darling-dyld/dyld3/MachOFile.cpp
2023-04-29 11:24:58 -07:00

1784 lines
63 KiB
C++

/*
* Copyright (c) 2017 Apple Inc. All rights reserved.
*
* @APPLE_LICENSE_HEADER_START@
*
* This file contains Original Code and/or Modifications of Original Code
* as defined in and that are subject to the Apple Public Source License
* Version 2.0 (the 'License'). You may not use this file except in
* compliance with the License. Please obtain a copy of the License at
* http://www.opensource.apple.com/apsl/ and read it before using this
* file.
*
* The Original Code and all software distributed under the License are
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
* Please see the License for the specific language governing rights and
* limitations under the License.
*
* @APPLE_LICENSE_HEADER_END@
*/
#include <stdlib.h>
#include <assert.h>
#include <string.h>
#include <stdio.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/fcntl.h>
#include <unistd.h>
#include <TargetConditionals.h>
#include <mach/host_info.h>
#include <mach/mach.h>
#include <mach/mach_host.h>
#include "Array.h"
#include "MachOFile.h"
#include "SupportedArchs.h"
#if BUILDING_DYLD || BUILDING_LIBDYLD
// define away restrict until rdar://60166935 is fixed
#define restrict
#include <subsystem.h>
#endif
namespace dyld3 {
//////////////////////////// posix wrappers ////////////////////////////////////////
// <rdar://problem/10111032> wrap calls to stat() with check for EAGAIN
int stat(const char* path, struct stat* buf)
{
int result;
do {
#if BUILDING_DYLD || BUILDING_LIBDYLD
result = ::stat_with_subsystem(path, buf);
#else
result = ::stat(path, buf);
#endif
} while ((result == -1) && ((errno == EAGAIN) || (errno == EINTR)));
return result;
}
// <rdar://problem/13805025> dyld should retry open() if it gets an EGAIN
int open(const char* path, int flag, int other)
{
int result;
do {
#if BUILDING_DYLD || BUILDING_LIBDYLD
if (flag & O_CREAT)
result = ::open(path, flag, other);
else
result = ::open_with_subsystem(path, flag);
#else
result = ::open(path, flag, other);
#endif
} while ((result == -1) && ((errno == EAGAIN) || (errno == EINTR)));
return result;
}
//////////////////////////// FatFile ////////////////////////////////////////
const FatFile* FatFile::isFatFile(const void* fileStart)
{
const FatFile* fileStartAsFat = (FatFile*)fileStart;
if ( (fileStartAsFat->magic == OSSwapBigToHostInt32(FAT_MAGIC)) || (fileStartAsFat->magic == OSSwapBigToHostInt32(FAT_MAGIC_64)) )
return fileStartAsFat;
else
return nullptr;
}
bool FatFile::isValidSlice(Diagnostics& diag, uint64_t fileLen, uint32_t sliceIndex,
uint32_t sliceCpuType, uint32_t sliceCpuSubType, uint64_t sliceOffset, uint64_t sliceLen) const {
if ( greaterThanAddOrOverflow(sliceOffset, sliceLen, fileLen) ) {
diag.error("slice %d extends beyond end of file", sliceIndex);
return false;
}
const dyld3::MachOFile* mf = (const dyld3::MachOFile*)((uint8_t*)this+sliceOffset);
if (!mf->isMachO(diag, sliceLen))
return false;
if ( (mf->cputype != (cpu_type_t)sliceCpuType) || (mf->cpusubtype != (cpu_subtype_t)sliceCpuSubType) ) {
diag.error("cpu type/subtype mismatch");
return false;
}
uint32_t pageSizeMask = mf->uses16KPages() ? 0x3FFF : 0xFFF;
if ( (sliceOffset & pageSizeMask) != 0 ) {
// slice not page aligned
if ( strncmp((char*)this+sliceOffset, "!<arch>", 7) == 0 )
diag.error("file is static library");
else
diag.error("slice is not page aligned");
return false;
}
return true;
}
void FatFile::forEachSlice(Diagnostics& diag, uint64_t fileLen, void (^callback)(uint32_t sliceCpuType, uint32_t sliceCpuSubType, const void* sliceStart, uint64_t sliceSize, bool& stop)) const
{
if ( this->magic == OSSwapBigToHostInt32(FAT_MAGIC) ) {
const uint64_t maxArchs = ((4096 - sizeof(fat_header)) / sizeof(fat_arch));
const uint32_t numArchs = OSSwapBigToHostInt32(nfat_arch);
if ( numArchs > maxArchs ) {
diag.error("fat header too large: %u entries", numArchs);
return;
}
bool stop = false;
const fat_arch* const archs = (fat_arch*)(((char*)this)+sizeof(fat_header));
for (uint32_t i=0; i < numArchs; ++i) {
uint32_t cpuType = OSSwapBigToHostInt32(archs[i].cputype);
uint32_t cpuSubType = OSSwapBigToHostInt32(archs[i].cpusubtype);
uint32_t offset = OSSwapBigToHostInt32(archs[i].offset);
uint32_t len = OSSwapBigToHostInt32(archs[i].size);
if (isValidSlice(diag, fileLen, i, cpuType, cpuSubType, offset, len))
callback(cpuType, cpuSubType, (uint8_t*)this+offset, len, stop);
if ( stop )
break;
}
// Look for one more slice
if ( numArchs != maxArchs ) {
uint32_t cpuType = OSSwapBigToHostInt32(archs[numArchs].cputype);
uint32_t cpuSubType = OSSwapBigToHostInt32(archs[numArchs].cpusubtype);
uint32_t offset = OSSwapBigToHostInt32(archs[numArchs].offset);
uint32_t len = OSSwapBigToHostInt32(archs[numArchs].size);
if ((cpuType == CPU_TYPE_ARM64) && ((cpuSubType == CPU_SUBTYPE_ARM64_ALL || cpuSubType == CPU_SUBTYPE_ARM64_V8))) {
if (isValidSlice(diag, fileLen, numArchs, cpuType, cpuSubType, offset, len))
callback(cpuType, cpuSubType, (uint8_t*)this+offset, len, stop);
}
}
}
else if ( this->magic == OSSwapBigToHostInt32(FAT_MAGIC_64) ) {
if ( OSSwapBigToHostInt32(nfat_arch) > ((4096 - sizeof(fat_header)) / sizeof(fat_arch)) ) {
diag.error("fat header too large: %u entries", OSSwapBigToHostInt32(nfat_arch));
return;
}
bool stop = false;
const fat_arch_64* const archs = (fat_arch_64*)(((char*)this)+sizeof(fat_header));
for (uint32_t i=0; i < OSSwapBigToHostInt32(nfat_arch); ++i) {
uint32_t cpuType = OSSwapBigToHostInt32(archs[i].cputype);
uint32_t cpuSubType = OSSwapBigToHostInt32(archs[i].cpusubtype);
uint64_t offset = OSSwapBigToHostInt64(archs[i].offset);
uint64_t len = OSSwapBigToHostInt64(archs[i].size);
if (isValidSlice(diag, fileLen, i, cpuType, cpuSubType, offset, len))
callback(cpuType, cpuSubType, (uint8_t*)this+offset, len, stop);
if ( stop )
break;
}
}
else {
diag.error("not a fat file");
}
}
bool FatFile::isFatFileWithSlice(Diagnostics& diag, uint64_t fileLen, const GradedArchs& archs, bool isOSBinary,
uint64_t& sliceOffset, uint64_t& sliceLen, bool& missingSlice) const
{
missingSlice = false;
if ( (this->magic != OSSwapBigToHostInt32(FAT_MAGIC)) && (this->magic != OSSwapBigToHostInt32(FAT_MAGIC_64)) )
return false;
__block int bestGrade = 0;
forEachSlice(diag, fileLen, ^(uint32_t sliceCpuType, uint32_t sliceCpuSubType, const void* sliceStart, uint64_t sliceSize, bool& stop) {
if (int sliceGrade = archs.grade(sliceCpuType, sliceCpuSubType, isOSBinary)) {
if ( sliceGrade > bestGrade ) {
sliceOffset = (char*)sliceStart - (char*)this;
sliceLen = sliceSize;
bestGrade = sliceGrade;
