mirror of
https://github.com/darlinghq/darling-dyld.git
synced 2024-11-26 22:00:26 +00:00
01ca8e46cb
dyld-733.6
1624 lines
56 KiB
C++
1624 lines
56 KiB
C++
/*
|
|
* Copyright (c) 2008 Apple Inc. All rights reserved.
|
|
*
|
|
* @APPLE_LICENSE_HEADER_START@
|
|
*
|
|
* This file contains Original Code and/or Modifications of Original Code
|
|
* as defined in and that are subject to the Apple Public Source License
|
|
* Version 2.0 (the 'License'). You may not use this file except in
|
|
* compliance with the License. Please obtain a copy of the License at
|
|
* http://www.opensource.apple.com/apsl/ and read it before using this
|
|
* file.
|
|
*
|
|
* The Original Code and all software distributed under the License are
|
|
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
|
|
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
|
|
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
|
|
* Please see the License for the specific language governing rights and
|
|
* limitations under the License.
|
|
*
|
|
* @APPLE_LICENSE_HEADER_END@
|
|
*/
|
|
|
|
/*
|
|
Portions derived from:
|
|
|
|
--------------------------------------------------------------------
|
|
lookup8.c, by Bob Jenkins, January 4 1997, Public Domain.
|
|
hash(), hash2(), hash3, and mix() are externally useful functions.
|
|
Routines to test the hash are included if SELF_TEST is defined.
|
|
You can use this free for any purpose. It has no warranty.
|
|
--------------------------------------------------------------------
|
|
|
|
------------------------------------------------------------------------------
|
|
perfect.c: code to generate code for a hash for perfect hashing.
|
|
(c) Bob Jenkins, September 1996, December 1999
|
|
You may use this code in any way you wish, and it is free. No warranty.
|
|
I hereby place this in the public domain.
|
|
Source is http://burtleburtle.net/bob/c/perfect.c
|
|
------------------------------------------------------------------------------
|
|
*/
|
|
|
|
/*
|
|
* objc-selopt.h
|
|
* Interface between libobjc and dyld
|
|
* for selector uniquing in the dyld shared cache.
|
|
*
|
|
* When building the shared cache, dyld locates all selectors and selector
|
|
* references in the cached images. It builds a perfect hash table out of
|
|
* them and writes the table into the shared cache copy of libobjc.
|
|
* libobjc then uses that table as the builtin selector list.
|
|
*
|
|
* Versioning
|
|
* The table has a version number. dyld and objc can both ignore the table
|
|
* if the other used the wrong version number.
|
|
*
|
|
* Completeness
|
|
* Not all libraries are in the shared cache. Libraries that are in the
|
|
* shared cache and were optimized are specially marked. Libraries on
|
|
* disk never include those marks.
|
|
*
|
|
* Coherency
|
|
* Libraries optimized in the shared cache can be replaced by unoptimized
|
|
* copies from disk when loaded. The copy from disk is not marked and will
|
|
* be fixed up by libobjc. The shared cache copy is still mapped into the
|
|
* process, so the table can point to cstring data in that library's part
|
|
* of the shared cache without trouble.
|
|
*
|
|
* Atomicity
|
|
* dyld writes the table itself last. If dyld marks some metadata as
|
|
* updated but then fails to write a table for some reason, libobjc
|
|
* fixes up all metadata as if it were not marked.
|
|
*/
|
|
|
|
#ifndef _OBJC_SELOPT_H
|
|
#define _OBJC_SELOPT_H
|
|
|
|
/*
|
|
DO NOT INCLUDE ANY objc HEADERS HERE
|
|
dyld USES THIS FILE AND CANNOT SEE THEM
|
|
*/
|
|
#include <stdint.h>
|
|
#include <stdlib.h>
|
|
#ifdef CLOSURE_SELOPT_WRITE
|
|
#include "Array.h"
|
|
#include "Map.h"
|
|
#endif
|
|
#ifdef SELOPT_WRITE
|
|
#include <unordered_map>
|
|
#endif
|
|
/*
|
|
DO NOT INCLUDE ANY objc HEADERS HERE
|
|
dyld USES THIS FILE AND CANNOT SEE THEM
|
|
*/
|
|
|
|
#ifndef STATIC_ASSERT
|
|
# define STATIC_ASSERT(x) _STATIC_ASSERT2(x, __LINE__)
|
|
# define _STATIC_ASSERT2(x, line) _STATIC_ASSERT3(x, line)
|
|
# define _STATIC_ASSERT3(x, line) \
|
|
typedef struct { \
|
|
int _static_assert[(x) ? 0 : -1]; \
|
|
} _static_assert_ ## line __attribute__((unavailable))
|
|
#endif
|
|
|
|
#define SELOPT_DEBUG 0
|
|
|
|
#define S32(x) x = little_endian ? OSSwapHostToLittleInt32(x) : OSSwapHostToBigInt32(x)
|
|
#define S64(x) x = little_endian ? OSSwapHostToLittleInt64(x) : OSSwapHostToBigInt64(x)
|
|
|
|
namespace objc_opt {
|
|
|
|
typedef int32_t objc_stringhash_offset_t;
|
|
typedef uint8_t objc_stringhash_check_t;
|
|
|
|
static uint64_t lookup8( uint8_t *k, size_t length, uint64_t level);
|
|
|
|
#if defined(SELOPT_WRITE) || defined(CLOSURE_SELOPT_WRITE)
|
|
|
|
// Perfect hash code is at the end of this file.
|
|
|
|
struct __attribute__((packed)) perfect_hash {
|
|
uint32_t capacity;
|
|
uint32_t occupied;
|
|
uint32_t shift;
|
|
uint32_t mask;
|
|
uint64_t salt;
|
|
|
|
uint32_t scramble[256];
|
|
dyld3::OverflowSafeArray<uint8_t> tab; // count == mask+1
|
|
|
|
perfect_hash() { }
|
|
|
|
~perfect_hash() { }
|
|
};
|
|
|
|
struct eqstr {
|
|
bool operator()(const char* s1, const char* s2) const {
|
|
return strcmp(s1, s2) == 0;
|
|
}
|
|
};
|
|
|
|
struct hashstr {
|
|
size_t operator()(const char *s) const {
|
|
return (size_t)lookup8((uint8_t *)s, strlen(s), 0);
|
|
}
|
|
};
|
|
|
|
#endif // defined(SELOPT_WRITE) || defined(CLOSURE_SELOPT_WRITE)
|
|
|
|
#ifdef SELOPT_WRITE
|
|
|
|
// cstring => cstring's vmaddress
|
|
// (used for selector names and class names)
|
|
typedef std::unordered_map<const char *, uint64_t, hashstr, eqstr> string_map;
|
|
|
|
// protocol name => protocol vmaddress
|
|
typedef std::unordered_map<const char *, uint64_t, hashstr, eqstr> legacy_protocol_map;
|
|
|
|
// protocol name => (protocol vmaddress, header_info vmaddress)
|
|
typedef std::unordered_multimap<const char *, std::pair<uint64_t, uint64_t>, hashstr, eqstr> protocol_map;
|
|
|
|
// class name => (class vmaddress, header_info vmaddress)
|
|
typedef std::unordered_multimap<const char *, std::pair<uint64_t, uint64_t>, hashstr, eqstr> class_map;
|
|
|
|
static void make_perfect(const string_map& strings, perfect_hash& phash);
|
|
|
|
#endif // defined(SELOPT_WRITE)
|
|
|
|
|
|
// Precomputed perfect hash table of strings.
|
|
// Base class for precomputed selector table and class table.
|
|
// Edit objc-sel-table.s if you change this structure.
|
|
struct __attribute__((packed)) objc_stringhash_t {
|
|
uint32_t capacity;
|
|
uint32_t occupied;
|
|
uint32_t shift;
|
|
uint32_t mask;
|
|
uint32_t unused1; // was zero
|
|
uint32_t unused2; // alignment pad
|
|
uint64_t salt;
|
|
|
|
uint32_t scramble[256];
|
|
uint8_t tab[0]; /* tab[mask+1] (always power-of-2) */
|
|
// uint8_t checkbytes[capacity]; /* check byte for each string */
|
|
// int32_t offsets[capacity]; /* offsets from &capacity to cstrings */
|
|
|
|
objc_stringhash_check_t *checkbytes() { return (objc_stringhash_check_t *)&tab[mask+1]; }
|
|
const objc_stringhash_check_t *checkbytes() const { return (const objc_stringhash_check_t *)&tab[mask+1]; }
|
|
|
|
objc_stringhash_offset_t *offsets() { return (objc_stringhash_offset_t *)&checkbytes()[capacity]; }
|
|
const objc_stringhash_offset_t *offsets() const { return (const objc_stringhash_offset_t *)&checkbytes()[capacity]; }
|
|
|
|
uint32_t hash(const char *key, size_t keylen) const
|
|
{
|
|
uint64_t val = lookup8((uint8_t*)key, keylen, salt);
|
|
uint32_t index = (uint32_t)(val>>shift) ^ scramble[tab[val&mask]];
|
|
return index;
|
|
}
|
|
|
|
uint32_t hash(const char *key) const
|
|
{
|
|
return hash(key, strlen(key));
|
|
}
|
|
|
|
// The check bytes areused to reject strings that aren't in the table
|
|
// without paging in the table's cstring data. This checkbyte calculation
|
|
// catches 4785/4815 rejects when launching Safari; a perfect checkbyte
|
|
// would catch 4796/4815.
