Remove kill_inferior_fast, in favor of target_kill, which goes
through the target vector.
* inferior.h (kill_inferior_fast): remove declaration.
* main.c (disconnect): call quit_cover using catch_errors rather
than calling kill_inferior_fast directly. New way goes through
the target vector, handles attached processes, and writes
command history if appropriate.
(quit_cover): new function, wrapper for quit_command.
* convex-xdep.c, go32-xdep.c, hppabsd-xdep.c, hppahpux-xdep.c,
infptrace.c, procfs.c: Removed all instances of kill_inferior_fast,
inlining them into the local kill_inferior when needed.
1992-09-22 05:23:57 +00:00
|
|
|
|
/* Convex host-dependent code for GDB.
|
|
|
|
|
Copyright 1990, 1991, 1992 Free Software Foundation, Inc.
|
1991-03-28 16:28:29 +00:00
|
|
|
|
|
|
|
|
|
This file is part of GDB.
|
|
|
|
|
|
1991-06-04 07:31:55 +00:00
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
1991-03-28 16:28:29 +00:00
|
|
|
|
it under the terms of the GNU General Public License as published by
|
1991-06-04 07:31:55 +00:00
|
|
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
|
|
|
(at your option) any later version.
|
1991-03-28 16:28:29 +00:00
|
|
|
|
|
1991-06-04 07:31:55 +00:00
|
|
|
|
This program is distributed in the hope that it will be useful,
|
1991-03-28 16:28:29 +00:00
|
|
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
|
GNU General Public License for more details.
|
|
|
|
|
|
|
|
|
|
You should have received a copy of the GNU General Public License
|
1991-06-04 07:31:55 +00:00
|
|
|
|
along with this program; if not, write to the Free Software
|
|
|
|
|
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
|
1991-03-28 16:28:29 +00:00
|
|
|
|
|
|
|
|
|
#include "defs.h"
|
|
|
|
|
#include "command.h"
|
|
|
|
|
#include "symtab.h"
|
|
|
|
|
#include "value.h"
|
|
|
|
|
#include "frame.h"
|
|
|
|
|
#include "inferior.h"
|
|
|
|
|
#include "wait.h"
|
|
|
|
|
|
|
|
|
|
#include <signal.h>
|
|
|
|
|
#include <fcntl.h>
|
|
|
|
|
#include "gdbcore.h"
|
|
|
|
|
|
|
|
|
|
#include <sys/param.h>
|
|
|
|
|
#include <sys/dir.h>
|
|
|
|
|
#include <sys/user.h>
|
|
|
|
|
#include <sys/ioctl.h>
|
|
|
|
|
#include <sys/pcntl.h>
|
|
|
|
|
#include <sys/thread.h>
|
|
|
|
|
#include <sys/proc.h>
|
|
|
|
|
#include <sys/file.h>
|
|
|
|
|
#include <sys/stat.h>
|
|
|
|
|
#include <sys/mman.h>
|
|
|
|
|
|
|
|
|
|
#include <convex/vmparam.h>
|
|
|
|
|
#include <convex/filehdr.h>
|
|
|
|
|
#include <convex/opthdr.h>
|
|
|
|
|
#include <convex/scnhdr.h>
|
|
|
|
|
#include <convex/core.h>
|
|
|
|
|
|
|
|
|
|
/* Per-thread data, read from the inferior at each stop and written
|
|
|
|
|
back at each resume. */
|
|
|
|
|
|
|
|
|
|
/* Number of active threads.
|
|
|
|
|
Tables are valid for thread numbers less than this. */
|
|
|
|
|
|
|
|
|
|
static int n_threads;
|
|
|
|
|
|
|
|
|
|
#define MAXTHREADS 8
|
|
|
|
|
|
|
|
|
|
/* Thread state. The remaining data is valid only if this is PI_TALIVE. */
|
|
|
|
|
|
|
|
|
|
static int thread_state[MAXTHREADS];
|
|
|
|
|
|
|
|
|
|
/* Stop pc, signal, signal subcode */
|
|
|
|
|
|
|
|
|
|
static int thread_pc[MAXTHREADS];
|
|
|
|
|
static int thread_signal[MAXTHREADS];
|
|
|
|
|
static int thread_sigcode[MAXTHREADS];
|
|
|
|
|
|
|
|
|
|
/* Thread registers.