}
}
});
if ( diag.hasError() )
return false;
if ( bestGrade == 0 )
missingSlice = true;
return (bestGrade != 0);
}
//////////////////////////// GradedArchs ////////////////////////////////////////
#define GRADE_i386 CPU_TYPE_I386, CPU_SUBTYPE_I386_ALL, false
#define GRADE_x86_64 CPU_TYPE_X86_64, CPU_SUBTYPE_X86_64_ALL, false
#define GRADE_x86_64h CPU_TYPE_X86_64, CPU_SUBTYPE_X86_64_H, false
#define GRADE_armv7 CPU_TYPE_ARM, CPU_SUBTYPE_ARM64_ALL, false
#define GRADE_armv7s CPU_TYPE_ARM, CPU_SUBTYPE_ARM_V7, false
#define GRADE_armv7k CPU_TYPE_ARM, CPU_SUBTYPE_ARM_V7K, false
#define GRADE_arm64 CPU_TYPE_ARM64, CPU_SUBTYPE_ARM64_ALL, false
#define GRADE_arm64e CPU_TYPE_ARM64, CPU_SUBTYPE_ARM64E, false
#define GRADE_arm64e_pb CPU_TYPE_ARM64, CPU_SUBTYPE_ARM64E, true
#define GRADE_arm64_32 CPU_TYPE_ARM64_32, CPU_SUBTYPE_ARM64_32_V8, false
const GradedArchs GradedArchs::i386 = { {{GRADE_i386, 1}} };
const GradedArchs GradedArchs::x86_64 = { {{GRADE_x86_64, 1}} };
const GradedArchs GradedArchs::x86_64h = { {{GRADE_x86_64h, 2}, {GRADE_x86_64, 1}} };
const GradedArchs GradedArchs::arm64 = { {{GRADE_arm64, 1}} };
#if SUPPORT_ARCH_arm64e
const GradedArchs GradedArchs::arm64e_keysoff = { {{GRADE_arm64e, 2}, {GRADE_arm64, 1}} };
const GradedArchs GradedArchs::arm64e_keysoff_pb = { {{GRADE_arm64e_pb, 2}, {GRADE_arm64, 1}} };
const GradedArchs GradedArchs::arm64e = { {{GRADE_arm64e, 1}} };
const GradedArchs GradedArchs::arm64e_pb = { {{GRADE_arm64e_pb, 1}} };
#endif
const GradedArchs GradedArchs::armv7 = { {{GRADE_armv7, 1}} };
const GradedArchs GradedArchs::armv7s = { {{GRADE_armv7s, 2}, {GRADE_armv7, 1}} };
const GradedArchs GradedArchs::armv7k = { {{GRADE_armv7k, 1}} };
#if SUPPORT_ARCH_arm64_32
const GradedArchs GradedArchs::arm64_32 = { {{GRADE_arm64_32, 1}} };
#endif
int GradedArchs::grade(uint32_t cputype, uint32_t cpusubtype, bool isOSBinary) const
{
for (const CpuGrade* p = _orderedCpuTypes; p->type != 0; ++p) {
if ( (p->type == cputype) && (p->subtype == (cpusubtype & ~CPU_SUBTYPE_MASK)) ) {
if ( p->osBinary ) {
if ( isOSBinary )
return p->grade;
}
else {
return p->grade;
}
}
}
return 0;
}
const char* GradedArchs::name() const
{
return MachOFile::archName(_orderedCpuTypes[0].type, _orderedCpuTypes[0].subtype);
}
#if __x86_64__
static bool isHaswell()
{
// FIXME: figure out a commpage way to check this
static bool sAlreadyDetermined = false;
static bool sHaswell = false;
if ( !sAlreadyDetermined ) {
struct host_basic_info info;
mach_msg_type_number_t count = HOST_BASIC_INFO_COUNT;
mach_port_t hostPort = mach_host_self();
kern_return_t result = host_info(hostPort, HOST_BASIC_INFO, (host_info_t)&info, &count);
mach_port_deallocate(mach_task_self(), hostPort);
sHaswell = (result == KERN_SUCCESS) && (info.cpu_subtype == CPU_SUBTYPE_X86_64_H);
sAlreadyDetermined = true;
}
return sHaswell;
}
#endif
const GradedArchs& GradedArchs::forCurrentOS(bool keysOff, bool osBinariesOnly)
{
#if __arm64e__
if ( osBinariesOnly )
return (keysOff ? arm64e_keysoff_pb : arm64e_pb);
else
return (keysOff ? arm64e_keysoff : arm64e);
#elif __ARM64_ARCH_8_32__
return arm64_32;
#elif __arm64__
return arm64;
#elif __ARM_ARCH_7K__
return armv7k;
#elif __ARM_ARCH_7S__
return armv7s;
#elif __ARM_ARCH_7A__
return armv7;
#elif __x86_64__
return isHaswell() ? x86_64h : x86_64;
#elif __i386__
return i386;
#else
#error unknown platform
#endif
}
const GradedArchs& GradedArchs::forName(const char* archName, bool keysOff)
{
if (strcmp(archName, "x86_64h") == 0 )
return x86_64h;
else if (strcmp(archName, "x86_64") == 0 )
return x86_64;
#if SUPPORT_ARCH_arm64e
else if (strcmp(archName, "arm64e") == 0 )
return keysOff ? arm64e_keysoff : arm64e;
#endif
else if (strcmp(archName, "arm64") == 0 )
return arm64;
else if (strcmp(archName, "armv7k") == 0 )
return armv7k;
else if (strcmp(archName, "armv7s") == 0 )
return armv7s;
else if (strcmp(archName, "armv7") == 0 )
return armv7;
#if SUPPORT_ARCH_arm64_32
else if (strcmp(archName, "arm64_32") == 0 )
return arm64_32;
#endif
else if (strcmp(archName, "i386") == 0 )
return i386;
assert(0 && "unknown arch name");
}
//////////////////////////// MachOFile ////////////////////////////////////////
const MachOFile::ArchInfo MachOFile::_s_archInfos[] = {
{ "x86_64", CPU_TYPE_X86_64, CPU_SUBTYPE_X86_64_ALL },
{ "x86_64h", CPU_TYPE_X86_64, CPU_SUBTYPE_X86_64_H },
{ "i386", CPU_TYPE_I386, CPU_SUBTYPE_I386_ALL },
{ "arm64", CPU_TYPE_ARM64, CPU_SUBTYPE_ARM64_ALL },
#if SUPPORT_ARCH_arm64e
{ "arm64e", CPU_TYPE_ARM64, CPU_SUBTYPE_ARM64E },
#endif
#if SUPPORT_ARCH_arm64_32
{ "arm64_32", CPU_TYPE_ARM64_32, CPU_SUBTYPE_ARM64_32_V8 },
#endif
{ "armv7k", CPU_TYPE_ARM, CPU_SUBTYPE_ARM_V7K },
{ "armv7s", CPU_TYPE_ARM, CPU_SUBTYPE_ARM_V7S },
{ "armv7", CPU_TYPE_ARM, CPU_SUBTYPE_ARM_V7 }
};
const MachOFile::PlatformInfo MachOFile::_s_platformInfos[] = {
{ "macOS", Platform::macOS, LC_VERSION_MIN_MACOSX },
{ "iOS", Platform::iOS, LC_VERSION_MIN_IPHONEOS },
{ "tvOS", Platform::tvOS, LC_VERSION_MIN_TVOS },
{ "watchOS", Platform::watchOS, LC_VERSION_MIN_WATCHOS },
{ "bridgeOS", Platform::bridgeOS, LC_BUILD_VERSION },
{ "MacCatalyst", Platform::iOSMac, LC_BUILD_VERSION },
{ "iOS-sim", Platform::iOS_simulator, LC_BUILD_VERSION },
{ "tvOS-sim", Platform::tvOS_simulator, LC_BUILD_VERSION },
{ "watchOS-sim", Platform::watchOS_simulator, LC_BUILD_VERSION },
};
bool MachOFile::is64() const
{
return (this->magic == MH_MAGIC_64);
}
size_t MachOFile::machHeaderSize() const
{
return is64() ? sizeof(mach_header_64) : sizeof(mach_header);
}
uint32_t MachOFile::maskedCpuSubtype() const
{
return (this->cpusubtype & ~CPU_SUBTYPE_MASK);
}
uint32_t MachOFile::pointerSize() const
{
if (this->magic == MH_MAGIC_64)
return 8;
else
return 4;
}
bool MachOFile::uses16KPages() const
{
switch (this->cputype) {
case CPU_TYPE_ARM64:
case CPU_TYPE_ARM64_32:
return true;
case CPU_TYPE_ARM:
// iOS is 16k aligned for armv7/armv7s and watchOS armv7k is 16k aligned
return this->cpusubtype == CPU_SUBTYPE_ARM_V7K;
default:
return false;
}
}
bool MachOFile::isArch(const char* aName) const
{
return (strcmp(aName, archName(this->cputype, this->cpusubtype)) == 0);
}
const char* MachOFile::archName(uint32_t cputype, uint32_t cpusubtype)
{
for (const ArchInfo& info : _s_archInfos) {
if ( (cputype == info.cputype) && ((cpusubtype & ~CPU_SUBTYPE_MASK) == info.cpusubtype) ) {
return info.name;
}
}
return "unknown";
}
uint32_t MachOFile::cpuTypeFromArchName(const char* archName)
{
for (const ArchInfo& info : _s_archInfos) {
if ( strcmp(archName, info.name) == 0 ) {
return info.cputype;
}
}
return 0;
}