|
|
objc_stringhash_check_t checkbyte(const char *key, size_t keylen) const
|
|
{
|
|
return
|
|
((key[0] & 0x7) << 5)
|
|
|
|
|
((uint8_t)keylen & 0x1f);
|
|
}
|
|
|
|
objc_stringhash_check_t checkbyte(const char *key) const
|
|
{
|
|
return checkbyte(key, strlen(key));
|
|
}
|
|
|
|
|
|
#define INDEX_NOT_FOUND (~(uint32_t)0)
|
|
|
|
uint32_t getIndex(const char *key) const
|
|
{
|
|
size_t keylen = strlen(key);
|
|
uint32_t h = hash(key, keylen);
|
|
|
|
// Use check byte to reject without paging in the table's cstrings
|
|
objc_stringhash_check_t h_check = checkbytes()[h];
|
|
objc_stringhash_check_t key_check = checkbyte(key, keylen);
|
|
bool check_fail = (h_check != key_check);
|
|
#if ! SELOPT_DEBUG
|
|
if (check_fail) return INDEX_NOT_FOUND;
|
|
#endif
|
|
|
|
objc_stringhash_offset_t offset = offsets()[h];
|
|
if (offset == 0) return INDEX_NOT_FOUND;
|
|
const char *result = (const char *)this + offset;
|
|
if (0 != strcmp(key, result)) return INDEX_NOT_FOUND;
|
|
|
|
#if SELOPT_DEBUG
|
|
if (check_fail) abort();
|
|
#endif
|
|
|
|
return h;
|
|
}
|
|
|
|
#ifdef SELOPT_WRITE
|
|
|
|
size_t size()
|
|
{
|
|
return sizeof(objc_stringhash_t)
|
|
+ mask+1
|
|
+ capacity * sizeof(objc_stringhash_check_t)
|
|
+ capacity * sizeof(objc_stringhash_offset_t);
|
|
}
|
|
|
|
void byteswap(bool little_endian)
|
|
{
|
|
// tab and checkbytes are arrays of bytes, no swap needed
|
|
for (uint32_t i = 0; i < 256; i++) {
|
|
S32(scramble[i]);
|
|
}
|
|
objc_stringhash_offset_t *o = offsets();
|
|
for (uint32_t i = 0; i < capacity; i++) {
|
|
S32(o[i]);
|
|
}
|
|
|
|
S32(capacity);
|
|
S32(occupied);
|
|
S32(shift);
|
|
S32(mask);
|
|
S64(salt);
|
|
}
|
|
|
|
const char *write(uint64_t base, size_t remaining, string_map& strings)
|
|
{
|
|
if (sizeof(objc_stringhash_t) > remaining) {
|
|
return "selector section too small (metadata not optimized)";
|
|
}
|
|
|
|
if (strings.size() == 0) {
|
|
bzero(this, sizeof(objc_stringhash_t));
|
|
return NULL;
|
|
}
|
|
|
|
perfect_hash phash;
|
|
make_perfect(strings, phash);
|
|
if (phash.capacity == 0) {
|
|
return "perfect hash failed (metadata not optimized)";
|
|
}
|
|
|
|
// Set header
|
|
capacity = phash.capacity;
|
|
occupied = phash.occupied;
|
|
shift = phash.shift;
|
|
mask = phash.mask;
|
|
unused1 = 0;
|
|
unused2 = 0;
|
|
salt = phash.salt;
|
|
|
|
if (size() > remaining) {
|
|
return "selector section too small (metadata not optimized)";
|
|
}
|
|
|
|
// Set hash data
|
|
for (uint32_t i = 0; i < 256; i++) {
|
|
scramble[i] = phash.scramble[i];
|
|
}
|
|
for (uint32_t i = 0; i < phash.mask+1; i++) {
|
|
tab[i] = phash.tab[i];
|
|
}
|
|
|
|
// Set offsets to 0
|
|
for (uint32_t i = 0; i < phash.capacity; i++) {
|
|
offsets()[i] = 0;
|
|
}
|
|
// Set checkbytes to 0
|
|
for (uint32_t i = 0; i < phash.capacity; i++) {
|
|
checkbytes()[i] = 0;
|
|
}
|
|
|
|
// Set real string offsets and checkbytes
|
|
# define SHIFT (64 - 8*sizeof(objc_stringhash_offset_t))
|
|
string_map::const_iterator s;
|
|
for (s = strings.begin(); s != strings.end(); ++s) {
|
|
int64_t offset = s->second - base;
|
|
if ((offset<<SHIFT)>>SHIFT != offset) {
|
|
return "selector offset too big (metadata not optimized)";
|
|
}
|
|
|
|
uint32_t h = hash(s->first);
|
|
offsets()[h] = (objc_stringhash_offset_t)offset;
|
|
checkbytes()[h] = checkbyte(s->first);
|
|
}
|
|
# undef SHIFT
|
|
|
|
return NULL;
|
|
}
|
|
|
|
// SELOPT_WRITE
|
|
#endif
|
|
};
|
|
|
|
// Precomputed selector table.
|
|
// Edit objc-sel-table.s if you change this structure.
|
|
struct objc_selopt_t : objc_stringhash_t {
|
|
|
|
const char* getEntryForIndex(uint32_t index) const {
|
|
return (const char *)this + offsets()[index];
|
|
}
|
|
|
|
uint32_t getIndexForKey(const char *key) const {
|
|
return getIndex(key);
|
|
}
|
|
|
|
uint32_t getSentinelIndex() const {
|
|
return INDEX_NOT_FOUND;
|
|
}
|
|
|
|
const char* get(const char *key) const
|
|
{
|
|
uint32_t h = getIndex(key);
|
|
if (h == INDEX_NOT_FOUND) return NULL;
|
|
return getEntryForIndex(h);
|
|
}
|
|
|
|
size_t usedCount() const {
|
|
return capacity;
|
|
}
|
|
};
|
|
|
|
// Precomputed class list.
|
|
// Edit objc-sel-table.s if you change these structures.
|
|
|
|
struct objc_classheader_t {
|
|
objc_stringhash_offset_t clsOffset;
|
|
objc_stringhash_offset_t hiOffset;
|
|
|
|
// For duplicate class names:
|
|
// clsOffset = count<<1 | 1
|
|
// duplicated classes are duplicateOffsets[hiOffset..hiOffset+count-1]
|
|
bool isDuplicate() const { return clsOffset & 1; }
|
|
uint32_t duplicateCount() const { return clsOffset >> 1; }
|
|
uint32_t duplicateIndex() const { return hiOffset; }
|
|
};
|
|
|
|
|
|
struct objc_clsopt_t : objc_stringhash_t {
|
|
// ...objc_stringhash_t fields...
