#if TARGET_OS_IPHONE
// on iOS and watchOS, apps may be moved on device after closure built
if ( _mainExeOverridePath != nullptr ) {
if ( image == mainExecutableImage() )
return _mainExeOverridePath;
}
#endif
return image->path();
}
dyld_platform_t AllImages::platform() const {
return (dyld_platform_t)oldAllImageInfo()->platform;
}
const GradedArchs& AllImages::archs() const
{
return *_archs;
}
void AllImages::incRefCount(const mach_header* loadAddress)
{
for (DlopenCount& entry : _dlopenRefCounts) {
if ( entry.loadAddress == loadAddress ) {
// found existing DlopenCount entry, bump counter
entry.refCount += 1;
return;
}
}
// no existing DlopenCount, add new one
_dlopenRefCounts.push_back({ loadAddress, 1 });
}
void AllImages::decRefCount(const mach_header* loadAddress)
{
bool doCollect = false;
for (DlopenCount& entry : _dlopenRefCounts) {
if ( entry.loadAddress == loadAddress ) {
// found existing DlopenCount entry, bump counter
entry.refCount -= 1;
if ( entry.refCount == 0 ) {
_dlopenRefCounts.erase(entry);
doCollect = true;
break;
}
return;
}
}
if ( doCollect )
garbageCollectImages();
}
#if TARGET_OS_OSX
NSObjectFileImage AllImages::addNSObjectFileImage(const OFIInfo& image)
{
__block uint64_t imageNum = 0;
withWriteLock(^{
imageNum = ++_nextObjectFileImageNum;
_objectFileImages.push_back(image);
_objectFileImages.back().imageNum = imageNum;
});
return (NSObjectFileImage)imageNum;
}
bool AllImages::forNSObjectFileImage(NSObjectFileImage imageHandle,
void (^handler)(OFIInfo& image)) {
uint64_t imageNum = (uint64_t)imageHandle;
bool __block foundImage = false;
withReadLock(^{
for (OFIInfo& ofi : _objectFileImages) {
if ( ofi.imageNum == imageNum ) {
handler(ofi);
foundImage = true;
return;
}
}
});
return foundImage;
}
void AllImages::removeNSObjectFileImage(NSObjectFileImage imageHandle)
{
uint64_t imageNum = (uint64_t)imageHandle;
withWriteLock(^{
for (OFIInfo& ofi : _objectFileImages) {
if ( ofi.imageNum == imageNum ) {
_objectFileImages.erase(ofi);
return;
}
}
});
}
#endif
class VIS_HIDDEN Reaper
{
public:
struct ImageAndUse
{
const LoadedImage* li;
bool inUse;
};
Reaper(Array<ImageAndUse>& unloadables, AllImages*);
void garbageCollect();
void finalizeDeadImages();
static void runTerminators(const LoadedImage& li);
private:
void markDirectlyDlopenedImagesAsUsed();
void markDependentOfInUseImages();
void markDependentsOf(const LoadedImage*);
uint32_t inUseCount();
void dump(const char* msg);
Array<ImageAndUse>& _unloadables;
AllImages* _allImages;
uint32_t _deadCount;
};
Reaper::Reaper(Array<ImageAndUse>& unloadables, AllImages* all)
: _unloadables(unloadables), _allImages(all), _deadCount(0)
{
}
void Reaper::markDirectlyDlopenedImagesAsUsed()
{
for (AllImages::DlopenCount& entry : _allImages->_dlopenRefCounts) {
if ( entry.refCount != 0 ) {
for (ImageAndUse& iu : _unloadables) {
if ( iu.li->loadedAddress() == entry.loadAddress ) {
iu.inUse = true;
break;
}
}
}
}
}
uint32_t Reaper::inUseCount()
{
uint32_t count = 0;
for (ImageAndUse& iu : _unloadables) {
if ( iu.inUse )
++count;
}
return count;
}
void Reaper::markDependentsOf(const LoadedImage* li)
{
li->image()->forEachDependentImage(^(uint32_t depIndex, closure::Image::LinkKind kind, closure::ImageNum depImageNum, bool& stop) {
for (ImageAndUse& iu : _unloadables) {
if ( !iu.inUse && iu.li->image()->representsImageNum(depImageNum) ) {
iu.inUse = true;
break;
}
}
});
}
void Reaper::markDependentOfInUseImages()
{
for (ImageAndUse& iu : _unloadables) {
if ( iu.inUse )
markDependentsOf(iu.li);
}
}
void Reaper::dump(const char* msg)
{
//log("%s:\n", msg);
//for (ImageAndUse& iu : _unloadables) {
// log(" in-used=%d %s\n", iu.inUse, iu.li->image()->path());
//}
}
void Reaper::garbageCollect()
{
//dump("all unloadable images");
// mark all dylibs directly dlopen'ed as in use
markDirectlyDlopenedImagesAsUsed();
//dump("directly dlopen()'ed marked");
// iteratively mark dependents of in-use dylibs as in-use until in-use count stops changing