uint32_t MachOFile::cpuSubtypeFromArchName(const char* archName)
{
for (const ArchInfo& info : _s_archInfos) {
if ( strcmp(archName, info.name) == 0 ) {
return info.cpusubtype;
}
}
return 0;
}
const char* MachOFile::archName() const
{
return archName(this->cputype, this->cpusubtype);
}
static void appendDigit(char*& s, unsigned& num, unsigned place, bool& startedPrinting)
{
if ( num >= place ) {
unsigned dig = (num/place);
*s++ = '0' + dig;
num -= (dig*place);
startedPrinting = true;
}
else if ( startedPrinting ) {
*s++ = '0';
}
}
static void appendNumber(char*& s, unsigned num)
{
assert(num < 99999);
bool startedPrinting = false;
appendDigit(s, num, 10000, startedPrinting);
appendDigit(s, num, 1000, startedPrinting);
appendDigit(s, num, 100, startedPrinting);
appendDigit(s, num, 10, startedPrinting);
appendDigit(s, num, 1, startedPrinting);
if ( !startedPrinting )
*s++ = '0';
}
void MachOFile::packedVersionToString(uint32_t packedVersion, char versionString[32])
{
// sprintf(versionString, "%d.%d.%d", (packedVersion >> 16), ((packedVersion >> 8) & 0xFF), (packedVersion & 0xFF));
char* s = versionString;
appendNumber(s, (packedVersion >> 16));
*s++ = '.';
appendNumber(s, (packedVersion >> 8) & 0xFF);
*s++ = '.';
appendNumber(s, (packedVersion & 0xFF));
*s++ = '\0';
}
bool MachOFile::builtForPlatform(Platform reqPlatform, bool onlyOnePlatform) const
{
__block bool foundRequestedPlatform = false;
__block bool foundOtherPlatform = false;
forEachSupportedPlatform(^(Platform platform, uint32_t minOS, uint32_t sdk) {
if ( platform == reqPlatform )
foundRequestedPlatform = true;
else
foundOtherPlatform = true;
});
// if checking that this binary is built for exactly one platform, fail if more
if ( foundOtherPlatform && onlyOnePlatform )
return false;
if ( foundRequestedPlatform )
return true;
// binary has no explict load command to mark platform
// could be an old macOS binary, look at arch
if ( !foundOtherPlatform && (reqPlatform == Platform::macOS) ) {
if ( this->cputype == CPU_TYPE_X86_64 )
return true;
if ( this->cputype == CPU_TYPE_I386 )
return true;
}
#if BUILDING_DYLDINFO
// Allow offline tools to analyze binaries dyld doesn't load, ie, those with platforms
if ( !foundOtherPlatform && (reqPlatform == Platform::unknown) )
return true;
#endif
return false;
}
bool MachOFile::loadableIntoProcess(Platform processPlatform, const char* path) const
{
if ( this->builtForPlatform(processPlatform) )
return true;
// Some host macOS dylibs can be loaded into simulator processes
if ( MachOFile::isSimulatorPlatform(processPlatform) && this->builtForPlatform(Platform::macOS)) {
static const char* macOSHost[] = {
"/usr/lib/system/libsystem_kernel.dylib",
"/usr/lib/system/libsystem_platform.dylib",
"/usr/lib/system/libsystem_pthread.dylib",
"/usr/lib/system/libsystem_platform_debug.dylib",
"/usr/lib/system/libsystem_pthread_debug.dylib",
"/usr/lib/system/host/liblaunch_sim.dylib",
};
for (const char* libPath : macOSHost) {
if (strcmp(libPath, path) == 0)
return true;
}
}
// If this is being called on main executable where we expect a macOS program, Catalyst programs are also runnable
if ( (this->filetype == MH_EXECUTE) && (processPlatform == Platform::macOS) && this->builtForPlatform(Platform::iOSMac, true) )
return true;
#if (TARGET_OS_OSX && TARGET_CPU_ARM64)
if ( (this->filetype == MH_EXECUTE) && (processPlatform == Platform::macOS) && this->builtForPlatform(Platform::iOS, true) )
return true;
#endif
bool iOSonMac = (processPlatform == Platform::iOSMac);
#if (TARGET_OS_OSX && TARGET_CPU_ARM64)
// allow iOS binaries in iOSApp
if ( processPlatform == Platform::iOS ) {
// can load Catalyst binaries into iOS process
if ( this->builtForPlatform(Platform::iOSMac) )
return true;
iOSonMac = true;
}
#endif
// macOS dylibs can be loaded into iOSMac processes
if ( (iOSonMac) && this->builtForPlatform(Platform::macOS, true) )
return true;
return false;
}
bool MachOFile::isZippered() const
{
__block bool macOS = false;
__block bool iOSMac = false;
forEachSupportedPlatform(^(Platform platform, uint32_t minOS, uint32_t sdk) {
if ( platform == Platform::macOS )
macOS = true;
else if ( platform == Platform::iOSMac )
iOSMac = true;
});
return macOS && iOSMac;
}
bool MachOFile::inDyldCache() const {
return (this->flags & 0x80000000);
}
Platform MachOFile::currentPlatform()
{
#if TARGET_OS_SIMULATOR
#if TARGET_OS_WATCH
return Platform::watchOS_simulator;
#elif TARGET_OS_TV
return Platform::tvOS_simulator;
#else
return Platform::iOS_simulator;
#endif
#elif TARGET_OS_BRIDGE
return Platform::bridgeOS;
#elif TARGET_OS_WATCH
return Platform::watchOS;
#elif TARGET_OS_TV
return Platform::tvOS;
#elif TARGET_OS_IOS
return Platform::iOS;
#elif TARGET_OS_OSX
return Platform::macOS;
#elif TARGET_OS_DRIVERKIT
return Platform::driverKit;
#else
#error unknown platform
#endif
}
const char* MachOFile::currentArchName()
{
#if __ARM_ARCH_7K__
return "armv7k";
#elif __ARM_ARCH_7A__
return "armv7";
#elif __ARM_ARCH_7S__
return "armv7s";
#elif __arm64e__
return "arm64e";
#elif __arm64__
#if __LP64__
return "arm64";
#else
return "arm64_32";
#endif
#elif __x86_64__
return isHaswell() ? "x86_64h" : "x86_64";
#elif __i386__
return "i386";
#else
#error unknown arch
#endif
}
bool MachOFile::isSimulatorPlatform(Platform platform)
{
return ( (platform == Platform::iOS_simulator) ||
(platform == Platform::watchOS_simulator) ||
(platform == Platform::tvOS_simulator) );
}
bool MachOFile::isDylib() const
{
return (this->filetype == MH_DYLIB);
}
bool MachOFile::isBundle() const
{
return (this->filetype == MH_BUNDLE);
}
bool MachOFile::isMainExecutable() const
{
return (this->filetype == MH_EXECUTE);
}
bool MachOFile::isDynamicExecutable() const
{
if ( this->filetype != MH_EXECUTE )
return false;
// static executables do not have dyld load command
return hasLoadCommand(LC_LOAD_DYLINKER);
}
bool MachOFile::isStaticExecutable() const
{
if ( this->filetype != MH_EXECUTE )
return false;
// static executables do not have dyld load command
return !hasLoadCommand(LC_LOAD_DYLINKER);
}
bool MachOFile::isKextBundle() const
{
return (this->filetype == MH_KEXT_BUNDLE);
}
bool MachOFile::isFileSet() const
{
return (this->filetype == MH_FILESET);
}
bool MachOFile::isPIE() const
{
return (this->flags & MH_PIE);
}
bool MachOFile::isPreload() const
{
return (this->filetype == MH_PRELOAD);
}
const char* MachOFile::platformName(Platform reqPlatform)
{
for (const PlatformInfo& info : _s_platformInfos) {
if ( info.platform == reqPlatform )
return info.name;
}
return "unknown platform";
}