|
|
|
|
|
If thread is selected, the regs are in registers[] instead. */
|
|
|
|
|
|
|
|
|
|
static char thread_regs[MAXTHREADS][REGISTER_BYTES];
|
|
|
|
|
|
|
|
|
|
/* 1 if the top frame on the thread's stack was a context frame,
|
|
|
|
|
meaning that the kernel is up to something and we should not
|
|
|
|
|
touch the thread at all except to resume it. */
|
|
|
|
|
|
|
|
|
|
static char thread_is_in_kernel[MAXTHREADS];
|
|
|
|
|
|
|
|
|
|
/* The currently selected thread's number. */
|
|
|
|
|
|
|
|
|
|
static int inferior_thread;
|
|
|
|
|
|
|
|
|
|
/* Inferior process's file handle and a process control block
|
|
|
|
|
to feed args to ioctl with. */
|
|
|
|
|
|
|
|
|
|
static int inferior_fd;
|
|
|
|
|
static struct pcntl ps;
|
|
|
|
|
|
|
|
|
|
/* SOFF file headers for exec or core file. */
|
|
|
|
|
|
|
|
|
|
static FILEHDR filehdr;
|
|
|
|
|
static OPTHDR opthdr;
|
|
|
|
|
static SCNHDR scnhdr;
|
|
|
|
|
|
|
|
|
|
/* Address maps constructed from section headers of exec and core files.
|
|
|
|
|
Defines process address -> file address translation. */
|
|
|
|
|
|
|
|
|
|
struct pmap
|
|
|
|
|
{
|
|
|
|
|
long mem_addr; /* process start address */
|
|
|
|
|
long mem_end; /* process end+1 address */
|
|
|
|
|
long file_addr; /* file start address */
|
|
|
|
|
long thread; /* -1 shared; 0,1,... thread-local */
|
|
|
|
|
long type; /* S_TEXT S_DATA S_BSS S_TBSS etc */
|
|
|
|
|
long which; /* used to sort map for info files */
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
static int n_exec, n_core;
|
|
|
|
|
static struct pmap exec_map[100];
|
|
|
|
|
static struct pmap core_map[100];
|
|
|
|
|
|
|
|
|
|
/* Offsets in the core file of core_context and core_tcontext blocks. */
|
|
|
|
|
|
|
|
|
|
static int context_offset;
|
|
|
|
|
static int tcontext_offset[MAXTHREADS];
|
|
|
|
|
|
|
|
|
|
/* Core file control blocks. */
|
|
|
|
|
|
|
|
|
|
static struct core_context_v70 c;
|
|
|
|
|
static struct core_tcontext_v70 tc;
|
|
|
|
|
static struct user u;
|
|
|
|
|
static thread_t th;
|
|
|
|
|
static proc_t pr;
|
|
|
|
|
|
|
|
|
|
/* The registers of the currently selected thread. */
|
|
|
|
|
|
|
|
|
|
extern char registers[REGISTER_BYTES];
|
|
|
|
|
|
|
|
|
|
/* Vector and communication registers from core dump or from inferior.