uint32_t lastCount = inUseCount();
bool countChanged = false;
do {
markDependentOfInUseImages();
//dump("dependents marked");
uint32_t newCount = inUseCount();
countChanged = (newCount != lastCount);
lastCount = newCount;
} while (countChanged);
_deadCount = (uint32_t)_unloadables.count() - inUseCount();
}
void Reaper::finalizeDeadImages()
{
if ( _deadCount == 0 )
return;
STACK_ALLOC_OVERFLOW_SAFE_ARRAY(__cxa_range_t, ranges, _deadCount);
for (ImageAndUse& iu : _unloadables) {
if ( iu.inUse )
continue;
runTerminators(*iu.li);
iu.li->image()->forEachDiskSegment(^(uint32_t segIndex, uint32_t fileOffset, uint32_t fileSize, int64_t vmOffset, uint64_t vmSize, uint8_t permissions, bool laterReadOnly, bool &stop) {
if ( permissions & VM_PROT_EXECUTE ) {
__cxa_range_t range;
range.addr = (char*)(iu.li->loadedAddress()) + vmOffset;
range.length = (size_t)vmSize;
ranges.push_back(range);
}
});
}
__cxa_finalize_ranges(ranges.begin(), (uint32_t)ranges.count());
}
void Reaper::runTerminators(const LoadedImage& li)
{
// <rdar://problem/71820555> Don't run static terminator for arm64e
const MachOAnalyzer* ma = (MachOAnalyzer*)li.loadedAddress();
if ( ma->isArch("arm64e") )
return;
if ( li.image()->hasTerminators() ) {
typedef void (*Terminator)();
li.image()->forEachTerminator(li.loadedAddress(), ^(const void* terminator) {
Terminator termFunc = (Terminator)terminator;
termFunc();
log_initializers("dyld: called static terminator %p in %s\n", termFunc, li.image()->path());
});
}
}
void AllImages::runAllStaticTerminators()
{
// We want to run terminators in reverse chronological order of initializing
// Note: initialLoadCount may be larger than what was actually loaded
const uint32_t currentCount = (uint32_t)_loadedImages.count();
const uint32_t initialLoadCount = std::min(_mainClosure->initialLoadCount(), currentCount);
// first run static terminators of anything dlopen()ed
for (uint32_t i=currentCount-1; i >= initialLoadCount; --i) {
Reaper::runTerminators(_loadedImages[i]);
}
// next run terminators of statically load images, in loader-order they were init in reverse of this
for (uint32_t i=0; i < initialLoadCount; ++i) {
Reaper::runTerminators(_loadedImages[i]);
}
}
// This function is called at the end of dlclose() when the reference count goes to zero.
// The dylib being unloaded may have brought in other dependent dylibs when it was loaded.
// Those dependent dylibs need to be unloaded, but only if they are not referenced by
// something else. We use a standard mark and sweep garbage collection.
//
// The tricky part is that when a dylib is unloaded it may have a termination function that
// can run and itself call dlclose() on yet another dylib. The problem is that this
// sort of gabage collection is not re-entrant. Instead a terminator's call to dlclose()
// which calls garbageCollectImages() will just set a flag to re-do the garbage collection
// when the current pass is done.
//
// Also note that this is done within the _loadedImages writer lock, so any dlopen/dlclose
// on other threads are blocked while this garbage collections runs
//
void AllImages::garbageCollectImages()
{
// if some other thread is currently GC'ing images, let other thread do the work
int32_t newCount = OSAtomicIncrement32(&_gcCount);
if ( newCount != 1 )
return;
do {
STACK_ALLOC_ARRAY(Reaper::ImageAndUse, unloadables, _loadedImages.count());
withReadLock(^{
for (const LoadedImage& li : _loadedImages) {
if ( !li.image()->neverUnload() /*&& !li.neverUnload()*/ ) {
unloadables.push_back({&li, false});
//fprintf(stderr, "unloadable[%lu] %p %s\n", unloadables.count(), li.loadedAddress(), li.image()->path());
}
}
});
// make reaper object to do garbage collection and notifications
Reaper reaper(unloadables, this);
reaper.garbageCollect();
// FIXME: we should sort dead images so higher level ones are terminated first
// call cxa_finalize_ranges and static terminators of dead images