|
|
// objc_classheader_t classOffsets[capacity]; /* offsets from &capacity to class_t and header_info */
|
|
// uint32_t duplicateCount;
|
|
// objc_classheader_t duplicateOffsets[duplicatedClasses];
|
|
|
|
objc_classheader_t *classOffsets() { return (objc_classheader_t *)&offsets()[capacity]; }
|
|
const objc_classheader_t *classOffsets() const { return (const objc_classheader_t *)&offsets()[capacity]; }
|
|
|
|
uint32_t& duplicateCount() { return *(uint32_t *)&classOffsets()[capacity]; }
|
|
const uint32_t& duplicateCount() const { return *(const uint32_t *)&classOffsets()[capacity]; }
|
|
|
|
objc_classheader_t *duplicateOffsets() { return (objc_classheader_t *)(&duplicateCount()+1); }
|
|
const objc_classheader_t *duplicateOffsets() const { return (const objc_classheader_t *)(&duplicateCount()+1); }
|
|
|
|
const char* getClassNameForIndex(uint32_t index) const {
|
|
return (const char *)this + offsets()[index];
|
|
}
|
|
|
|
void* getClassForIndex(uint32_t index, uint32_t duplicateIndex) const {
|
|
const objc_classheader_t& clshi = classOffsets()[index];
|
|
if (! clshi.isDuplicate()) {
|
|
// class appears in exactly one header
|
|
return (void *)((const char *)this + clshi.clsOffset);
|
|
}
|
|
else {
|
|
// class appears in more than one header - use getClassesAndHeaders
|
|
const objc_classheader_t *list = &duplicateOffsets()[clshi.duplicateIndex()];
|
|
return (void *)((const char *)this + list[duplicateIndex].clsOffset);
|
|
}
|
|
}
|
|
|
|
// 0/NULL/NULL: not found
|
|
// 1/ptr/ptr: found exactly one
|
|
// n/NULL/NULL: found N - use getClassesAndHeaders() instead
|
|
uint32_t getClassHeaderAndIndex(const char *key, void*& cls, void*& hi, uint32_t& index) const
|
|
{
|
|
uint32_t h = getIndex(key);
|
|
if (h == INDEX_NOT_FOUND) {
|
|
cls = NULL;
|
|
hi = NULL;
|
|
index = 0;
|
|
return 0;
|
|
}
|
|
|
|
index = h;
|
|
|
|
const objc_classheader_t& clshi = classOffsets()[h];
|
|
if (! clshi.isDuplicate()) {
|
|
// class appears in exactly one header
|
|
cls = (void *)((const char *)this + clshi.clsOffset);
|
|
hi = (void *)((const char *)this + clshi.hiOffset);
|
|
return 1;
|
|
}
|
|
else {
|
|
// class appears in more than one header - use getClassesAndHeaders
|
|
cls = NULL;
|
|
hi = NULL;
|
|
return clshi.duplicateCount();
|
|
}
|
|
}
|
|
|
|
void getClassesAndHeaders(const char *key, void **cls, void **hi) const
|
|
{
|
|
uint32_t h = getIndex(key);
|
|
if (h == INDEX_NOT_FOUND) return;
|
|
|
|
const objc_classheader_t& clshi = classOffsets()[h];
|
|
if (! clshi.isDuplicate()) {
|
|
// class appears in exactly one header
|
|
cls[0] = (void *)((const char *)this + clshi.clsOffset);
|
|
hi[0] = (void *)((const char *)this + clshi.hiOffset);
|
|
}
|
|
else {
|
|
// class appears in more than one header
|
|
uint32_t count = clshi.duplicateCount();
|
|
const objc_classheader_t *list =
|
|
&duplicateOffsets()[clshi.duplicateIndex()];
|
|
for (uint32_t i = 0; i < count; i++) {
|
|
cls[i] = (void *)((const char *)this + list[i].clsOffset);
|
|
hi[i] = (void *)((const char *)this + list[i].hiOffset);
|
|
}
|
|
}
|
|
}
|
|
|
|
// 0/NULL/NULL: not found
|
|
// 1/ptr/ptr: found exactly one
|
|
// n/NULL/NULL: found N - use getClassesAndHeaders() instead
|
|
uint32_t getClassAndHeader(const char *key, void*& cls, void*& hi) const
|
|
{
|
|
uint32_t unusedIndex = 0;
|
|
return getClassHeaderAndIndex(key, cls, hi, unusedIndex);
|
|
}
|
|
|
|
#ifdef SELOPT_WRITE
|
|
|
|
size_t size()
|
|
{
|
|
return
|
|
objc_stringhash_t::size()
|
|
+ capacity * sizeof(objc_classheader_t)
|
|
+ sizeof(duplicateCount())
|
|
+ duplicateCount() * sizeof(objc_classheader_t);
|
|
}
|
|
|
|
size_t sizeWithoutDups()
|
|
{
|
|
return
|
|
objc_stringhash_t::size()
|
|
+ capacity * sizeof(objc_classheader_t);
|
|
}
|
|
|
|
void byteswap(bool little_endian)
|
|
{
|
|
objc_classheader_t *o;
|
|
|
|
o = classOffsets();
|
|
for (uint32_t i = 0; i < capacity; i++) {
|
|
S32(o[i].clsOffset);
|
|
S32(o[i].hiOffset);
|
|
}
|
|
|
|
o = duplicateOffsets();
|
|
for (uint32_t i = 0; i < duplicateCount(); i++) {
|
|
S32(o[i].clsOffset);
|
|
S32(o[i].hiOffset);
|
|
}
|
|
|
|
S32(duplicateCount());
|
|
|
|
objc_stringhash_t::byteswap(little_endian);
|
|
}
|
|
|
|
const char *write(uint64_t base, size_t remaining,
|
|
string_map& strings, class_map& classes, bool verbose)
|
|
{
|
|
const char *err;
|
|
err = objc_stringhash_t::write(base, remaining, strings);
|
|
if (err) return err;
|
|
|
|
if (sizeWithoutDups() > remaining) {
|
|
return "selector section too small (metadata not optimized)";
|
|
}
|
|
if (size() > remaining) {
|
|
return "selector section too small (metadata not optimized)";
|
|
}
|
|
|
|
// Set class offsets to 0
|
|
for (uint32_t i = 0; i < capacity; i++) {
|
|
classOffsets()[i].clsOffset = 0;
|
|
classOffsets()[i].hiOffset = 0;
|
|
}
|
|
|
|
// Set real class offsets
|
|
# define SHIFT (64 - 8*sizeof(objc_stringhash_offset_t))
|
|
class_map::const_iterator c;
|
|
for (c = classes.begin(); c != classes.end(); ++c) {
|
|
uint32_t h = getIndex(c->first);
|
|
if (h == INDEX_NOT_FOUND) {
|
|
return "class list busted (metadata not optimized)";
|
|
}
|
|
|
|
if (classOffsets()[h].clsOffset != 0) {
|
|
// already did this class
|
|
continue;
|
|
}
|
|
|
|
uint32_t count = (uint32_t)classes.count(c->first);
|
|
if (count == 1) {
|
|
// only one class with this name
|
|
|
|
int64_t coff = c->second.first - base;
|
|
int64_t hoff = c->second.second - base;
|
|
if ((coff<<SHIFT)>>SHIFT != coff) {
|
|
return "class offset too big (metadata not optimized)";
|
|
}
|
|
if ((hoff<<SHIFT)>>SHIFT != hoff) {
|
|
return "header offset too big (metadata not optimized)";
|
|
}
|
|
|
|
classOffsets()[h].clsOffset = (objc_stringhash_offset_t)coff;
|
|
classOffsets()[h].hiOffset = (objc_stringhash_offset_t)hoff;
|
|
}
|
|
else {
|
|
// class name has duplicates - write them all now
|
|
if (verbose) {
|
|
fprintf(stderr, "update_dyld_shared_cache: %u duplicates of Objective-C class %s\n", count, c->first);
|
|
}
|
|
|
|
uint32_t dest = duplicateCount();
|
|
duplicateCount() += count;
|
|
if (size() > remaining) {
|
|
return "selector section too small (metadata not optimized)";
|
|
}
|
|
|
|
// classOffsets() instead contains count and array index
|
|
classOffsets()[h].clsOffset = count*2 + 1;
|
|
classOffsets()[h].hiOffset = dest;
|
|
|
|
std::pair<class_map::const_iterator, class_map::const_iterator>
|
|
duplicates = classes.equal_range(c->first);
|
|
class_map::const_iterator dup;
|
|
for (dup = duplicates.first; dup != duplicates.second; ++dup) {
|
|
int64_t coff = dup->second.first - base;
|
|
int64_t hoff = dup->second.second - base;
|
|
if ((coff<<SHIFT)>>SHIFT != coff) {
|
|
return "class offset too big (metadata not optimized)";
|
|
}
|
|
if ((hoff<<SHIFT)>>SHIFT != hoff) {
|
|
return "header offset too big (metadata not optimized)";
|
|
}
|
|
|
|
duplicateOffsets()[dest].clsOffset = (objc_stringhash_offset_t)coff;
|
|
duplicateOffsets()[dest].hiOffset = (objc_stringhash_offset_t)hoff;
|
|
dest++;
|
|
}
|
|
}
|
|
}
|
|
# undef SHIFT
|
|
|
|
return NULL;
|
|
}
|
|
|
|
// SELOPT_WRITE
|
|
#endif
|
|
};
|
|
|
|
|
|
struct objc_protocolopt_t : objc_stringhash_t {
|
|
// ...objc_stringhash_t fields...