|
|
|
|
|
These are read on demand, ie, not normally valid. */
|
|
|
|
|
|
|
|
|
|
static struct vecst vector_registers;
|
|
|
|
|
static struct creg_ctx comm_registers;
|
|
|
|
|
|
|
|
|
|
/* Flag, set on a vanilla CONT command and cleared when the inferior
|
|
|
|
|
is continued. */
|
|
|
|
|
|
|
|
|
|
static int all_continue;
|
|
|
|
|
|
|
|
|
|
/* Flag, set when the inferior is continued by a vanilla CONT command,
|
|
|
|
|
cleared if it is continued for any other purpose. */
|
|
|
|
|
|
|
|
|
|
static int thread_switch_ok;
|
|
|
|
|
|
|
|
|
|
/* Stack of signals recieved from threads but not yet delivered to gdb. */
|
|
|
|
|
|
|
|
|
|
struct threadpid
|
|
|
|
|
{
|
|
|
|
|
int pid;
|
|
|
|
|
int thread;
|
|
|
|
|
int signo;
|
|
|
|
|
int subsig;
|
|
|
|
|
int pc;
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
static struct threadpid signal_stack_bot[100];
|
|
|
|
|
static struct threadpid *signal_stack = signal_stack_bot;
|
|
|
|
|
|
|
|
|
|
/* How to detect empty stack -- bottom frame is all zero. */
|
|
|
|
|
|
|
|
|
|
#define signal_stack_is_empty() (signal_stack->pid == 0)
|
|
|
|
|
|
|
|
|
|
/* Mode controlled by SET PIPE command, controls the psw SEQ bit
|
|
|
|
|
which forces each instruction to complete before the next one starts. */
|
|
|
|
|
|
|
|
|
|
static int sequential = 0;
|
|
|
|
|
|
|
|
|
|
/* Mode controlled by the SET PARALLEL command. Values are:
|
|
|
|
|
0 concurrency limit 1 thread, dynamic scheduling
|
|
|
|
|
1 no concurrency limit, dynamic scheduling
|
|
|
|
|
2 no concurrency limit, fixed scheduling */
|
|
|
|
|
|
|
|
|
|
static int parallel = 1;
|
|
|
|
|
|
|
|
|
|
/* Mode controlled by SET BASE command, output radix for unformatted
|
|
|
|
|
integer typeout, as in argument lists, aggregates, and so on.
|
|
|
|
|
Zero means guess whether it's an address (hex) or not (decimal). */
|
|
|
|
|
|
|
|
|
|
static int output_radix = 0;
|
|
|
|
|
|
|
|
|
|
/* Signal subcode at last thread stop. */
|
|
|
|
|
|
|
|
|
|
static int stop_sigcode;
|
|
|
|
|
|
|
|
|
|
/* Hack, see wait() below. */
|
|
|
|
|
|
|
|
|
|
static int exec_trap_timer;
|
|
|
|
|
|
|
|
|
|
#include "gdbcmd.h"
|
|
|
|
|
|
|
|
|
|
static struct type *vector_type ();
|
|
|
|
|
static long *read_vector_register ();
|
|
|
|
|
static long *read_vector_register_1 ();
|
|
|
|
|
static void write_vector_register ();
|
|
|
|
|
static REGISTER_TYPE read_comm_register ();
|
|
|
|
|
static void write_comm_register ();
|
|
|
|
|
static void convex_cont_command ();
|
|
|
|
|
static void thread_continue ();
|
|
|
|
|
static void select_thread ();
|
|
|
|
|
static void scan_stack ();
|
|
|
|
|
static void set_fixed_scheduling ();
|
|
|
|
|
static char *subsig_name ();
|
|
|
|
|
static void psw_info ();
|
|
|
|
|
static sig_noop ();
|
|
|
|
|
static ptr_cmp ();
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/* Execute ptrace. Convex V7 replaced ptrace with pattach.
|
|
|
|
|
Allow ptrace (0) as a no-op. */
|
|
|
|
|
|
|
|
|
|
int
|
|
|
|
|
call_ptrace (request, pid, procaddr, buf)
|
* Makefile.in (VERSION): Bump to 4.5.6.
* coffread.c (coff_end_symtab): Cast 2nd arg of complain() to
correct type.
* defs.h (NORETURN): Define away for Lucid compiler.
* remote.c (remote_timer, remote_interrupt): Signal handlers
take one int arg.
* ser-termios.c (serial_write, serial_close): Return whatever
value the write/close call returns, rather than falling off end.