reaper.finalizeDeadImages();
// FIXME: DOF unregister
//fprintf(stderr, "_loadedImages before GC removals:\n");
//for (const LoadedImage& li : _loadedImages) {
// fprintf(stderr, " loadAddr=%p, path=%s\n", li.loadedAddress(), li.image()->path());
//}
// make copy of LoadedImages we want to remove
// because unloadables[] points into LoadedImage we are shrinking
STACK_ALLOC_ARRAY(LoadedImage, unloadImages, _loadedImages.count());
for (const Reaper::ImageAndUse& iu : unloadables) {
if ( !iu.inUse )
unloadImages.push_back(*iu.li);
}
// remove entries from _loadedImages
if ( !unloadImages.empty() ) {
removeImages(unloadImages);
//fprintf(stderr, "_loadedImages after GC removals:\n");
//for (const LoadedImage& li : _loadedImages) {
// fprintf(stderr, " loadAddr=%p, path=%s\n", li.loadedAddress(), li.image()->path());
//}
}
// if some other thread called GC during our work, redo GC on its behalf
newCount = OSAtomicDecrement32(&_gcCount);
}
while (newCount > 0);
}
void AllImages::addLoadNotifier(NotifyFunc func)
{
// callback about already loaded images
withReadLock(^{
for (const LoadedImage& li : _loadedImages) {
dyld3::ScopedTimer timer(DBG_DYLD_TIMING_FUNC_FOR_ADD_IMAGE, (uint64_t)li.loadedAddress(), (uint64_t)func, 0);
log_notifications("dyld: add notifier %p called with mh=%p\n", func, li.loadedAddress());
if ( li.image()->inDyldCache() )
func(li.loadedAddress(), (uintptr_t)_dyldCacheSlide);
else
func(li.loadedAddress(), li.loadedAddress()->getSlide());
}
});
// add to list of functions to call about future loads
withNotifiersLock(^{
_loadNotifiers.push_back(func);
});
}
void AllImages::addUnloadNotifier(NotifyFunc func)
{
// add to list of functions to call about future unloads
withNotifiersLock(^{
_unloadNotifiers.push_back(func);
});
}
void AllImages::addLoadNotifier(LoadNotifyFunc func)
{
// callback about already loaded images
withReadLock(^{
for (const LoadedImage& li : _loadedImages) {
dyld3::ScopedTimer timer(DBG_DYLD_TIMING_FUNC_FOR_ADD_IMAGE, (uint64_t)li.loadedAddress(), (uint64_t)func, 0);
log_notifications("dyld: add notifier %p called with mh=%p\n", func, li.loadedAddress());
func(li.loadedAddress(), li.image()->path(), !li.image()->neverUnload());
}
});
// add to list of functions to call about future loads
withNotifiersLock(^{
_loadNotifiers2.push_back(func);
});
}
void AllImages::addBulkLoadNotifier(BulkLoadNotifier func)
{
// callback about already loaded images
unsigned count = (unsigned)_loadedImages.count();
const mach_header* mhs[count];
const char* paths[count];
for (unsigned i=0; i < count; ++i) {
mhs[i] = _loadedImages[i].loadedAddress();
paths[i] = _loadedImages[i].image()->path();
}
dyld3::ScopedTimer timer(DBG_DYLD_TIMING_FUNC_FOR_ADD_IMAGE, (uint64_t)mhs[0], (uint64_t)func, 0);
log_notifications("dyld: add notifier %p called with %d images\n", func, count);
func(count, mhs, paths);
// add to list of functions to call about future loads
withNotifiersLock(^{
_loadBulkNotifiers.push_back(func);
});
}
// Returns true if logs should be sent to stderr as well as syslog.
// Copied from objc which copied it from CFUtilities.c
static bool also_do_stderr(void)
{
struct stat st;
int ret = fstat(STDERR_FILENO, &st);
if (ret < 0) return false;
mode_t m = st.st_mode & S_IFMT;
if (m == S_IFREG || m == S_IFSOCK || m == S_IFIFO || m == S_IFCHR) {
return true;
}
return false;
}
// Print "message" to the console. Copied from objc.
static void _objc_syslog(const char *message)
{
_simple_asl_log(ASL_LEVEL_ERR, NULL, message);
if (also_do_stderr()) {
write(STDERR_FILENO, message, strlen(message));
}
}
void AllImages::setObjCNotifiers(_dyld_objc_notify_mapped map, _dyld_objc_notify_init init, _dyld_objc_notify_unmapped unmap)
{
_objcNotifyMapped = map;
_objcNotifyInit = init;
_objcNotifyUnmapped = unmap;
// We couldn't initialize the objc optimized closure data in init() as that needs malloc but runs before malloc initializes.