|
|
// uint32_t protocolOffsets[capacity]; /* offsets from &capacity to protocol_t */
|
|
|
|
objc_stringhash_offset_t *protocolOffsets() { return (objc_stringhash_offset_t *)&offsets()[capacity]; }
|
|
const objc_stringhash_offset_t *protocolOffsets() const { return (const objc_stringhash_offset_t *)&offsets()[capacity]; }
|
|
|
|
void* getProtocol(const char *key) const
|
|
{
|
|
uint32_t h = getIndex(key);
|
|
if (h == INDEX_NOT_FOUND) {
|
|
return NULL;
|
|
}
|
|
|
|
return (void *)((const char *)this + protocolOffsets()[h]);
|
|
}
|
|
|
|
#ifdef SELOPT_WRITE
|
|
|
|
size_t size()
|
|
{
|
|
return
|
|
objc_stringhash_t::size() + capacity * sizeof(objc_stringhash_offset_t);
|
|
}
|
|
|
|
void byteswap(bool little_endian)
|
|
{
|
|
objc_stringhash_offset_t *o;
|
|
|
|
o = protocolOffsets();
|
|
for (objc_stringhash_offset_t i = 0; i < (int)capacity; i++) {
|
|
S32(o[i]);
|
|
}
|
|
|
|
objc_stringhash_t::byteswap(little_endian);
|
|
}
|
|
|
|
const char *write(uint64_t base, size_t remaining,
|
|
string_map& strings, legacy_protocol_map& protocols,
|
|
bool verbose)
|
|
{
|
|
const char *err;
|
|
err = objc_stringhash_t::write(base, remaining, strings);
|
|
if (err) return err;
|
|
|
|
if (size() > remaining) {
|
|
return "selector section too small (metadata not optimized)";
|
|
}
|
|
|
|
// Set protocol offsets to 0
|
|
for (uint32_t i = 0; i < capacity; i++) {
|
|
protocolOffsets()[i] = 0;
|
|
}
|
|
|
|
// Set real protocol offsets
|
|
# define SHIFT (64 - 8*sizeof(objc_stringhash_offset_t))
|
|
legacy_protocol_map::const_iterator c;
|
|
for (c = protocols.begin(); c != protocols.end(); ++c) {
|
|
uint32_t h = getIndex(c->first);
|
|
if (h == INDEX_NOT_FOUND) {
|
|
return "protocol list busted (metadata not optimized)";
|
|
}
|
|
|
|
int64_t offset = c->second - base;
|
|
if ((offset<<SHIFT)>>SHIFT != offset) {
|
|
return "protocol offset too big (metadata not optimized)";
|
|
}
|
|
|
|
protocolOffsets()[h] = (objc_stringhash_offset_t)offset;
|
|
}
|
|
# undef SHIFT
|
|
|
|
return NULL;
|
|
}
|
|
|
|
// SELOPT_WRITE
|
|
#endif
|
|
};
|
|
|
|
struct objc_protocolopt2_t : objc_clsopt_t {
|
|
|
|
void* getProtocol(const char *key,
|
|
bool (*callback)(const void* header_info)) const
|
|
{
|
|
uint32_t h = getIndex(key);
|
|
if (h == INDEX_NOT_FOUND) {
|
|
return NULL;
|
|
}
|
|
|
|
const objc_classheader_t& clshi = classOffsets()[h];
|
|
if (! clshi.isDuplicate()) {
|
|
// protocol appears in exactly one header
|
|
void* cls = (void *)((const char *)this + clshi.clsOffset);
|
|
void* hi = (void *)((const char *)this + clshi.hiOffset);
|
|
return callback(hi) ? cls : NULL;
|
|
}
|
|
else {
|
|
// protocol appears in more than one header
|
|
uint32_t count = clshi.duplicateCount();
|
|
const objc_classheader_t *list = &duplicateOffsets()[clshi.duplicateIndex()];
|
|
for (uint32_t i = 0; i < count; i++) {
|
|
void* cls = (void *)((const char *)this + list[i].clsOffset);
|
|
void* hi = (void *)((const char *)this + list[i].hiOffset);
|
|
if (callback(hi))
|
|
return cls;
|
|
}
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
};
|
|
|
|
|
|
// Precomputed image list.
|
|
struct objc_headeropt_ro_t;
|
|
|
|
// Precomputed image list.
|
|
struct objc_headeropt_rw_t;
|
|
|
|
// Precomputed class list.
|
|
struct objc_clsopt_t;
|
|
|
|
// Edit objc-sel-table.s if you change this value.
|
|
// lldb and Symbolication read these structures. Inform them of any changes.
|
|
enum { VERSION = 15 };
|
|
|
|
// Values for objc_opt_t::flags
|
|
enum : uint32_t {
|
|
IsProduction = (1 << 0), // never set in development cache
|
|
NoMissingWeakSuperclasses = (1 << 1) // set in development cache and customer
|
|
};
|
|
|
|
// Top-level optimization structure.
|
|
// Edit objc-sel-table.s if you change this structure.
|
|
struct alignas(alignof(void*)) objc_opt_t {
|
|
uint32_t version;
|
|
uint32_t flags;
|
|
int32_t selopt_offset;
|
|
int32_t headeropt_ro_offset;
|
|
int32_t clsopt_offset;
|
|
int32_t unused_protocolopt_offset; // This is now 0 as we've moved to the new protocolopt_offset
|
|
int32_t headeropt_rw_offset;
|
|
int32_t protocolopt_offset;
|
|
|
|
const objc_selopt_t* selopt() const {
|
|
if (selopt_offset == 0) return NULL;
|
|
return (objc_selopt_t *)((uint8_t *)this + selopt_offset);
|
|
}
|
|
objc_selopt_t* selopt() {
|
|
if (selopt_offset == 0) return NULL;
|
|
return (objc_selopt_t *)((uint8_t *)this + selopt_offset);
|
|
}
|
|
|
|
struct objc_headeropt_ro_t* headeropt_ro() const {
|
|
if (headeropt_ro_offset == 0) return NULL;
|
|
return (struct objc_headeropt_ro_t *)((uint8_t *)this + headeropt_ro_offset);
|
|
}
|
|
|
|
struct objc_clsopt_t* clsopt() const {
|
|
if (clsopt_offset == 0) return NULL;
|
|
return (objc_clsopt_t *)((uint8_t *)this + clsopt_offset);
|
|
}
|
|
|
|
struct objc_protocolopt_t* protocolopt() const {
|
|
if (unused_protocolopt_offset == 0) return NULL;
|
|
return (objc_protocolopt_t *)((uint8_t *)this + unused_protocolopt_offset);
|
|
}
|
|
|
|
struct objc_protocolopt2_t* protocolopt2() const {
|
|
if (protocolopt_offset == 0) return NULL;
|
|
return (objc_protocolopt2_t *)((uint8_t *)this + protocolopt_offset);
|
|
}
|
|
|
|
struct objc_headeropt_rw_t* headeropt_rw() const {
|
|
if (headeropt_rw_offset == 0) return NULL;
|
|
return (struct objc_headeropt_rw_t *)((uint8_t *)this + headeropt_rw_offset);
|
|
}
|
|
};
|
|
|
|
// sizeof(objc_opt_t) must be pointer-aligned
|
|
STATIC_ASSERT(sizeof(objc_opt_t) % sizeof(void*) == 0);
|
|
|
|
|
|
// List of offsets in libobjc that the shared cache optimization needs to use.
|
|
template <typename T>
|
|
struct objc_opt_pointerlist_tt {
|
|
T protocolClass;
|
|
};
|
|
typedef struct objc_opt_pointerlist_tt<uintptr_t> objc_opt_pointerlist_t;
|
|
|
|
|
|
/*
|
|
--------------------------------------------------------------------
|
|
mix -- mix 3 64-bit values reversibly.
|
|
mix() takes 48 machine instructions, but only 24 cycles on a superscalar
|
|
machine (like Intel's new MMX architecture). It requires 4 64-bit
|
|
registers for 4::2 parallelism.
|
|
All 1-bit deltas, all 2-bit deltas, all deltas composed of top bits of
|
|
(a,b,c), and all deltas of bottom bits were tested. All deltas were
|
|
tested both on random keys and on keys that were nearly all zero.
|
|
These deltas all cause every bit of c to change between 1/3 and 2/3
|
|
of the time (well, only 113/400 to 287/400 of the time for some
|
|
2-bit delta). These deltas all cause at least 80 bits to change
|
|
among (a,b,c) when the mix is run either forward or backward (yes it
|
|
is reversible).
|
|
This implies that a hash using mix64 has no funnels. There may be
|
|
characteristics with 3-bit deltas or bigger, I didn't test for
|
|
those.
|
|
--------------------------------------------------------------------
|
|
*/
|
|
#define mix64(a,b,c) \
|
|
{ \
|
|
a -= b; a -= c; a ^= (c>>43); \
|
|
b -= c; b -= a; b ^= (a<<9); \
|
|
c -= a; c -= b; c ^= (b>>8); \
|
|
a -= b; a -= c; a ^= (c>>38); \
|
|
b -= c; b -= a; b ^= (a<<23); \
|
|
c -= a; c -= b; c ^= (b>>5); \
|
|
a -= b; a -= c; a ^= (c>>35); \
|
|
b -= c; b -= a; b ^= (a<<49); \
|
|
c -= a; c -= b; c ^= (b>>11); \
|
|
a -= b; a -= c; a ^= (c>>12); \
|
|
b -= c; b -= a; b ^= (a<<18); \
|
|
c -= a; c -= b; c ^= (b>>22); \
|
|
}
|
|
|
|
/*
|
|
--------------------------------------------------------------------
|
|
hash() -- hash a variable-length key into a 64-bit value
|
|
k : the key (the unaligned variable-length array of bytes)
|
|
len : the length of the key, counting by bytes
|
|
level : can be any 8-byte value
|
|
Returns a 64-bit value. Every bit of the key affects every bit of
|
|
the return value. No funnels. Every 1-bit and 2-bit delta achieves
|
|
avalanche. About 41+5len instructions.