void MachOFile::forEachSupportedPlatform(void (^handler)(Platform platform, uint32_t minOS, uint32_t sdk)) const
{
Diagnostics diag;
forEachLoadCommand(diag, ^(const load_command* cmd, bool& stop) {
const build_version_command* buildCmd = (build_version_command *)cmd;
const version_min_command* versCmd = (version_min_command*)cmd;
switch ( cmd->cmd ) {
case LC_BUILD_VERSION:
handler((Platform)(buildCmd->platform), buildCmd->minos, buildCmd->sdk);
break;
case LC_VERSION_MIN_MACOSX:
handler(Platform::macOS, versCmd->version, versCmd->sdk);
break;
case LC_VERSION_MIN_IPHONEOS:
if ( (this->cputype == CPU_TYPE_X86_64) || (this->cputype == CPU_TYPE_I386) )
handler(Platform::iOS_simulator, versCmd->version, versCmd->sdk); // old sim binary
else
handler(Platform::iOS, versCmd->version, versCmd->sdk);
break;
case LC_VERSION_MIN_TVOS:
if ( this->cputype == CPU_TYPE_X86_64 )
handler(Platform::tvOS_simulator, versCmd->version, versCmd->sdk); // old sim binary
else
handler(Platform::tvOS, versCmd->version, versCmd->sdk);
break;
case LC_VERSION_MIN_WATCHOS:
if ( (this->cputype == CPU_TYPE_X86_64) || (this->cputype == CPU_TYPE_I386) )
handler(Platform::watchOS_simulator, versCmd->version, versCmd->sdk); // old sim binary
else
handler(Platform::watchOS, versCmd->version, versCmd->sdk);
break;
}
});
diag.assertNoError(); // any malformations in the file should have been caught by earlier validate() call
}
bool MachOFile::isMachO(Diagnostics& diag, uint64_t fileSize) const
{
if ( !hasMachOMagic() ) {
// old PPC slices are not currently valid "mach-o" but should not cause an error
if ( !hasMachOBigEndianMagic() )
diag.error("file does not start with MH_MAGIC[_64]");
return false;
}
if ( this->sizeofcmds + machHeaderSize() > fileSize ) {
diag.error("load commands exceed length of first segment");
return false;
}
forEachLoadCommand(diag, ^(const load_command* cmd, bool& stop) { });
return diag.noError();
}
bool MachOFile::hasMachOMagic() const
{
return ( (this->magic == MH_MAGIC) || (this->magic == MH_MAGIC_64) );
}
bool MachOFile::hasMachOBigEndianMagic() const
{
return ( (this->magic == MH_CIGAM) || (this->magic == MH_CIGAM_64) );
}
void MachOFile::forEachLoadCommand(Diagnostics& diag, void (^callback)(const load_command* cmd, bool& stop)) const
{
bool stop = false;
const load_command* startCmds = nullptr;
if ( this->magic == MH_MAGIC_64 )
startCmds = (load_command*)((char *)this + sizeof(mach_header_64));
else if ( this->magic == MH_MAGIC )
startCmds = (load_command*)((char *)this + sizeof(mach_header));
else if ( hasMachOBigEndianMagic() )
return; // can't process big endian mach-o
else {
const uint32_t* h = (uint32_t*)this;
diag.error("file does not start with MH_MAGIC[_64]: 0x%08X 0x%08X", h[0], h [1]);
return; // not a mach-o file
}
const load_command* const cmdsEnd = (load_command*)((char*)startCmds + this->sizeofcmds);
const load_command* cmd = startCmds;
for (uint32_t i = 0; i < this->ncmds; ++i) {
const load_command* nextCmd = (load_command*)((char *)cmd + cmd->cmdsize);
if ( cmd->cmdsize < 8 ) {
diag.error("malformed load command #%d of %d at %p with mh=%p, size (0x%X) too small", i, this->ncmds, cmd, this, cmd->cmdsize);
return;
}
if ( (nextCmd > cmdsEnd) || (nextCmd < startCmds) ) {
diag.error("malformed load command #%d of %d at %p with mh=%p, size (0x%X) is too large, load commands end at %p", i, this->ncmds, cmd, this, cmd->cmdsize, cmdsEnd);
return;
}
callback(cmd, stop);
if ( stop )
return;
cmd = nextCmd;
}
}
void MachOFile::removeLoadCommand(Diagnostics& diag, void (^callback)(const load_command* cmd, bool& remove, bool& stop))
{
bool stop = false;
const load_command* startCmds = nullptr;
if ( this->magic == MH_MAGIC_64 )
startCmds = (load_command*)((char *)this + sizeof(mach_header_64));
else if ( this->magic == MH_MAGIC )
startCmds = (load_command*)((char *)this + sizeof(mach_header));
else if ( hasMachOBigEndianMagic() )
return; // can't process big endian mach-o
else {
const uint32_t* h = (uint32_t*)this;
diag.error("file does not start with MH_MAGIC[_64]: 0x%08X 0x%08X", h[0], h [1]);
return; // not a mach-o file
}
const load_command* const cmdsEnd = (load_command*)((char*)startCmds + this->sizeofcmds);
auto cmd = (load_command*)startCmds;
const uint32_t origNcmds = this->ncmds;
unsigned bytesRemaining = this->sizeofcmds;
for (uint32_t i = 0; i < origNcmds; ++i) {
bool remove = false;
auto nextCmd = (load_command*)((char *)cmd + cmd->cmdsize);
if ( cmd->cmdsize < 8 ) {
diag.error("malformed load command #%d of %d at %p with mh=%p, size (0x%X) too small", i, this->ncmds, cmd, this, cmd->cmdsize);
return;
}
if ( (nextCmd > cmdsEnd) || (nextCmd < startCmds) ) {
diag.error("malformed load command #%d of %d at %p with mh=%p, size (0x%X) is too large, load commands end at %p", i, this->ncmds, cmd, this, cmd->cmdsize, cmdsEnd);
return;
}
callback(cmd, remove, stop);
if ( remove ) {
this->sizeofcmds -= cmd->cmdsize;
::memmove((void*)cmd, (void*)nextCmd, bytesRemaining);
this->ncmds--;
} else {
bytesRemaining -= cmd->cmdsize;
cmd = nextCmd;
}
if ( stop )
break;
}
if ( cmd )
::bzero(cmd, bytesRemaining);
}
const char* MachOFile::installName() const
{
const char* name;
uint32_t compatVersion;
uint32_t currentVersion;
if ( getDylibInstallName(&name, &compatVersion, &currentVersion) )
return name;
return nullptr;
}
bool MachOFile::getDylibInstallName(const char** installName, uint32_t* compatVersion, uint32_t* currentVersion) const
{
Diagnostics diag;
__block bool found = false;
forEachLoadCommand(diag, ^(const load_command* cmd, bool& stop) {
if ( cmd->cmd == LC_ID_DYLIB ) {
const dylib_command* dylibCmd = (dylib_command*)cmd;
*compatVersion = dylibCmd->dylib.compatibility_version;
*currentVersion = dylibCmd->dylib.current_version;
*installName = (char*)dylibCmd + dylibCmd->dylib.name.offset;
found = true;
stop = true;
}
});
diag.assertNoError(); // any malformations in the file should have been caught by earlier validate() call
return found;
}
bool MachOFile::getUuid(uuid_t uuid) const
{
Diagnostics diag;
__block bool found = false;
forEachLoadCommand(diag, ^(const load_command* cmd, bool& stop) {
if ( cmd->cmd == LC_UUID ) {
const uuid_command* uc = (const uuid_command*)cmd;
memcpy(uuid, uc->uuid, sizeof(uuid_t));
found = true;
stop = true;
}
});
diag.assertNoError(); // any malformations in the file should have been caught by earlier validate() call
if ( !found )
bzero(uuid, sizeof(uuid_t));
return found;
}
void MachOFile::forEachDependentDylib(void (^callback)(const char* loadPath, bool isWeak, bool isReExport, bool isUpward, uint32_t compatVersion, uint32_t curVersion, bool& stop)) const