// So lets grab the data now and set it up
// Pull out the objc selector hash table if we have one
Array<closure::Image::ObjCSelectorImage> selectorImageNums;
const closure::ObjCSelectorOpt* selectorHashTable = nullptr;
if (_mainClosure->selectorHashTable(selectorImageNums, selectorHashTable)) {
_objcSelectorHashTable = selectorHashTable;
for (closure::Image::ObjCSelectorImage selectorImage : selectorImageNums) {
LoadedImage loadedImage;
bool found = findImageNum(selectorImage.imageNum, loadedImage);
assert(found);
_objcSelectorHashTableImages.push_back( (uintptr_t)loadedImage.loadedAddress() + selectorImage.offset );
}
}
// Pull out the objc class hash table if we have one
Array<closure::Image::ObjCClassImage> classImageNums;
const closure::ObjCClassOpt* classHashTable = nullptr;
const closure::ObjCClassOpt* protocolHashTable = nullptr;
if (_mainClosure->classAndProtocolHashTables(classImageNums, classHashTable, protocolHashTable)) {
_objcClassHashTable = (const closure::ObjCClassOpt*)classHashTable;
_objcProtocolHashTable = (const closure::ObjCClassOpt*)protocolHashTable;
for (closure::Image::ObjCClassImage classImage : classImageNums) {
LoadedImage loadedImage;
bool found = findImageNum(classImage.imageNum, loadedImage);
assert(found);
uintptr_t loadAddress = (uintptr_t)loadedImage.loadedAddress();
uintptr_t nameBaseAddress = loadAddress + classImage.offsetOfClassNames;
uintptr_t dataBaseAddress = loadAddress + classImage.offsetOfClasses;
_objcClassHashTableImages.push_back({ nameBaseAddress, dataBaseAddress });
}
}
_mainClosure->duplicateClassesHashTable(_objcClassDuplicatesHashTable);
if ( _objcClassDuplicatesHashTable != nullptr ) {
// If we have duplicates, the those need the objc opt pointer to find dupes
_dyldCacheObjCOpt = _dyldCacheAddress->objcOpt();
}
// ObjC would have issued warnings on duplicate classes. We've recorded those too
_mainClosure->forEachWarning(closure::Closure::Warning::duplicateObjCClass, ^(const char *warning, bool &stop) {
Diagnostics diag;
diag.error("objc[%d]: %s\n", getpid(), warning);
_objc_syslog(diag.errorMessage());
});
// callback about already loaded images
uint32_t maxCount = count();
STACK_ALLOC_ARRAY(const mach_header*, mhs, maxCount);
STACK_ALLOC_ARRAY(const char*, paths, maxCount);
// don't need _mutex here because this is called when process is still single threaded
for (const LoadedImage& li : _loadedImages) {
if ( li.image()->hasObjC() ) {
paths.push_back(imagePath(li.image()));
mhs.push_back(li.loadedAddress());
}
}
if ( !mhs.empty() ) {
(*map)((uint32_t)mhs.count(), &paths[0], &mhs[0]);
if ( log_notifications("dyld: objc-mapped-notifier called with %ld images:\n", mhs.count()) ) {
for (uintptr_t i=0; i < mhs.count(); ++i) {
log_notifications("dyld: objc-mapped: %p %s\n", mhs[i], paths[i]);
}
}
}
}
void AllImages::applyInterposingToDyldCache(const closure::Closure* closure, mach_port_t mach_task_self)
{
dyld3::ScopedTimer timer(DBG_DYLD_TIMING_APPLY_INTERPOSING, 0, 0, 0);
const uintptr_t cacheStart = (uintptr_t)_dyldCacheAddress;
__block closure::ImageNum lastCachedDylibImageNum = 0;
__block const closure::Image* lastCachedDylibImage = nullptr;
__block bool suspendedAccounting = false;
if ( closure->findAttributePayload(closure::TypedBytes::Type::cacheOverrides) == nullptr )
return;
// make the cache writable for this block
DyldSharedCache::DataConstScopedWriter patcher(_dyldCacheAddress, mach_task_self, (DyldSharedCache::DataConstLogFunc)&log_segments);
closure->forEachPatchEntry(^(const closure::Closure::PatchEntry& entry) {
if ( entry.overriddenDylibInCache != lastCachedDylibImageNum ) {
lastCachedDylibImage = closure::ImageArray::findImage(imagesArrays(), entry.overriddenDylibInCache);
assert(lastCachedDylibImage != nullptr);
lastCachedDylibImageNum = entry.overriddenDylibInCache;
}
if ( !suspendedAccounting ) {
Loader::vmAccountingSetSuspended(true, log_fixups);
suspendedAccounting = true;
}
uintptr_t newValue = 0;
LoadedImage foundImage;
switch ( entry.replacement.image.kind ) {
case closure::Image::ResolvedSymbolTarget::kindImage:
if ( !findImageNum(entry.replacement.image.imageNum, foundImage) ) {
abort_report_np("cannot find replacement imageNum=0x%04X when patching cache to override imageNum=0x%04X\n", entry.replacement.image.imageNum, entry.overriddenDylibInCache);
}
newValue = (uintptr_t)(foundImage.loadedAddress()) + (uintptr_t)entry.replacement.image.offset;
break;
case closure::Image::ResolvedSymbolTarget::kindSharedCache:
newValue = (uintptr_t)_dyldCacheAddress + (uintptr_t)entry.replacement.sharedCache.offset;
break;
case closure::Image::ResolvedSymbolTarget::kindAbsolute:
// this means the symbol was missing in the cache override dylib, so set any uses to NULL
newValue = (uintptr_t)entry.replacement.absolute.value;
break;
default:
assert(0 && "bad replacement kind");
}
uint32_t lastCachedDylibImageIndex = lastCachedDylibImageNum - (uint32_t)_dyldCacheAddress->cachedDylibsImageArray()->startImageNum();
_dyldCacheAddress->forEachPatchableUseOfExport(lastCachedDylibImageIndex,