|
|
|
|
The best hash table sizes are powers of 2. There is no need to do
|
|
mod a prime (mod is sooo slow!). If you need less than 64 bits,
|
|
use a bitmask. For example, if you need only 10 bits, do
|
|
h = (h & hashmask(10));
|
|
In which case, the hash table should have hashsize(10) elements.
|
|
|
|
If you are hashing n strings (uint8_t **)k, do it like this:
|
|
for (i=0, h=0; i<n; ++i) h = hash( k[i], len[i], h);
|
|
|
|
By Bob Jenkins, Jan 4 1997. bob_jenkins@burtleburtle.net. You may
|
|
use this code any way you wish, private, educational, or commercial,
|
|
but I would appreciate if you give me credit.
|
|
|
|
See http://burtleburtle.net/bob/hash/evahash.html
|
|
Use for hash table lookup, or anything where one collision in 2^^64
|
|
is acceptable. Do NOT use for cryptographic purposes.
|
|
--------------------------------------------------------------------
|
|
*/
|
|
|
|
static uint64_t lookup8( uint8_t *k, size_t length, uint64_t level)
|
|
// uint8_t *k; /* the key */
|
|
// uint64_t length; /* the length of the key */
|
|
// uint64_t level; /* the previous hash, or an arbitrary value */
|
|
{
|
|
uint64_t a,b,c;
|
|
size_t len;
|
|
|
|
/* Set up the internal state */
|
|
len = length;
|
|
a = b = level; /* the previous hash value */
|
|
c = 0x9e3779b97f4a7c13LL; /* the golden ratio; an arbitrary value */
|
|
|
|
/*---------------------------------------- handle most of the key */
|
|
while (len >= 24)
|
|
{
|
|
a += (k[0] +((uint64_t)k[ 1]<< 8)+((uint64_t)k[ 2]<<16)+((uint64_t)k[ 3]<<24)
|
|
+((uint64_t)k[4 ]<<32)+((uint64_t)k[ 5]<<40)+((uint64_t)k[ 6]<<48)+((uint64_t)k[ 7]<<56));
|
|
b += (k[8] +((uint64_t)k[ 9]<< 8)+((uint64_t)k[10]<<16)+((uint64_t)k[11]<<24)
|
|
+((uint64_t)k[12]<<32)+((uint64_t)k[13]<<40)+((uint64_t)k[14]<<48)+((uint64_t)k[15]<<56));
|
|
c += (k[16] +((uint64_t)k[17]<< 8)+((uint64_t)k[18]<<16)+((uint64_t)k[19]<<24)
|
|
+((uint64_t)k[20]<<32)+((uint64_t)k[21]<<40)+((uint64_t)k[22]<<48)+((uint64_t)k[23]<<56));
|
|
mix64(a,b,c);
|
|
k += 24; len -= 24;
|
|
}
|
|
|
|
/*------------------------------------- handle the last 23 bytes */
|
|
c += length;
|
|
#pragma clang diagnostic push
|
|
#pragma clang diagnostic ignored "-Wimplicit-fallthrough"
|
|
switch(len) /* all the case statements fall through */
|
|
{
|
|
case 23: c+=((uint64_t)k[22]<<56);
|
|
case 22: c+=((uint64_t)k[21]<<48);
|
|
case 21: c+=((uint64_t)k[20]<<40);
|
|
case 20: c+=((uint64_t)k[19]<<32);
|
|
case 19: c+=((uint64_t)k[18]<<24);
|
|
case 18: c+=((uint64_t)k[17]<<16);
|
|
case 17: c+=((uint64_t)k[16]<<8);
|
|
/* the first byte of c is reserved for the length */
|
|
case 16: b+=((uint64_t)k[15]<<56);
|
|
case 15: b+=((uint64_t)k[14]<<48);
|
|
case 14: b+=((uint64_t)k[13]<<40);
|
|
case 13: b+=((uint64_t)k[12]<<32);
|
|
case 12: b+=((uint64_t)k[11]<<24);
|
|
case 11: b+=((uint64_t)k[10]<<16);
|
|
case 10: b+=((uint64_t)k[ 9]<<8);
|
|
case 9: b+=((uint64_t)k[ 8]);
|
|
case 8: a+=((uint64_t)k[ 7]<<56);
|
|
case 7: a+=((uint64_t)k[ 6]<<48);
|
|
case 6: a+=((uint64_t)k[ 5]<<40);
|
|
case 5: a+=((uint64_t)k[ 4]<<32);
|
|
case 4: a+=((uint64_t)k[ 3]<<24);
|
|
case 3: a+=((uint64_t)k[ 2]<<16);
|
|
case 2: a+=((uint64_t)k[ 1]<<8);
|
|
case 1: a+=((uint64_t)k[ 0]);
|
|
/* case 0: nothing left to add */
|
|
}
|
|
#pragma clang diagnostic pop
|
|
mix64(a,b,c);
|
|
/*-------------------------------------------- report the result */
|
|
return c;
|
|
}
|
|
|
|
|
|
#if defined(SELOPT_WRITE) || defined(CLOSURE_SELOPT_WRITE)
|
|
|
|
/*
|
|
------------------------------------------------------------------------------
|
|
This generates a minimal perfect hash function. That means, given a
|
|
set of n keys, this determines a hash function that maps each of
|
|
those keys into a value in 0..n-1 with no collisions.
|
|
|
|
The perfect hash function first uses a normal hash function on the key
|
|
to determine (a,b) such that the pair (a,b) is distinct for all
|
|
keys, then it computes a^scramble[tab[b]] to get the final perfect hash.
|
|
tab[] is an array of 1-byte values and scramble[] is a 256-term array of
|
|
2-byte or 4-byte values. If there are n keys, the length of tab[] is a
|
|
power of two between n/3 and n.
|
|
|
|
I found the idea of computing distinct (a,b) values in "Practical minimal
|
|
perfect hash functions for large databases", Fox, Heath, Chen, and Daoud,
|
|
Communications of the ACM, January 1992. They found the idea in Chichelli
|
|
(CACM Jan 1980). Beyond that, our methods differ.
|
|
|
|
The key is hashed to a pair (a,b) where a in 0..*alen*-1 and b in
|
|
0..*blen*-1. A fast hash function determines both a and b
|
|
simultaneously. Any decent hash function is likely to produce
|
|
hashes so that (a,b) is distinct for all pairs. I try the hash
|
|
using different values of *salt* until all pairs are distinct.
|
|
|
|
The final hash is (a XOR scramble[tab[b]]). *scramble* is a
|
|
predetermined mapping of 0..255 into 0..smax-1. *tab* is an
|
|
array that we fill in in such a way as to make the hash perfect.
|
|
|
|
First we fill in all values of *tab* that are used by more than one
|
|
key. We try all possible values for each position until one works.
|
|
|
|
This leaves m unmapped keys and m values that something could hash to.
|
|
If you treat unmapped keys as lefthand nodes and unused hash values
|
|
as righthand nodes, and draw a line connecting each key to each hash
|
|
value it could map to, you get a bipartite graph. We attempt to
|
|
find a perfect matching in this graph. If we succeed, we have
|
|
determined a perfect hash for the whole set of keys.
|
|
|
|
*scramble* is used because (a^tab[i]) clusters keys around *a*.