{
Diagnostics diag;
forEachLoadCommand(diag, ^(const load_command* cmd, bool& stop) {
switch ( cmd->cmd ) {
case LC_LOAD_DYLIB:
case LC_LOAD_WEAK_DYLIB:
case LC_REEXPORT_DYLIB:
case LC_LOAD_UPWARD_DYLIB: {
const dylib_command* dylibCmd = (dylib_command*)cmd;
const char* loadPath = (char*)dylibCmd + dylibCmd->dylib.name.offset;
callback(loadPath, (cmd->cmd == LC_LOAD_WEAK_DYLIB), (cmd->cmd == LC_REEXPORT_DYLIB), (cmd->cmd == LC_LOAD_UPWARD_DYLIB),
dylibCmd->dylib.compatibility_version, dylibCmd->dylib.current_version, stop);
}
break;
}
});
diag.assertNoError(); // any malformations in the file should have been caught by earlier validate() call
}
void MachOFile::forDyldEnv(void (^callback)(const char* envVar, bool& stop)) const
{
Diagnostics diag;
forEachLoadCommand(diag, ^(const load_command* cmd, bool& stop) {
if ( cmd->cmd == LC_DYLD_ENVIRONMENT ) {
const dylinker_command* envCmd = (dylinker_command*)cmd;
const char* keyEqualsValue = (char*)envCmd + envCmd->name.offset;
// only process variables that start with DYLD_ and end in _PATH
if ( (strncmp(keyEqualsValue, "DYLD_", 5) == 0) ) {
const char* equals = strchr(keyEqualsValue, '=');
if ( equals != NULL ) {
if ( strncmp(&equals[-5], "_PATH", 5) == 0 ) {
callback(keyEqualsValue, stop);
}
}
}
}
});
diag.assertNoError(); // any malformations in the file should have been caught by earlier validate() call
}
bool MachOFile::enforceCompatVersion() const
{
__block bool result = true;
forEachSupportedPlatform(^(Platform platform, uint32_t minOS, uint32_t sdk) {
switch ( platform ) {
case Platform::macOS:
if ( minOS >= 0x000A0E00 ) // macOS 10.14
result = false;
break;
case Platform::iOS:
case Platform::tvOS:
case Platform::iOS_simulator:
case Platform::tvOS_simulator:
if ( minOS >= 0x000C0000 ) // iOS 12.0
result = false;
break;
case Platform::watchOS:
case Platform::watchOS_simulator:
if ( minOS >= 0x00050000 ) // watchOS 5.0
result = false;
break;
case Platform::bridgeOS:
if ( minOS >= 0x00030000 ) // bridgeOS 3.0
result = false;
break;
case Platform::driverKit:
case Platform::iOSMac:
result = false;
break;
case Platform::unknown:
break;
}
});
return result;
}
const thread_command* MachOFile::unixThreadLoadCommand() const {
Diagnostics diag;
__block const thread_command* command = nullptr;
forEachLoadCommand(diag, ^(const load_command* cmd, bool& stop) {
if ( cmd->cmd == LC_UNIXTHREAD ) {
command = (const thread_command*)cmd;
stop = true;
}
});
return command;
}
uint32_t MachOFile::entryAddrRegisterIndexForThreadCmd() const
{
switch ( this->cputype ) {
case CPU_TYPE_I386:
return 10; // i386_thread_state_t.eip
case CPU_TYPE_X86_64:
return 16; // x86_thread_state64_t.rip
case CPU_TYPE_ARM:
return 15; // arm_thread_state_t.pc
case CPU_TYPE_ARM64:
return 32; // arm_thread_state64_t.__pc
}
return ~0U;
}
uint64_t MachOFile::entryAddrFromThreadCmd(const thread_command* cmd) const
{
assert(cmd->cmd == LC_UNIXTHREAD);
const uint32_t* regs32 = (uint32_t*)(((char*)cmd) + 16);
const uint64_t* regs64 = (uint64_t*)(((char*)cmd) + 16);
uint32_t index = entryAddrRegisterIndexForThreadCmd();
if (index == ~0U)
return 0;
return is64() ? regs64[index] : regs32[index];
}
void MachOFile::forEachSegment(void (^callback)(const SegmentInfo& info, bool& stop)) const
{
Diagnostics diag;
const bool intel32 = (this->cputype == CPU_TYPE_I386);
__block uint32_t segIndex = 0;
forEachLoadCommand(diag, ^(const load_command* cmd, bool& stop) {
if ( cmd->cmd == LC_SEGMENT_64 ) {
const segment_command_64* segCmd = (segment_command_64*)cmd;
uint64_t sizeOfSections = segCmd->vmsize;
uint8_t p2align = 0;
const section_64* const sectionsStart = (section_64*)((char*)segCmd + sizeof(struct segment_command_64));
const section_64* const sectionsEnd = &sectionsStart[segCmd->nsects];
for (const section_64* sect=sectionsStart; sect < sectionsEnd; ++sect) {
sizeOfSections = sect->addr + sect->size - segCmd->vmaddr;
if ( sect->align > p2align )
p2align = sect->align;
}
SegmentInfo info;
info.fileOffset = segCmd->fileoff;
info.fileSize = segCmd->filesize;
info.vmAddr = segCmd->vmaddr;
info.vmSize = segCmd->vmsize;
info.sizeOfSections = sizeOfSections;
info.segName = segCmd->segname;
info.loadCommandOffset = (uint32_t)((uint8_t*)segCmd - (uint8_t*)this);
info.protections = segCmd->initprot;
info.textRelocs = false;
info.readOnlyData = ((segCmd->flags & SG_READ_ONLY) != 0);
info.isProtected = (segCmd->flags & SG_PROTECTED_VERSION_1) ? 1 : 0;
info.p2align = p2align;
info.segIndex = segIndex;
callback(info, stop);
++segIndex;
}
else if ( cmd->cmd == LC_SEGMENT ) {
const segment_command* segCmd = (segment_command*)cmd;
uint64_t sizeOfSections = segCmd->vmsize;
uint8_t p2align = 0;
bool hasTextRelocs = false;
const section* const sectionsStart = (section*)((char*)segCmd + sizeof(struct segment_command));
const section* const sectionsEnd = &sectionsStart[segCmd->nsects];
for (const section* sect=sectionsStart; sect < sectionsEnd; ++sect) {
sizeOfSections = sect->addr + sect->size - segCmd->vmaddr;
if ( sect->align > p2align )
p2align = sect->align;
if ( sect->flags & (S_ATTR_EXT_RELOC|S_ATTR_LOC_RELOC) )
hasTextRelocs = true;
}
SegmentInfo info;
info.fileOffset = segCmd->fileoff;
info.fileSize = segCmd->filesize;
info.vmAddr = segCmd->vmaddr;
info.vmSize = segCmd->vmsize;
info.sizeOfSections = sizeOfSections;
info.segName = segCmd->segname;
info.loadCommandOffset = (uint32_t)((uint8_t*)segCmd - (uint8_t*)this);
info.protections = segCmd->initprot;
info.textRelocs = intel32 && !info.writable() && hasTextRelocs;
info.readOnlyData = ((segCmd->flags & SG_READ_ONLY) != 0);
info.isProtected = (segCmd->flags & SG_PROTECTED_VERSION_1) ? 1 : 0;
info.p2align = p2align;
info.segIndex = segIndex;
callback(info, stop);
++segIndex;
}
});
diag.assertNoError(); // any malformations in the file should have been caught by earlier validate() call
}
void MachOFile::forEachSection(void (^callback)(const SectionInfo& sectInfo, bool malformedSectionRange, bool& stop)) const
{
Diagnostics diag;
BLOCK_ACCCESSIBLE_ARRAY(char, sectNameCopy, 20); // read as: char sectNameCopy[20];
const bool intel32 = (this->cputype == CPU_TYPE_I386);
__block uint32_t segIndex = 0;
forEachLoadCommand(diag, ^(const load_command* cmd, bool& stop) {
SectionInfo sectInfo;
if ( cmd->cmd == LC_SEGMENT_64 ) {
const segment_command_64* segCmd = (segment_command_64*)cmd;
uint64_t sizeOfSections = segCmd->vmsize;
uint8_t p2align = 0;
const section_64* const sectionsStart = (section_64*)((char*)segCmd + sizeof(struct segment_command_64));
const section_64* const sectionsEnd = &sectionsStart[segCmd->nsects];