entry.exportCacheOffset, ^(dyld_cache_patchable_location patchLocation) {
uintptr_t* loc = (uintptr_t*)(cacheStart+patchLocation.cacheOffset);
#if __has_feature(ptrauth_calls)
if ( patchLocation.authenticated ) {
MachOLoaded::ChainedFixupPointerOnDisk fixupInfo;
fixupInfo.arm64e.authRebase.auth = true;
fixupInfo.arm64e.authRebase.addrDiv = patchLocation.usesAddressDiversity;
fixupInfo.arm64e.authRebase.diversity = patchLocation.discriminator;
fixupInfo.arm64e.authRebase.key = patchLocation.key;
*loc = fixupInfo.arm64e.signPointer(loc, newValue + DyldSharedCache::getAddend(patchLocation));
log_fixups("dyld: cache fixup: *%p = %p (JOP: diversity 0x%04X, addr-div=%d, key=%s)\n",
loc, (void*)*loc, patchLocation.discriminator, patchLocation.usesAddressDiversity, DyldSharedCache::keyName(patchLocation));
return;
}
#endif
log_fixups("dyld: cache fixup: *%p = 0x%0lX (dyld cache patch)\n", loc, newValue + (uintptr_t)DyldSharedCache::getAddend(patchLocation));
*loc = newValue + (uintptr_t)DyldSharedCache::getAddend(patchLocation);
});
});
if ( suspendedAccounting )
Loader::vmAccountingSetSuspended(false, log_fixups);
}
void AllImages::runStartupInitialzers()
{
__block bool mainExecutableInitializerNeedsToRun = true;
__block uint32_t imageIndex = 0;
while ( mainExecutableInitializerNeedsToRun ) {
__block const closure::Image* image = nullptr;
withReadLock(^{
image = _loadedImages[imageIndex].image();
if ( _loadedImages[imageIndex].loadedAddress()->isMainExecutable() )
mainExecutableInitializerNeedsToRun = false;
});
runInitialzersBottomUp(image);
++imageIndex;
}
}
// Find image in _loadedImages which has ImageNum == num.
// Try indexHint first, if hint is wrong, updated it, so next use is faster.
LoadedImage AllImages::findImageNum(closure::ImageNum num, uint32_t& indexHint)
{
__block LoadedImage copy;
withReadLock(^{
if ( (indexHint >= _loadedImages.count()) || !_loadedImages[indexHint].image()->representsImageNum(num) ) {
indexHint = 0;
for (indexHint=0; indexHint < _loadedImages.count(); ++indexHint) {
if ( _loadedImages[indexHint].image()->representsImageNum(num) )
break;
}
assert(indexHint < _loadedImages.count());
}
copy = _loadedImages[indexHint];
});
return copy;
}
// Change the state of the LoadedImage in _loadedImages which has ImageNum == num.
// Only change state if current state is expectedCurrentState (atomic swap).
bool AllImages::swapImageState(closure::ImageNum num, uint32_t& indexHint, LoadedImage::State expectedCurrentState, LoadedImage::State newState)
{
__block bool result = false;
withWriteLock(^{
if ( (indexHint >= _loadedImages.count()) || !_loadedImages[indexHint].image()->representsImageNum(num) ) {
indexHint = 0;
for (indexHint=0; indexHint < _loadedImages.count(); ++indexHint) {
if ( _loadedImages[indexHint].image()->representsImageNum(num) )
break;
}
assert(indexHint < _loadedImages.count());
}
if ( _loadedImages[indexHint].state() == expectedCurrentState ) {
_loadedImages[indexHint].setState(newState);
result = true;
}
});
return result;
}
// dyld3 pre-builds the order initializers need to be run (bottom up) in a list in the closure.
// This method uses that list to run all initializers.
// Because an initializer may call dlopen() and/or create threads, the _loadedImages array
// may move under us. So, never keep a pointer into it. Always reference images by ImageNum
// and use hint to make that faster in the case where the _loadedImages does not move.
void AllImages::runInitialzersBottomUp(const closure::Image* topImage)
{
// walk closure specified initializer list, already ordered bottom up
topImage->forEachImageToInitBefore(^(closure::ImageNum imageToInit, bool& stop) {
// get copy of LoadedImage about imageToInit, but don't keep reference into _loadedImages, because it may move if initialzers call dlopen()
uint32_t indexHint = 0;
LoadedImage loadedImageCopy = findImageNum(imageToInit, indexHint);
// skip if the image is already inited, or in process of being inited (dependency cycle)
if ( (loadedImageCopy.state() == LoadedImage::State::fixedUp) && swapImageState(imageToInit, indexHint, LoadedImage::State::fixedUp, LoadedImage::State::beingInited) ) {
// tell objc to run any +load methods in image
if ( (_objcNotifyInit != nullptr) && loadedImageCopy.image()->mayHavePlusLoads() ) {
dyld3::ScopedTimer timer(DBG_DYLD_TIMING_OBJC_INIT, (uint64_t)loadedImageCopy.loadedAddress(), 0, 0);
const char* path = imagePath(loadedImageCopy.image());
log_notifications("dyld: objc-init-notifier called with mh=%p, path=%s\n", loadedImageCopy.loadedAddress(), path);
(*_objcNotifyInit)(path, loadedImageCopy.loadedAddress());
}
// run all initializers in image
runAllInitializersInImage(loadedImageCopy.image(), loadedImageCopy.loadedAddress());
// advance state to inited
swapImageState(imageToInit, indexHint, LoadedImage::State::beingInited, LoadedImage::State::inited);
}
});
}
void AllImages::runLibSystemInitializer(LoadedImage& libSystem)
{
// First set the libSystem state to beingInited. This protects against accidentally trying
// to run its initializers again if a dlopen happens insie libSystem_initializer().