|
|
------------------------------------------------------------------------------
|
|
*/
|
|
|
|
typedef uint64_t ub8;
|
|
#define UB8MAXVAL 0xffffffffffffffffLL
|
|
#define UB8BITS 64
|
|
typedef uint32_t ub4;
|
|
#define UB4MAXVAL 0xffffffff
|
|
#define UB4BITS 32
|
|
typedef uint16_t ub2;
|
|
#define UB2MAXVAL 0xffff
|
|
#define UB2BITS 16
|
|
typedef uint8_t ub1;
|
|
#define UB1MAXVAL 0xff
|
|
#define UB1BITS 8
|
|
|
|
#define TRUE 1
|
|
#define FALSE 0
|
|
|
|
#define SCRAMBLE_LEN 256 // ((ub4)1<<16) /* length of *scramble* */
|
|
#define RETRY_INITKEY 2048 /* number of times to try to find distinct (a,b) */
|
|
#define RETRY_PERFECT 4 /* number of times to try to make a perfect hash */
|
|
|
|
|
|
/* representation of a key */
|
|
struct key
|
|
{
|
|
ub1 *name_k; /* the actual key */
|
|
ub4 len_k; /* the length of the actual key */
|
|
ub4 hash_k; /* the initial hash value for this key */
|
|
/* beyond this point is mapping-dependent */
|
|
ub4 a_k; /* a, of the key maps to (a,b) */
|
|
ub4 b_k; /* b, of the key maps to (a,b) */
|
|
struct key *nextb_k; /* next key with this b */
|
|
};
|
|
typedef struct key key;
|
|
|
|
/* things indexed by b of original (a,b) pair */
|
|
struct bstuff
|
|
{
|
|
ub2 val_b; /* hash=a^tabb[b].val_b */
|
|
key *list_b; /* tabb[i].list_b is list of keys with b==i */
|
|
ub4 listlen_b; /* length of list_b */
|
|
ub4 water_b; /* high watermark of who has visited this map node */
|
|
};
|
|
typedef struct bstuff bstuff;
|
|
|
|
/* things indexed by final hash value */
|
|
struct hstuff
|
|
{
|
|
key *key_h; /* tabh[i].key_h is the key with a hash of i */
|
|
};
|
|
typedef struct hstuff hstuff;
|
|
|
|
/* things indexed by queue position */
|
|
struct qstuff
|
|
{
|
|
bstuff *b_q; /* b that currently occupies this hash */
|
|
ub4 parent_q; /* queue position of parent that could use this hash */
|
|
ub2 newval_q; /* what to change parent tab[b] to to use this hash */
|
|
ub2 oldval_q; /* original value of tab[b] */
|
|
};
|
|
typedef struct qstuff qstuff;
|
|
|
|
|
|
/*
|
|
------------------------------------------------------------------------------
|
|
Find the mapping that will produce a perfect hash
|
|
------------------------------------------------------------------------------
|
|
*/
|
|
|
|
/* return the ceiling of the log (base 2) of val */
|
|
static ub4 log2u(ub4 val)
|
|
{
|
|
ub4 i;
|
|
for (i=0; ((ub4)1<<i) < val; ++i)
|
|
;
|
|
return i;
|
|
}
|
|
|
|
/* compute p(x), where p is a permutation of 0..(1<<nbits)-1 */
|
|
/* permute(0)=0. This is intended and useful. */
|
|
static ub4 permute(ub4 x, ub4 nbits)
|
|
// ub4 x; /* input, a value in some range */
|
|
// ub4 nbits; /* input, number of bits in range */
|
|
{
|
|
int i;
|
|
int mask = ((ub4)1<<nbits)-1; /* all ones */
|
|
int const2 = 1+nbits/2;
|
|
int const3 = 1+nbits/3;
|
|
int const4 = 1+nbits/4;
|
|
int const5 = 1+nbits/5;
|
|
for (i=0; i<20; ++i)
|
|
{
|
|
x = (x+(x<<const2)) & mask;
|
|
x = (x^(x>>const3));
|
|
x = (x+(x<<const4)) & mask;
|
|
x = (x^(x>>const5));
|
|
}
|
|
return x;
|
|
}
|
|
|
|
/* initialize scramble[] with distinct random values in 0..smax-1 */
|
|
static void scrambleinit(ub4 *scramble, ub4 smax)
|
|
// ub4 *scramble; /* hash is a^scramble[tab[b]] */
|
|
// ub4 smax; /* scramble values should be in 0..smax-1 */
|
|
{
|
|
ub4 i;
|
|
|
|
/* fill scramble[] with distinct random integers in 0..smax-1 */
|
|
for (i=0; i<SCRAMBLE_LEN; ++i)
|
|
{
|
|
scramble[i] = permute(i, log2u(smax));
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* put keys in tabb according to key->b_k
|
|
* check if the initial hash might work
|
|
*/
|
|
static int inittab(dyld3::OverflowSafeArray<bstuff>& tabb, dyld3::OverflowSafeArray<key>& keys, int complete)
|
|
// bstuff *tabb; /* output, list of keys with b for (a,b) */
|
|
// ub4 blen; /* length of tabb */
|
|
// key *keys; /* list of keys already hashed */
|
|
// int complete; /* TRUE means to complete init despite collisions */
|
|
{
|
|
int nocollision = TRUE;
|
|
ub4 i;
|
|
|
|
memset((void *)tabb.begin(), 0, (size_t)(sizeof(bstuff)*tabb.maxCount()));
|
|
|
|
/* Two keys with the same (a,b) guarantees a collision */
|
|
for (i = 0; i < keys.count(); i++) {
|
|
key *mykey = &keys[i];
|
|
key *otherkey;
|
|
|
|
for (otherkey=tabb[mykey->b_k].list_b;
|
|
otherkey;
|
|
otherkey=otherkey->nextb_k)
|
|
{
|
|
if (mykey->a_k == otherkey->a_k)
|
|
{
|
|
nocollision = FALSE;
|
|
if (!complete)
|
|
return FALSE;
|
|
}
|
|
}
|
|
++tabb[mykey->b_k].listlen_b;
|
|
mykey->nextb_k = tabb[mykey->b_k].list_b;
|
|
tabb[mykey->b_k].list_b = mykey;
|
|
}
|
|
|
|
/* no two keys have the same (a,b) pair */
|
|
return nocollision;
|
|
}
|
|
|
|
|
|
/* Do the initial hash for normal mode (use lookup and checksum) */
|
|
static void initnorm(dyld3::OverflowSafeArray<key>& keys, ub4 alen, ub4 blen, ub4 smax, ub8 salt)
|
|
// key *keys; /* list of all keys */
|
|
// ub4 alen; /* (a,b) has a in 0..alen-1, a power of 2 */
|
|
// ub4 blen; /* (a,b) has b in 0..blen-1, a power of 2 */
|
|
// ub4 smax; /* maximum range of computable hash values */
|
|
// ub4 salt; /* used to initialize the hash function */
|
|
// gencode *final; /* output, code for the final hash */
|
|
{
|
|
ub4 loga = log2u(alen); /* log based 2 of blen */
|
|
#if BUILDING_CACHE_BUILDER
|
|
dispatch_apply(keys.count(), DISPATCH_APPLY_AUTO, ^(size_t index) {
|
|
ub4 i = (ub4)index;
|
|
key *mykey = &keys[i];
|
|
ub8 hash = lookup8(mykey->name_k, mykey->len_k, salt);
|
|
mykey->a_k = (loga > 0) ? (ub4)(hash >> (UB8BITS-loga)) : 0;
|
|
mykey->b_k = (blen > 1) ? (hash & (blen-1)) : 0;
|
|
});
|
|
#else
|
|
for (size_t index = 0; index != keys.count(); ++index) {
|
|
ub4 i = (ub4)index;
|
|
key *mykey = &keys[i];
|
|
ub8 hash = lookup8(mykey->name_k, mykey->len_k, salt);
|
|
mykey->a_k = (loga > 0) ? (ub4)(hash >> (UB8BITS-loga)) : 0;
|
|
mykey->b_k = (blen > 1) ? (hash & (blen-1)) : 0;
|
|
};
|
|
#endif
|
|
}
|
|
|
|
|
|
/* Try to apply an augmenting list */
|
|
static int apply(dyld3::OverflowSafeArray<bstuff>& tabb,
|
|
dyld3::OverflowSafeArray<hstuff>& tabh,
|
|
dyld3::OverflowSafeArray<qstuff>& tabq,
|
|
ub4 *scramble, ub4 tail, int rollback)
|
|
// bstuff *tabb;
|
|
// hstuff *tabh;
|
|
// qstuff *tabq;
|
|
// ub4 blen;
|
|
// ub4 *scramble;
|
|
// ub4 tail;
|
|
// int rollback; /* FALSE applies augmenting path, TRUE rolls back */
|
|
{
|
|
ub4 hash;
|
|
key *mykey;
|
|
bstuff *pb;
|
|
ub4 child;
|
|
ub4 parent;
|
|
ub4 stabb; /* scramble[tab[b]] */
|
|
|
|
/* walk from child to parent */
|
|
for (child=tail-1; child; child=parent)
|
|
{
|
|
parent = tabq[child].parent_q; /* find child's parent */
|
|
pb = tabq[parent].b_q; /* find parent's list of siblings */
|
|
|
|
/* erase old hash values */
|
|
stabb = scramble[pb->val_b];
|
|
for (mykey=pb->list_b; mykey; mykey=mykey->nextb_k)
|
|
{
|
|
hash = mykey->a_k^stabb;
|
|
if (mykey == tabh[hash].key_h)
|
|
{ /* erase hash for all of child's siblings */
|
|
tabh[hash].key_h = (key *)0;
|
|
}
|
|
}
|
|
|
|
/* change pb->val_b, which will change the hashes of all parent siblings */
|
|
pb->val_b = (rollback ? tabq[child].oldval_q : tabq[child].newval_q);
|
|
|
|
/* set new hash values */
|
|
stabb = scramble[pb->val_b];
|
|
for (mykey=pb->list_b; mykey; mykey=mykey->nextb_k)
|
|
{
|
|
hash = mykey->a_k^stabb;
|
|
if (rollback)
|
|
{
|
|
if (parent == 0) continue; /* root never had a hash */
|
|
}
|
|
else if (tabh[hash].key_h)
|
|
{
|
|
/* very rare: roll back any changes */
|
|
apply(tabb, tabh, tabq, scramble, tail, TRUE);
|
|
return FALSE; /* failure, collision */
|
|
}
|
|
tabh[hash].key_h = mykey;
|
|
}
|
|
}
|
|
return TRUE;
|
|
}
|
|
|
|
|
|
/*
|
|
-------------------------------------------------------------------------------
|
|
augment(): Add item to the mapping.