for (const section_64* sect=sectionsStart; sect < sectionsEnd; ++sect) {
sizeOfSections = sect->addr + sect->size - segCmd->vmaddr;
if ( sect->align > p2align )
p2align = sect->align;
}
sectInfo.segInfo.fileOffset = segCmd->fileoff;
sectInfo.segInfo.fileSize = segCmd->filesize;
sectInfo.segInfo.vmAddr = segCmd->vmaddr;
sectInfo.segInfo.vmSize = segCmd->vmsize;
sectInfo.segInfo.sizeOfSections = sizeOfSections;
sectInfo.segInfo.segName = segCmd->segname;
sectInfo.segInfo.loadCommandOffset = (uint32_t)((uint8_t*)segCmd - (uint8_t*)this);
sectInfo.segInfo.protections = segCmd->initprot;
sectInfo.segInfo.textRelocs = false;
sectInfo.segInfo.readOnlyData = ((segCmd->flags & SG_READ_ONLY) != 0);
sectInfo.segInfo.isProtected = (segCmd->flags & SG_PROTECTED_VERSION_1) ? 1 : 0;
sectInfo.segInfo.p2align = p2align;
sectInfo.segInfo.segIndex = segIndex;
for (const section_64* sect=sectionsStart; !stop && (sect < sectionsEnd); ++sect) {
const char* sectName = sect->sectname;
if ( sectName[15] != '\0' ) {
strlcpy(sectNameCopy, sectName, 17);
sectName = sectNameCopy;
}
bool malformedSectionRange = (sect->addr < segCmd->vmaddr) || greaterThanAddOrOverflow(sect->addr, sect->size, segCmd->vmaddr + segCmd->filesize);
sectInfo.sectName = sectName;
sectInfo.sectFileOffset = sect->offset;
sectInfo.sectFlags = sect->flags;
sectInfo.sectAddr = sect->addr;
sectInfo.sectSize = sect->size;
sectInfo.sectAlignP2 = sect->align;
sectInfo.reserved1 = sect->reserved1;
sectInfo.reserved2 = sect->reserved2;
callback(sectInfo, malformedSectionRange, stop);
}
++segIndex;
}
else if ( cmd->cmd == LC_SEGMENT ) {
const segment_command* segCmd = (segment_command*)cmd;
uint64_t sizeOfSections = segCmd->vmsize;
uint8_t p2align = 0;
bool hasTextRelocs = false;
const section* const sectionsStart = (section*)((char*)segCmd + sizeof(struct segment_command));
const section* const sectionsEnd = &sectionsStart[segCmd->nsects];
for (const section* sect=sectionsStart; sect < sectionsEnd; ++sect) {
sizeOfSections = sect->addr + sect->size - segCmd->vmaddr;
if ( sect->align > p2align )
p2align = sect->align;
if ( sect->flags & (S_ATTR_EXT_RELOC|S_ATTR_LOC_RELOC) )
hasTextRelocs = true;
}
sectInfo.segInfo.fileOffset = segCmd->fileoff;
sectInfo.segInfo.fileSize = segCmd->filesize;
sectInfo.segInfo.vmAddr = segCmd->vmaddr;
sectInfo.segInfo.vmSize = segCmd->vmsize;
sectInfo.segInfo.sizeOfSections = sizeOfSections;
sectInfo.segInfo.segName = segCmd->segname;
sectInfo.segInfo.loadCommandOffset = (uint32_t)((uint8_t*)segCmd - (uint8_t*)this);
sectInfo.segInfo.protections = segCmd->initprot;
sectInfo.segInfo.textRelocs = intel32 && !sectInfo.segInfo.writable() && hasTextRelocs;
sectInfo.segInfo.readOnlyData = ((segCmd->flags & SG_READ_ONLY) != 0);
sectInfo.segInfo.isProtected = (segCmd->flags & SG_PROTECTED_VERSION_1) ? 1 : 0;
sectInfo.segInfo.p2align = p2align;
sectInfo.segInfo.segIndex = segIndex;
for (const section* sect=sectionsStart; !stop && (sect < sectionsEnd); ++sect) {
const char* sectName = sect->sectname;
if ( sectName[15] != '\0' ) {
strlcpy(sectNameCopy, sectName, 17);
sectName = sectNameCopy;
}
bool malformedSectionRange = (sect->addr < segCmd->vmaddr) || greaterThanAddOrOverflow(sect->addr, sect->size, segCmd->vmaddr + segCmd->filesize);
sectInfo.sectName = sectName;
sectInfo.sectFileOffset = sect->offset;
sectInfo.sectFlags = sect->flags;
sectInfo.sectAddr = sect->addr;
sectInfo.sectSize = sect->size;
sectInfo.sectAlignP2 = sect->align;
sectInfo.reserved1 = sect->reserved1;
sectInfo.reserved2 = sect->reserved2;
callback(sectInfo, malformedSectionRange, stop);
}
++segIndex;
}
});
diag.assertNoError(); // any malformations in the file should have been caught by earlier validate() call
}
bool MachOFile::hasWeakDefs() const
{
return (this->flags & MH_WEAK_DEFINES);
}
bool MachOFile::hasThreadLocalVariables() const
{
return (this->flags & MH_HAS_TLV_DESCRIPTORS);
}
static bool endsWith(const char* str, const char* suffix)
{
size_t strLen = strlen(str);
size_t suffixLen = strlen(suffix);
if ( strLen < suffixLen )
return false;
return (strcmp(&str[strLen-suffixLen], suffix) == 0);
}
bool MachOFile::isSharedCacheEligiblePath(const char* dylibName) {
return ( (strncmp(dylibName, "/usr/lib/", 9) == 0)
|| (strncmp(dylibName, "/System/Library/", 16) == 0)
|| (strncmp(dylibName, "/System/iOSSupport/usr/lib/", 27) == 0)
|| (strncmp(dylibName, "/System/iOSSupport/System/Library/", 34) == 0)
|| (strncmp(dylibName, "/Library/Apple/usr/lib/", 23) == 0)
|| (strncmp(dylibName, "/Library/Apple/System/Library/", 30) == 0) );
}
static bool startsWith(const char* buffer, const char* valueToFind) {
return strncmp(buffer, valueToFind, strlen(valueToFind)) == 0;
}
static bool platformExcludesSharedCache_macOS(const char* installName) {
// Note: This function basically matches dontCache() from update dyld shared cache
if ( startsWith(installName, "/usr/lib/system/introspection/") )
return true;
if ( startsWith(installName, "/System/Library/QuickTime/") )
return true;
if ( startsWith(installName, "/System/Library/Tcl/") )
return true;
if ( startsWith(installName, "/System/Library/Perl/") )
return true;
if ( startsWith(installName, "/System/Library/MonitorPanels/") )
return true;
if ( startsWith(installName, "/System/Library/Accessibility/") )
return true;
if ( startsWith(installName, "/usr/local/") )
return true;
if ( startsWith(installName, "/usr/lib/pam/") )
return true;
// We no longer support ROSP, so skip all paths which start with the special prefix
if ( startsWith(installName, "/System/Library/Templates/Data/") )
return true;
// anything inside a .app bundle is specific to app, so should not be in shared cache
if ( strstr(installName, ".app/") != NULL )
return true;
return false;
}
static bool platformExcludesSharedCache_iOS(const char* installName) {
if ( strcmp(installName, "/System/Library/Caches/com.apple.xpc/sdk.dylib") == 0 )
return true;
if ( strcmp(installName, "/System/Library/Caches/com.apple.xpcd/xpcd_cache.dylib") == 0 )
return true;
return false;
}
static bool platformExcludesSharedCache_tvOS(const char* installName) {
return platformExcludesSharedCache_iOS(installName);
}
static bool platformExcludesSharedCache_watchOS(const char* installName) {
return platformExcludesSharedCache_iOS(installName);
}
static bool platformExcludesSharedCache_bridgeOS(const char* installName) {
return platformExcludesSharedCache_iOS(installName);
}
// Returns true if the current platform requires that this install name be excluded from the shared cache
// Note that this overrides any exclusion from anywhere else.