libSystem.setState(LoadedImage::State::beingInited);
// run all initializers in libSystem.dylib
// Note: during libSystem's initialization, libdyld_initializer() is called which copies _initialImages to _loadedImages
runAllInitializersInImage(libSystem.image(), libSystem.loadedAddress());
// update global flags that libsystem has been initialized (so debug tools know it is safe to inject threads)
_oldAllImageInfos->libSystemInitialized = true;
// mark libSystem.dylib as being inited, so later recursive-init would re-run it
for (LoadedImage& li : _loadedImages) {
if ( li.loadedAddress() == libSystem.loadedAddress() ) {
li.setState(LoadedImage::State::inited);
break;
}
}
// now that libSystem is up, register a callback that should be called at exit
__cxa_atexit(&AllImages::runAllStaticTerminatorsHelper, nullptr, nullptr);
}
void AllImages::runAllStaticTerminatorsHelper(void*)
{
gAllImages.runAllStaticTerminators();
}
void AllImages::runAllInitializersInImage(const closure::Image* image, const MachOLoaded* ml)
{
image->forEachInitializer(ml, ^(const void* func) {
Initializer initFunc = (Initializer)func;
#if __has_feature(ptrauth_calls)
initFunc = (Initializer)__builtin_ptrauth_sign_unauthenticated((void*)initFunc, 0, 0);
#endif
{
ScopedTimer(DBG_DYLD_TIMING_STATIC_INITIALIZER, (uint64_t)ml, (uint64_t)func, 0);
initFunc(NXArgc, NXArgv, environ, appleParams, _programVars);
}
log_initializers("dyld: called initialzer %p in %s\n", initFunc, image->path());
});
}
// Note this is noinline to avoid having too much stack used if loadImage has to call due to an invalid closure
__attribute__((noinline))
const MachOLoaded* AllImages::dlopen(Diagnostics& diag, const char* path, bool rtldNoLoad, bool rtldLocal,
bool rtldNoDelete, bool rtldNow, bool fromOFI, const void* callerAddress,
bool canUsePrebuiltSharedCacheClosure)
{
bool sharedCacheFormatCompatible = (_dyldCacheAddress != nullptr) && (_dyldCacheAddress->header.formatVersion == dyld3::closure::kFormatVersion);
canUsePrebuiltSharedCacheClosure &= sharedCacheFormatCompatible;
// quick check if path is in shared cache and already loaded
if ( _dyldCacheAddress != nullptr ) {
uint32_t dyldCacheImageIndex;
if ( _dyldCacheAddress->hasImagePath(path, dyldCacheImageIndex) ) {
uint64_t mTime;
uint64_t inode;
const MachOLoaded* mh = (MachOLoaded*)_dyldCacheAddress->getIndexedImageEntry(dyldCacheImageIndex, mTime, inode);
// Note: we do not need readLock because this is within global dlopen lock
for (const LoadedImage& li : _loadedImages) {
if ( li.loadedAddress() == mh ) {
return mh;
}
}
// If this is a customer cache, and we have no overrides, then we know for sure the cache closure is valid
// This assumes that a libdispatch root would have been loaded on launch, and that root path is not
// supported with customer caches, which is the case today.
if ( !rtldNoLoad && !hasInsertedOrInterposingLibraries() &&
(_dyldCacheAddress->header.cacheType == kDyldSharedCacheTypeProduction) &&
sharedCacheFormatCompatible ) {
const dyld3::closure::ImageArray* images = _dyldCacheAddress->cachedDylibsImageArray();
const dyld3::closure::Image* image = images->imageForNum(dyldCacheImageIndex+1);
return loadImage(diag, path, image->imageNum(), nullptr, rtldLocal, rtldNoDelete, rtldNow, fromOFI, callerAddress);
}
}
}
__block closure::ImageNum callerImageNum = 0;
for (const LoadedImage& li : _loadedImages) {
uint8_t permissions;
if ( (callerImageNum == 0) && li.image()->containsAddress(callerAddress, li.loadedAddress(), &permissions) ) {
callerImageNum = li.image()->imageNum();
}
//fprintf(stderr, "mh=%p, image=%p, imageNum=0x%04X, path=%s\n", li.loadedAddress(), li.image(), li.image()->imageNum(), li.image()->path());
}
// make closure
closure::ImageNum topImageNum = 0;
const closure::DlopenClosure* newClosure = nullptr;
// First try with closures from the shared cache permitted.