|
|
|
|
Construct a spanning tree of *b*s with *item* as root, where each
|
|
parent can have all its hashes changed (by some new val_b) with
|
|
at most one collision, and each child is the b of that collision.
|
|
|
|
I got this from Tarjan's "Data Structures and Network Algorithms". The
|
|
path from *item* to a *b* that can be remapped with no collision is
|
|
an "augmenting path". Change values of tab[b] along the path so that
|
|
the unmapped key gets mapped and the unused hash value gets used.
|
|
|
|
Assuming 1 key per b, if m out of n hash values are still unused,
|
|
you should expect the transitive closure to cover n/m nodes before
|
|
an unused node is found. Sum(i=1..n)(n/i) is about nlogn, so expect
|
|
this approach to take about nlogn time to map all single-key b's.
|
|
-------------------------------------------------------------------------------
|
|
*/
|
|
static int augment(dyld3::OverflowSafeArray<bstuff>& tabb,
|
|
dyld3::OverflowSafeArray<hstuff>& tabh,
|
|
dyld3::OverflowSafeArray<qstuff>& tabq,
|
|
ub4 *scramble, ub4 smax, bstuff *item, ub4 nkeys,
|
|
ub4 highwater)
|
|
// bstuff *tabb; /* stuff indexed by b */
|
|
// hstuff *tabh; /* which key is associated with which hash, indexed by hash */
|
|
// qstuff *tabq; /* queue of *b* values, this is the spanning tree */
|
|
// ub4 *scramble; /* final hash is a^scramble[tab[b]] */
|
|
// ub4 smax; /* highest value in scramble */
|
|
// bstuff *item; /* &tabb[b] for the b to be mapped */
|
|
// ub4 nkeys; /* final hash must be in 0..nkeys-1 */
|
|
// ub4 highwater; /* a value higher than any now in tabb[].water_b */
|
|
{
|
|
ub4 q; /* current position walking through the queue */
|
|
ub4 tail; /* tail of the queue. 0 is the head of the queue. */
|
|
ub4 limit=UB1MAXVAL+1;
|
|
ub4 highhash = smax;
|
|
|
|
/* initialize the root of the spanning tree */
|
|
tabq[0].b_q = item;
|
|
tail = 1;
|
|
|
|
/* construct the spanning tree by walking the queue, add children to tail */
|
|
for (q=0; q<tail; ++q)
|
|
{
|
|
bstuff *myb = tabq[q].b_q; /* the b for this node */
|
|
ub4 i; /* possible value for myb->val_b */
|
|
|
|
if (q == 1)
|
|
break; /* don't do transitive closure */
|
|
|
|
for (i=0; i<limit; ++i)
|
|
{
|
|
bstuff *childb = (bstuff *)0; /* the b that this i maps to */
|
|
key *mykey; /* for walking through myb's keys */
|
|
|
|
for (mykey = myb->list_b; mykey; mykey=mykey->nextb_k)
|
|
{
|
|
key *childkey;
|
|
ub4 hash = mykey->a_k^scramble[i];
|
|
|
|
if (hash >= highhash) break; /* out of bounds */
|
|
childkey = tabh[hash].key_h;
|
|
|
|
if (childkey)
|
|
{
|
|
bstuff *hitb = &tabb[childkey->b_k];
|
|
|
|
if (childb)
|
|
{
|
|
if (childb != hitb) break; /* hit at most one child b */
|
|
}
|
|
else
|
|
{
|
|
childb = hitb; /* remember this as childb */
|
|
if (childb->water_b == highwater) break; /* already explored */
|
|
}
|
|
}
|
|
}
|
|
if (mykey) continue; /* myb with i has multiple collisions */
|
|
|
|
/* add childb to the queue of reachable things */
|
|
if (childb) childb->water_b = highwater;
|
|
tabq[tail].b_q = childb;
|
|
tabq[tail].newval_q = i; /* how to make parent (myb) use this hash */
|
|
tabq[tail].oldval_q = myb->val_b; /* need this for rollback */
|
|
tabq[tail].parent_q = q;
|
|
++tail;
|
|
|
|
if (!childb)
|
|
{ /* found an *i* with no collisions? */
|
|
/* try to apply the augmenting path */
|
|
if (apply(tabb, tabh, tabq, scramble, tail, FALSE))
|
|
return TRUE; /* success, item was added to the perfect hash */
|
|
|
|
--tail; /* don't know how to handle such a child! */
|
|
}
|
|
}
|
|
}
|
|
return FALSE;
|
|
}
|
|
|
|
|
|
/* find a mapping that makes this a perfect hash */
|
|
static int perfect(dyld3::OverflowSafeArray<bstuff>& tabb,
|
|
dyld3::OverflowSafeArray<hstuff>& tabh,
|
|
dyld3::OverflowSafeArray<qstuff>& tabq,
|
|
ub4 smax, ub4 *scramble, ub4 nkeys)
|
|
{
|
|
ub4 maxkeys; /* maximum number of keys for any b */
|
|
ub4 i, j;
|
|
|
|
const ub4 blen = (ub4)tabb.count();
|
|
|
|
#if SELOPT_DEBUG
|
|
fprintf(stderr, " blen %d smax %d nkeys %d\n", blen, smax, nkeys);
|
|
#endif
|
|
|
|
/* clear any state from previous attempts */
|
|
memset((void *)tabh.begin(), 0, sizeof(hstuff)*smax);
|
|
memset((void *)tabq.begin(), 0, sizeof(qstuff)*(blen+1));
|
|
|
|
for (maxkeys=0,i=0; i<blen; ++i)
|
|
if (tabb[i].listlen_b > maxkeys)
|
|
maxkeys = tabb[i].listlen_b;
|
|
|
|
/* In descending order by number of keys, map all *b*s */
|
|
for (j=maxkeys; j>0; --j)
|
|
for (i=0; i<blen; ++i)
|
|
if (tabb[i].listlen_b == j)
|
|
if (!augment(tabb, tabh, tabq, scramble, smax, &tabb[i], nkeys,
|
|
i+1))
|
|
{
|
|
return FALSE;
|
|
}
|
|
|
|
/* Success! We found a perfect hash of all keys into 0..nkeys-1. */
|
|
return TRUE;
|
|
}
|
|
|
|
|
|
/* guess initial values for alen and blen */
|
|
static void initalen(ub4 *alen, ub4 *blen, ub4 smax, ub4 nkeys)
|
|
// ub4 *alen; /* output, initial alen */
|
|
// ub4 *blen; /* output, initial blen */
|
|
// ub4 smax; /* input, power of two greater or equal to max hash value */
|
|
// ub4 nkeys; /* number of keys being hashed */
|
|
{
|
|
/*
|
|
* Find initial *alen, *blen
|
|
* Initial alen and blen values were found empirically. Some factors:
|
|
*
|
|
* If smax<256 there is no scramble, so tab[b] needs to cover 0..smax-1.
|
|
*
|
|
* alen and blen must be powers of 2 because the values in 0..alen-1 and
|
|
* 0..blen-1 are produced by applying a bitmask to the initial hash function.
|
|
*
|
|
* alen must be less than smax, in fact less than nkeys, because otherwise
|
|
* there would often be no i such that a^scramble[i] is in 0..nkeys-1 for
|
|
* all the *a*s associated with a given *b*, so there would be no legal
|
|
* value to assign to tab[b]. This only matters when we're doing a minimal
|
|
* perfect hash.
|
|
*
|
|
* It takes around 800 trials to find distinct (a,b) with nkey=smax*(5/8)
|
|
* and alen*blen = smax*smax/32.
|
|
*
|
|
* Values of blen less than smax/4 never work, and smax/2 always works.
|
|
*
|
|
* We want blen as small as possible because it is the number of bytes in
|
|
* the huge array we must create for the perfect hash.