static bool platformExcludesSharedCache(Platform platform, const char* installName) {
switch (platform) {
case dyld3::Platform::unknown:
return false;
case dyld3::Platform::macOS:
return platformExcludesSharedCache_macOS(installName);
case dyld3::Platform::iOS:
return platformExcludesSharedCache_iOS(installName);
case dyld3::Platform::tvOS:
return platformExcludesSharedCache_tvOS(installName);
case dyld3::Platform::watchOS:
return platformExcludesSharedCache_watchOS(installName);
case dyld3::Platform::bridgeOS:
return platformExcludesSharedCache_bridgeOS(installName);
case dyld3::Platform::iOSMac:
return platformExcludesSharedCache_macOS(installName);
case dyld3::Platform::iOS_simulator:
return false;
case dyld3::Platform::tvOS_simulator:
return false;
case dyld3::Platform::watchOS_simulator:
return false;
case dyld3::Platform::driverKit:
return false;
}
}
bool MachOFile::canBePlacedInDyldCache(const char* path, void (^failureReason)(const char*)) const
{
if ( !isSharedCacheEligiblePath(path) ) {
// Dont spam the user with an error about paths when we know these are never eligible.
return false;
}
// only dylibs can go in cache
if ( this->filetype != MH_DYLIB ) {
failureReason("Not MH_DYLIB");
return false; // cannot continue, installName() will assert() if not a dylib
}
// only dylibs built for /usr/lib or /System/Library can go in cache
const char* dylibName = installName();
if ( dylibName[0] != '/' ) {
failureReason("install name not an absolute path");
// Don't continue as we don't want to spam the log with errors we don't need.
return false;
}
else if ( strcmp(dylibName, path) != 0 ) {
failureReason("install path does not match install name");
return false;
}
else if ( strstr(dylibName, "//") != 0 ) {
failureReason("install name should not include //");
return false;
}
else if ( strstr(dylibName, "./") != 0 ) {
failureReason("install name should not include ./");
return false;
}
__block bool platformExcludedFile = false;
forEachSupportedPlatform(^(Platform platform, uint32_t minOS, uint32_t sdk) {
if ( platformExcludedFile )
return;
if ( platformExcludesSharedCache(platform, dylibName) ) {
platformExcludedFile = true;
return;
}
});
if ( platformExcludedFile ) {
failureReason("install name is not shared cache eligible on platform");
return false;
}
bool retval = true;
// flat namespace files cannot go in cache
if ( (this->flags & MH_TWOLEVEL) == 0 ) {
retval = false;
failureReason("Not built with two level namespaces");
}
// don't put debug variants into dyld cache
if ( endsWith(path, "_profile.dylib") || endsWith(path, "_debug.dylib") || endsWith(path, "_profile") || endsWith(path, "_debug") || endsWith(path, "/CoreADI") ) {
retval = false;
failureReason("Variant image");
}
// dylib must have extra info for moving DATA and TEXT segments apart
__block bool hasExtraInfo = false;
__block bool hasDyldInfo = false;
__block bool hasExportTrie = false;
__block bool hasLazyLoad = false;
Diagnostics diag;
forEachLoadCommand(diag, ^(const load_command* cmd, bool& stop) {
if ( cmd->cmd == LC_SEGMENT_SPLIT_INFO )
hasExtraInfo = true;
if ( cmd->cmd == LC_DYLD_INFO_ONLY )
hasDyldInfo = true;
if ( cmd->cmd == LC_DYLD_EXPORTS_TRIE )
hasExportTrie = true;
if ( cmd->cmd == LC_LAZY_LOAD_DYLIB )
hasLazyLoad = true;
});
if ( !hasExtraInfo ) {
retval = false;
failureReason("Missing split seg info");
}
if ( !hasDyldInfo && !hasExportTrie ) {
retval = false;
failureReason("Old binary, missing dyld info or export trie");
}
if ( hasLazyLoad ) {
retval = false;
failureReason("Has lazy load");
}
// dylib can only depend on other dylibs in the shared cache
__block bool allDepPathsAreGood = true;
forEachDependentDylib(^(const char* loadPath, bool isWeak, bool isReExport, bool isUpward, uint32_t compatVersion, uint32_t curVersion, bool& stop) {
if ( !isSharedCacheEligiblePath(loadPath) ) {
allDepPathsAreGood = false;
stop = true;
}
});
if ( !allDepPathsAreGood ) {
retval = false;
failureReason("Depends on dylibs ineligable for dyld cache");
}
// dylibs with interposing info cannot be in cache
if ( hasInterposingTuples() ) {
retval = false;
failureReason("Has interposing tuples");
}
// Temporarily kick out swift binaries out of dyld cache on watchOS simulators as they have missing split seg
if ( (this->cputype == CPU_TYPE_I386) && builtForPlatform(Platform::watchOS_simulator) ) {
if ( strncmp(dylibName, "/usr/lib/swift/", 15) == 0 ) {
retval = false;
failureReason("i386 swift binary");
}
}
return retval;
}
#if BUILDING_APP_CACHE_UTIL
bool MachOFile::canBePlacedInKernelCollection(const char* path, void (^failureReason)(const char*)) const
{
// only dylibs and the kernel itself can go in cache
if ( this->filetype == MH_EXECUTE ) {
// xnu
} else if ( this->isKextBundle() ) {
// kext's
} else {
failureReason("Not MH_KEXT_BUNDLE");
return false;
}
if ( this->filetype == MH_EXECUTE ) {
// xnu
// two-level namespace binaries cannot go in cache
if ( (this->flags & MH_TWOLEVEL) != 0 ) {
failureReason("Built with two level namespaces");
return false;
}
// xnu kernel cannot have a page zero
__block bool foundPageZero = false;
forEachSegment(^(const SegmentInfo &segmentInfo, bool &stop) {
if ( strcmp(segmentInfo.segName, "__PAGEZERO") == 0 ) {
foundPageZero = true;
stop = true;
}
});
if (foundPageZero) {
failureReason("Has __PAGEZERO");
return false;
}
// xnu must have an LC_UNIXTHREAD to point to the entry point
__block bool foundMainLC = false;
__block bool foundUnixThreadLC = false;
Diagnostics diag;
forEachLoadCommand(diag, ^(const load_command* cmd, bool& stop) {
if ( cmd->cmd == LC_MAIN ) {
foundMainLC = true;
stop = true;
}
else if ( cmd->cmd == LC_UNIXTHREAD ) {
foundUnixThreadLC = true;
}
});
if (foundMainLC) {
failureReason("Found LC_MAIN");
return false;
}
if (!foundUnixThreadLC) {
failureReason("Expected LC_UNIXTHREAD");
return false;
}
if (diag.hasError()) {
failureReason("Error parsing load commands");
return false;
}
// The kernel should be a static executable, not a dynamic one
if ( !isStaticExecutable() ) {
failureReason("Expected static executable");
return false;
}
// The kernel must be built with -pie
if ( !isPIE() ) {
failureReason("Expected pie");
return false;
}
}
if ( isArch("arm64e") && isKextBundle() && !hasChainedFixups() ) {
failureReason("Missing fixup information");
return false;
}
// dylibs with interposing info cannot be in cache
__block bool hasInterposing = false;
forEachSection(^(const SectionInfo& info, bool malformedSectionRange, bool &stop) {
if ( ((info.sectFlags & SECTION_TYPE) == S_INTERPOSING) || ((strcmp(info.sectName, "__interpose") == 0) && (strcmp(info.segInfo.segName, "__DATA") == 0)) )
hasInterposing = true;
});
if ( hasInterposing ) {
failureReason("Has interposing tuples");
return false;
}
// Only x86_64 is allowed to have RWX segments
if ( !isArch("x86_64") && !isArch("x86_64h") ) {
__block bool foundBadSegment = false;
forEachSegment(^(const SegmentInfo &info, bool &stop) {
if ( (info.protections & (VM_PROT_WRITE | VM_PROT_EXECUTE)) == (VM_PROT_WRITE | VM_PROT_EXECUTE) ) {
failureReason("Segments are not allowed to be both writable and executable");
foundBadSegment = true;
stop = true;
}
});
if ( foundBadSegment )
return false;
}
return true;
}
#endif
static bool platformExcludesPrebuiltClosure_macOS(const char* path) {
// We no longer support ROSP, so skip all paths which start with the special prefix
if ( startsWith(path, "/System/Library/Templates/Data/") )
return true;
// anything inside a .app bundle is specific to app, so should not get a prebuilt closure
if ( strstr(path, ".app/") != NULL )
return true;
return false;
}
static bool platformExcludesPrebuiltClosure_iOS(const char* path) {
if ( strcmp(path, "/System/Library/Caches/com.apple.xpc/sdk.dylib") == 0 )
return true;
if ( strcmp(path, "/System/Library/Caches/com.apple.xpcd/xpcd_cache.dylib") == 0 )
return true;
return false;
}
static bool platformExcludesPrebuiltClosure_tvOS(const char* path) {
return platformExcludesPrebuiltClosure_iOS(path);
}
static bool platformExcludesPrebuiltClosure_watchOS(const char* path) {
return platformExcludesPrebuiltClosure_iOS(path);
}
static bool platformExcludesPrebuiltClosure_bridgeOS(const char* path) {
return platformExcludesPrebuiltClosure_iOS(path);
}
// Returns true if the current platform requires that this install name be excluded from the shared cache
// Note that this overrides any exclusion from anywhere else.