// Then try again with forcing a new closure
for (bool canUseSharedCacheClosure : { true, false }) {
// We can only use a shared cache closure if the shared cache format is the same as libdyld.
canUseSharedCacheClosure &= canUsePrebuiltSharedCacheClosure;
closure::FileSystemPhysical fileSystem(nullptr, nullptr, _allowEnvPaths);
RootsChecker rootsChecker;
closure::ClosureBuilder::AtPath atPathHanding = (_allowAtPaths ? closure::ClosureBuilder::AtPath::all : closure::ClosureBuilder::AtPath::onlyInRPaths);
closure::ClosureBuilder cb(_nextImageNum, fileSystem, rootsChecker, _dyldCacheAddress, true, *_archs, closure::gPathOverrides, atPathHanding, true, nullptr, (dyld3::Platform)platform());
newClosure = cb.makeDlopenClosure(path, _mainClosure, _loadedImages.array(), callerImageNum, rtldNoLoad, rtldNow, canUseSharedCacheClosure, &topImageNum);
if ( newClosure == closure::ClosureBuilder::sRetryDlopenClosure ) {
log_apis(" dlopen: closure builder needs to retry: %s\n", path);
assert(canUseSharedCacheClosure);
continue;
}
if ( (newClosure == nullptr) && (topImageNum == 0) ) {
if ( cb.diagnostics().hasError())
diag.error("%s", cb.diagnostics().errorMessage());
else if ( !rtldNoLoad )
diag.error("dlopen(): file not found: %s", path);
return nullptr;
}
// save off next available ImageNum for use by next call to dlopen()
_nextImageNum = cb.nextFreeImageNum();
break;
}
if ( newClosure != nullptr ) {
// if new closure contains an ImageArray, add it to list
if ( const closure::ImageArray* newArray = newClosure->images() ) {
appendToImagesArray(newArray);
}
log_apis(" dlopen: made %s closure: %p\n", newClosure->topImage()->variantString(), newClosure);
}
// if already loaded, just bump refCount and return
if ( (newClosure == nullptr) && (topImageNum != 0) ) {
for (LoadedImage& li : _loadedImages) {
if ( li.image()->imageNum() == topImageNum ) {
// is already loaded
const MachOLoaded* topLoadAddress = li.loadedAddress();
if ( !li.image()->inDyldCache() )
incRefCount(topLoadAddress);
log_apis(" dlopen: already loaded as '%s'\n", li.image()->path());
// if previously opened with RTLD_LOCAL, but now opened with RTLD_GLOBAL, unhide it
if ( !rtldLocal && li.hideFromFlatSearch() )
li.setHideFromFlatSearch(false);
// if called with RTLD_NODELETE, mark it as never-unload
if ( rtldNoDelete )
li.markLeaveMapped();
// If we haven't run the initializers then we must be in a static init in a dlopen
if ( li.state() != LoadedImage::State::inited ) {
// RTLD_NOLOAD means dlopen should fail unless path is already loaded.
// don't run initializers when RTLD_NOLOAD is set. This only matters if dlopen() is
// called from within an initializer because it can cause initializers to run
// out of order. Most uses of RTLD_NOLOAD are "probes". If they want initialzers
// to run, then don't use RTLD_NOLOAD.
if (!rtldNoLoad) {
runInitialzersBottomUp(li.image());
}
}
return topLoadAddress;
}
}
}
return loadImage(diag, path, topImageNum, newClosure, rtldLocal, rtldNoDelete, rtldNow, fromOFI, callerAddress);
}
// Note this is noinline to avoid having too much stack used in the parent
// dlopen method
__attribute__((noinline))
const MachOLoaded* AllImages::loadImage(Diagnostics& diag, const char* path,
closure::ImageNum topImageNum, const closure::DlopenClosure* newClosure,
bool rtldLocal, bool rtldNoDelete, bool rtldNow, bool fromOFI,
const void* callerAddress) {
// Note this array is used as the storage to Loader so needs to be at least
// large enough to handle whatever total number of images we need to do the dlopen
STACK_ALLOC_OVERFLOW_SAFE_ARRAY(LoadedImage, newImages, 1024);
// Note we don't need pre-optimized Objective-C for dlopen closures, but use
// variables here to make it easier to see whats going on.