|
|
*
|
|
* When nkey <= smax*(5/8), blen=smax/4 works much more often with
|
|
* alen=smax/8 than with alen=smax/4. Above smax*(5/8), blen=smax/4
|
|
* doesn't seem to care whether alen=smax/8 or alen=smax/4. I think it
|
|
* has something to do with 5/8 = 1/8 * 5. For example examine 80000,
|
|
* 85000, and 90000 keys with different values of alen. This only matters
|
|
* if we're doing a minimal perfect hash.
|
|
*
|
|
* When alen*blen <= 1<<UB4BITS, the initial hash must produce one integer.
|
|
* Bigger than that it must produce two integers, which increases the
|
|
* cost of the hash per character hashed.
|
|
*/
|
|
*alen = smax; /* no reason to restrict alen to smax/2 */
|
|
*blen = ((nkeys <= smax*0.6) ? smax/16 :
|
|
(nkeys <= smax*0.8) ? smax/8 : smax/4);
|
|
|
|
if (*alen < 1) *alen = 1;
|
|
if (*blen < 1) *blen = 1;
|
|
|
|
#if SELOPT_DEBUG
|
|
fprintf(stderr, "alen %d blen %d smax %d nkeys %d\n", *alen, *blen, smax, nkeys);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
** Try to find a perfect hash function.
|
|
** Return the successful initializer for the initial hash.
|
|
** Return 0 if no perfect hash could be found.
|
|
*/
|
|
static int findhash(dyld3::OverflowSafeArray<bstuff>& tabb,
|
|
ub4 *alen, ub8 *salt,
|
|
ub4 *scramble, ub4 smax, dyld3::OverflowSafeArray<key>& keys)
|
|
// bstuff **tabb; /* output, tab[] of the perfect hash, length *blen */
|
|
// ub4 *alen; /* output, 0..alen-1 is range for a of (a,b) */
|
|
// ub4 *blen; /* output, 0..blen-1 is range for b of (a,b) */
|
|
// ub4 *salt; /* output, initializes initial hash */
|
|
// ub4 *scramble; /* input, hash = a^scramble[tab[b]] */
|
|
// ub4 smax; /* input, scramble[i] in 0..smax-1 */
|
|
// key *keys; /* input, keys to hash */
|
|
// ub4 nkeys; /* input, number of keys being hashed */
|
|
{
|
|
ub4 bad_initkey; /* how many times did initkey fail? */
|
|
ub4 bad_perfect; /* how many times did perfect fail? */
|
|
ub4 si; /* trial initializer for initial hash */
|
|
ub4 maxalen;
|
|
dyld3::OverflowSafeArray<hstuff>tabh; /* table of keys indexed by hash value */
|
|
dyld3::OverflowSafeArray<qstuff>tabq; /* table of stuff indexed by queue value, used by augment */
|
|
|
|
/* guess initial values for alen and blen */
|
|
ub4 blen = 0;
|
|
initalen(alen, &blen, smax, (ub4)keys.count());
|
|
|
|
scrambleinit(scramble, smax);
|
|
|
|
maxalen = smax;
|
|
|
|
/* allocate working memory */
|
|
tabb.resize(blen);
|
|
tabq.resize(blen+1);
|
|
tabh.resize(smax);
|
|
|
|
/* Actually find the perfect hash */
|
|
*salt = 0;
|
|
bad_initkey = 0;
|
|
bad_perfect = 0;
|
|
for (si=1; ; ++si)
|
|
{
|
|
ub4 rslinit;
|
|
/* Try to find distinct (A,B) for all keys */
|
|
*salt = si * 0x9e3779b97f4a7c13LL; /* golden ratio (arbitrary value) */
|
|
initnorm(keys, *alen, blen, smax, *salt);
|
|
rslinit = inittab(tabb, keys, FALSE);
|
|
if (rslinit == 0)
|
|
{
|
|
/* didn't find distinct (a,b) */
|
|
if (++bad_initkey >= RETRY_INITKEY)
|
|
{
|
|
/* Try to put more bits in (A,B) to make distinct (A,B) more likely */
|
|
if (*alen < maxalen)
|
|
{
|
|
*alen *= 2;
|
|
}
|
|
else if (blen < smax)
|
|
{
|
|
blen *= 2;
|
|
tabb.resize(blen);
|
|
tabq.resize(blen+1);
|
|
}
|
|
bad_initkey = 0;
|
|
bad_perfect = 0;
|
|
}
|
|
continue; /* two keys have same (a,b) pair */
|
|
}
|
|
|
|
/* Given distinct (A,B) for all keys, build a perfect hash */
|
|
if (!perfect(tabb, tabh, tabq, smax, scramble, (ub4)keys.count()))
|
|
{
|
|
if (++bad_perfect >= RETRY_PERFECT)
|
|
{
|
|
if (blen < smax)
|
|
{
|
|
blen *= 2;
|
|
tabb.resize(blen);
|
|
tabq.resize(blen+1);
|
|
--si; /* we know this salt got distinct (A,B) */
|
|
}
|
|
else
|
|
{
|
|
return 0;
|
|
}
|
|
bad_perfect = 0;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
------------------------------------------------------------------------------
|
|
Input/output type routines
|
|
------------------------------------------------------------------------------
|
|
*/
|
|
|
|
|
|
static void
|
|
make_perfect(dyld3::OverflowSafeArray<key>& keys, perfect_hash& result)
|
|
{
|
|
dyld3::OverflowSafeArray<bstuff> tab; /* table indexed by b */
|
|
ub4 smax; /* scramble[] values in 0..smax-1, a power of 2 */
|
|
ub4 alen; /* a in 0..alen-1, a power of 2 */
|
|
ub8 salt; /* a parameter to the hash function */
|
|
ub4 scramble[SCRAMBLE_LEN]; /* used in final hash function */
|
|
int ok;
|
|
uint32_t i;
|
|
|
|
/* find the hash */
|
|
smax = ((ub4)1<<log2u((ub4)keys.count()));
|
|
ok = findhash(tab, &alen, &salt,
|
|
scramble, smax, keys);
|
|
if (!ok) {
|
|
smax = 2 * ((ub4)1<<log2u((ub4)keys.count()));
|
|
ok = findhash(tab, &alen, &salt,
|
|
scramble, smax, keys);
|
|
}
|
|
if (!ok) {
|
|
bzero(&result, sizeof(result));
|
|
} else {
|
|
/* build the tables */
|
|
result.capacity = smax;
|
|
result.occupied = (ub4)keys.count();
|
|
result.shift = UB8BITS - log2u(alen);
|
|
result.mask = (ub4)tab.count() - 1;
|
|
result.salt = salt;
|
|
|
|
result.tab.resize(tab.count());
|
|
for (i = 0; i < tab.count(); i++) {
|
|
result.tab[i] = tab[i].val_b;
|
|
}
|
|
for (i = 0; i < 256; i++) {
|
|
result.scramble[i] = scramble[i];
|
|
}
|
|
}
|
|
}
|
|
|
|
// SELOPT_WRITE || CLOSURE_SELOPT_WRITE
|
|
#endif
|
|
|
|
#ifdef SELOPT_WRITE
|
|
|
|
static void
|
|
make_perfect(const string_map& strings, perfect_hash& phash)
|
|
{
|
|
dyld3::OverflowSafeArray<key> keys;
|
|
|
|
/* read in the list of keywords */
|
|
keys.reserve(strings.size());
|
|
size_t i;
|
|
string_map::const_iterator s;
|
|
for (i = 0, s = strings.begin(); s != strings.end(); ++s, ++i) {
|
|
key mykey;
|
|
mykey.name_k = (ub1 *)s->first;
|
|
mykey.len_k = (ub4)strlen(s->first);
|
|
keys.push_back(mykey);
|
|
}
|
|
|
|
make_perfect(keys, phash);
|
|
}
|
|
|
|
// SELOPT_WRITE
|
|
#endif
|
|
|
|
#ifdef CLOSURE_SELOPT_WRITE
|
|
|
|
static void
|
|
make_perfect(const dyld3::OverflowSafeArray<const char*>& strings, perfect_hash& phash)
|
|
{
|
|
dyld3::OverflowSafeArray<key> keys;
|
|
|
|
/* read in the list of keywords */
|
|
keys.reserve(strings.count());
|
|
for (const char* s : strings) {
|
|
key mykey;
|
|
mykey.name_k = (ub1 *)s;
|
|
mykey.len_k = (ub4)strlen(s);
|
|
keys.push_back(mykey);
|
|
}
|
|
|
|
make_perfect(keys, phash);
|
|
}
|
|
|
|
// CLOSURE_SELOPT_WRITE
|
|
#endif
|
|
|
|
// namespace objc_selopt
|
|
};
|
|
|
|
#undef S32
|
|
#undef S64
|
|
|
|
#endif
|