static bool platformExcludesPrebuiltClosure(Platform platform, const char* path) {
switch (platform) {
case dyld3::Platform::unknown:
return false;
case dyld3::Platform::macOS:
return platformExcludesPrebuiltClosure_macOS(path);
case dyld3::Platform::iOS:
return platformExcludesPrebuiltClosure_iOS(path);
case dyld3::Platform::tvOS:
return platformExcludesPrebuiltClosure_tvOS(path);
case dyld3::Platform::watchOS:
return platformExcludesPrebuiltClosure_watchOS(path);
case dyld3::Platform::bridgeOS:
return platformExcludesPrebuiltClosure_bridgeOS(path);
case dyld3::Platform::iOSMac:
return platformExcludesPrebuiltClosure_macOS(path);
case dyld3::Platform::iOS_simulator:
return false;
case dyld3::Platform::tvOS_simulator:
return false;
case dyld3::Platform::watchOS_simulator:
return false;
case dyld3::Platform::driverKit:
return false;
}
}
bool MachOFile::canHavePrecomputedDlopenClosure(const char* path, void (^failureReason)(const char*)) const
{
__block bool retval = true;
// only dylibs can go in cache
if ( (this->filetype != MH_DYLIB) && (this->filetype != MH_BUNDLE) ) {
retval = false;
failureReason("not MH_DYLIB or MH_BUNDLE");
}
// flat namespace files cannot go in cache
if ( (this->flags & MH_TWOLEVEL) == 0 ) {
retval = false;
failureReason("not built with two level namespaces");
}
// can only depend on other dylibs with absolute paths
__block bool allDepPathsAreGood = true;
forEachDependentDylib(^(const char* loadPath, bool isWeak, bool isReExport, bool isUpward, uint32_t compatVersion, uint32_t curVersion, bool& stop) {
if ( loadPath[0] != '/' ) {
allDepPathsAreGood = false;
stop = true;
}
});
if ( !allDepPathsAreGood ) {
retval = false;
failureReason("depends on dylibs that are not absolute paths");
}
__block bool platformExcludedFile = false;
forEachSupportedPlatform(^(Platform platform, uint32_t minOS, uint32_t sdk) {
if ( platformExcludedFile )
return;
if ( platformExcludesPrebuiltClosure(platform, path) ) {
platformExcludedFile = true;
return;
}
});
if ( platformExcludedFile ) {
failureReason("file cannot get a prebuilt closure on this platform");
return false;
}
// dylibs with interposing info cannot have dlopen closure pre-computed
if ( hasInterposingTuples() ) {
retval = false;
failureReason("has interposing tuples");
}
// special system dylib overrides cannot have closure pre-computed
if ( strncmp(path, "/usr/lib/system/introspection/", 30) == 0 ) {
retval = false;
failureReason("override of OS dylib");
}
return retval;
}
bool MachOFile::hasInterposingTuples() const
{
__block bool hasInterposing = false;
forEachSection(^(const SectionInfo& info, bool malformedSectionRange, bool &stop) {
if ( ((info.sectFlags & SECTION_TYPE) == S_INTERPOSING) || ((strcmp(info.sectName, "__interpose") == 0) && (strcmp(info.segInfo.segName, "__DATA") == 0)) )
hasInterposing = true;
});
return hasInterposing;
}
bool MachOFile::isFairPlayEncrypted(uint32_t& textOffset, uint32_t& size) const
{
if ( const encryption_info_command* encCmd = findFairPlayEncryptionLoadCommand() ) {
if ( encCmd->cryptid == 1 ) {
// Note: cryptid is 0 in just-built apps. The AppStore sets cryptid to 1
textOffset = encCmd->cryptoff;
size = encCmd->cryptsize;
return true;
}
}
textOffset = 0;
size = 0;
return false;
}
bool MachOFile::canBeFairPlayEncrypted() const
{
return (findFairPlayEncryptionLoadCommand() != nullptr);
}
const encryption_info_command* MachOFile::findFairPlayEncryptionLoadCommand() const
{
__block const encryption_info_command* result = nullptr;
Diagnostics diag;
forEachLoadCommand(diag, ^(const load_command* cmd, bool& stop) {
if ( (cmd->cmd == LC_ENCRYPTION_INFO) || (cmd->cmd == LC_ENCRYPTION_INFO_64) ) {
result = (encryption_info_command*)cmd;
stop = true;
}
});
if ( diag.noError() )
return result;
else
return nullptr;
}
bool MachOFile::hasLoadCommand(uint32_t cmdNum) const
{
__block bool hasLC = false;
Diagnostics diag;
forEachLoadCommand(diag, ^(const load_command* cmd, bool& stop) {
if ( cmd->cmd == cmdNum ) {
hasLC = true;
stop = true;
}
});
return hasLC;
}
bool MachOFile::allowsAlternatePlatform() const
{
__block bool result = false;
forEachSection(^(const SectionInfo& info, bool malformedSectionRange, bool& stop) {
if ( (strcmp(info.sectName, "__allow_alt_plat") == 0) && (strncmp(info.segInfo.segName, "__DATA", 6) == 0) ) {
result = true;
stop = true;
}
});
return result;
}
bool MachOFile::hasChainedFixups() const
{
#if SUPPORT_ARCH_arm64e
// arm64e always uses chained fixups
if ( (this->cputype == CPU_TYPE_ARM64) && (this->maskedCpuSubtype() == CPU_SUBTYPE_ARM64E) ) {
// Not all binaries have fixups at all so check for the load commands
return hasLoadCommand(LC_DYLD_INFO_ONLY) || hasLoadCommand(LC_DYLD_CHAINED_FIXUPS);
}
#endif
return hasLoadCommand(LC_DYLD_CHAINED_FIXUPS);
}
bool MachOFile::hasChainedFixupsLoadCommand() const
{
return hasLoadCommand(LC_DYLD_CHAINED_FIXUPS);
}
uint64_t MachOFile::read_uleb128(Diagnostics& diag, const uint8_t*& p, const uint8_t* end)
{
uint64_t result = 0;
int bit = 0;
do {
if ( p == end ) {
diag.error("malformed uleb128");
break;
}
uint64_t slice = *p & 0x7f;
if ( bit > 63 ) {
diag.error("uleb128 too big for uint64");
break;
}
else {
result |= (slice << bit);
bit += 7;
}
}
while (*p++ & 0x80);
return result;
}
int64_t MachOFile::read_sleb128(Diagnostics& diag, const uint8_t*& p, const uint8_t* end)
{
int64_t result = 0;
int bit = 0;
uint8_t byte = 0;
do {
if ( p == end ) {
diag.error("malformed sleb128");
break;
}
byte = *p++;
result |= (((int64_t)(byte & 0x7f)) << bit);
bit += 7;
} while (byte & 0x80);
// sign extend negative numbers
if ( ((byte & 0x40) != 0) && (bit < 64) )
result |= (~0ULL) << bit;
return result;
}
} // namespace dyld3