const dyld3::closure::ObjCSelectorOpt* selectorOpt = nullptr;
dyld3::Array<dyld3::closure::Image::ObjCSelectorImage> selectorImages;
// run loader to load all new images
RootsChecker rootsChecker;
Loader loader(_loadedImages.array(), newImages, _dyldCacheAddress, imagesArrays(),
selectorOpt, selectorImages, rootsChecker, (dyld3::Platform)platform(),
&dyld3::log_loads, &dyld3::log_segments, &dyld3::log_fixups, &dyld3::log_dofs, !rtldNow);
// find Image* for top image, look in new closure first
const closure::Image* topImage = nullptr;
if ( newClosure != nullptr )
topImage = newClosure->images()->imageForNum(topImageNum);
if ( topImage == nullptr )
topImage = closure::ImageArray::findImage(imagesArrays(), topImageNum);
if ( newClosure == nullptr ) {
if ( topImageNum < dyld3::closure::kLastDyldCacheImageNum )
log_apis(" dlopen: using pre-built %s dlopen closure from dyld shared cache %p\n", topImage->variantString(), topImage);
else
log_apis(" dlopen: using pre-built %s dlopen closure %p\n", topImage->variantString(), topImage);
}
LoadedImage topLoadedImage = LoadedImage::make(topImage);
if ( rtldLocal && !topImage->inDyldCache() )
topLoadedImage.setHideFromFlatSearch(true);
if ( rtldNoDelete && !topImage->inDyldCache() )
topLoadedImage.markLeaveMapped();
loader.addImage(topLoadedImage);
// recursively load all dependents and fill in allImages array
bool someCacheImageOverridden = false;
loader.completeAllDependents(diag, someCacheImageOverridden);
if ( diag.hasError() )
return nullptr;
bool closureOutOfDate;
bool recoverable;
loader.mapAndFixupAllImages(diag, _processDOFs, fromOFI, &closureOutOfDate, &recoverable);
if ( diag.hasError() ) {
// If we used a pre-built shared cache closure, and now found that it was out of date,
// try again and rebuild a new closure
// Note, newClosure is null in the case where we used a prebuilt closure
if ( closureOutOfDate && recoverable && (newClosure == nullptr) ) {
diag.clearError();
return dlopen(diag, path, false /* rtldNoLoad */, rtldLocal, rtldNoDelete, rtldNow, fromOFI, callerAddress, false);
}
return nullptr;
}
// Record if we had a root
_someImageOverridden |= someCacheImageOverridden;
const MachOLoaded* topLoadAddress = newImages.begin()->loadedAddress();
// bump dlopen refcount of image directly loaded
if ( !topImage->inDyldCache() )
incRefCount(topLoadAddress);
// tell gAllImages about new images
addImages(newImages);
// Run notifiers before applyInterposingToDyldCache() as then we have an
// accurate image list before any calls to findImage().
// TODO: Can we move this even earlier, eg, after map images but before fixups?
runImageNotifiers(newImages);
// if closure adds images that override dyld cache, patch cache
if ( newClosure != nullptr )
applyInterposingToDyldCache(newClosure, mach_task_self());
runImageCallbacks(newImages);
// run initializers
runInitialzersBottomUp(topImage);
return topLoadAddress;
}
void AllImages::appendToImagesArray(const closure::ImageArray* newArray)
{
_imagesArrays.push_back(newArray);
}
const Array<const closure::ImageArray*>& AllImages::imagesArrays()
{
return _imagesArrays.array();
}
bool AllImages::isRestricted() const
{
return !_allowEnvPaths;
}
bool AllImages::hasInsertedOrInterposingLibraries() const
{
return _mainClosure->hasInsertedLibraries() || _mainClosure->hasInterposings();
}
void AllImages::takeLockBeforeFork() {
#ifdef OS_UNFAIR_RECURSIVE_LOCK_INIT
os_unfair_recursive_lock_lock(&_globalLock);
#endif
}
void AllImages::releaseLockInForkParent() {
#ifdef OS_UNFAIR_RECURSIVE_LOCK_INIT
os_unfair_recursive_lock_unlock(&_globalLock);
#endif
}
void AllImages::resetLockInForkChild() {
#if TARGET_OS_SIMULATOR
// There's no dyld3 on the simulator this year
assert(false);
#else
#ifdef OS_UNFAIR_RECURSIVE_LOCK_INIT
os_unfair_recursive_lock_unlock_forked_child(&_globalLock);
#endif
#endif // TARGET_OS_SIMULATOR
}
const char* AllImages::getObjCSelector(const char *selName) const {
if ( _objcSelectorHashTable == nullptr )
return nullptr;
return _objcSelectorHashTable->getString(selName, _objcSelectorHashTableImages.array());
}
void AllImages::forEachObjCClass(const char* className,
void (^callback)(void* classPtr, bool isLoaded, bool* stop)) const {
if ( _objcClassHashTable == nullptr )
return;
// There may be a duplicate in the shared cache. If that is the case, return it first
if ( _objcClassDuplicatesHashTable != nullptr ) {
void* classImpl = nullptr;
if ( _objcClassDuplicatesHashTable->getClassLocation(className, _dyldCacheObjCOpt, classImpl) ) {
bool stop = false;
callback(classImpl, true, &stop);
if (stop)
return;
}
}
_objcClassHashTable->forEachClass(className, _objcClassHashTableImages.array(), callback);
}
void AllImages::forEachObjCProtocol(const char* protocolName,
void (^callback)(void* protocolPtr, bool isLoaded, bool* stop)) const {
if ( _objcProtocolHashTable == nullptr )
return;
_objcProtocolHashTable->forEachClass(protocolName, _objcClassHashTableImages.array(), callback);
}
} // namespace dyld3