* inferior.h (PTRACE_ARG3_TYPE): Third arg to ptrace is int on
more systems than it is "char *". Define PTRACE_ARG3_TYPE to
default to int.
* infptrace.c, hppabsd-xdep.c, hppahpux-xdep.c, i386-xdep.c,
inferior.h (call_ptrace): Use PTRACE_ARG3_TYPE to declare type
of third arg.
* a68v-xdep.c, arm-xdep.c, convex-xdep.c, hp300ux-xdep.c, infrun.c,
m88k-xdep.c, mach386-xdep.c, mips-xdep.c, os68k-xdep.c, pyr-tdep.c,
pyr-xdep.c, rs6000-xdep.c, sparc-xdep.c, sun3-xdep.c, sun386-xdep.c,
symm-xdep.c, ultra3-xdep.c: Use PTRACE_ARG3_TYPE to cast ptrace
argument 3.
* sparc-xdep.c, a68v-xdep.c (fetch_inferior_registers,
store_inferior_registers): Supply missing fourth argument to
ptrace().
1992-06-24 04:49:48 +00:00
|
|
|
|
int request, pid;
|
|
|
|
|
PTRACE_ARG3_TYPE procaddr;
|
|
|
|
|
int buf;
|
1991-03-28 16:28:29 +00:00
|
|
|
|
{
|
|
|
|
|
if (request == 0)
|
|
|
|
|
return;
|
|
|
|
|
error ("no ptrace");
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Replacement for system execle routine.
|
|
|
|
|
Convert it to an equivalent exect, which pattach insists on. */
|
|
|
|
|
|
|
|
|
|
execle (name, argv)
|
|
|
|
|
char *name, *argv;
|
|
|
|
|
{
|
|
|
|
|
char ***envp = (char ***) &argv;
|
|
|
|
|
while (*envp++) ;
|
|
|
|
|
|
|
|
|
|
signal (SIGTRAP, sig_noop);
|
|
|
|
|
exect (name, &argv, *envp);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Stupid handler for stupid trace trap that otherwise causes
|
|
|
|
|
startup to stupidly hang. */
|
|
|
|
|
|
|
|
|
|
static sig_noop ()
|
|
|
|
|
{}
|
|
|
|
|
|
|
|
|
|
/* Read registers from inferior into registers[] array.
|
|
|
|
|
For convex, they are already there, read in when the inferior stops. */
|
|
|
|
|
|
|
|
|
|
void
|
|
|
|
|
fetch_inferior_registers (regno)
|
|
|
|
|
int regno;
|
|
|
|
|
{
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Store our register values back into the inferior.
|
|
|
|
|
For Convex, do this only once, right before resuming inferior. */
|
|
|
|
|
|
1992-02-22 01:46:16 +00:00
|
|
|
|
void
|
1991-03-28 16:28:29 +00:00
|
|
|
|
store_inferior_registers (regno)
|
|
|
|
|
int regno;
|
|
|
|
|
{
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Copy LEN bytes from inferior's memory starting at MEMADDR
|
|
|
|
|
to debugger memory starting at MYADDR.
|
|
|
|
|
On failure (cannot read from inferior, usually because address is out
|
|
|
|
|
of bounds) returns the value of errno. */
|
|
|
|
|
|
|
|
|
|
int
|
|
|
|
|
read_inferior_memory (memaddr, myaddr, len)
|
|
|
|
|
CORE_ADDR memaddr;
|
|
|
|
|
char *myaddr;
|
|
|
|
|
int len;
|
|
|
|
|
{
|
|
|
|
|
errno = 0;
|
|
|
|
|
while (len > 0)
|
|
|
|
|
{
|
|
|
|
|
/* little-known undocumented max request size */
|
|
|
|
|
int i = (len < 12288) ? len : 12288;
|
|
|
|
|
|
|
|
|
|
lseek (inferior_fd, memaddr, 0);
|
|
|
|
|
read (inferior_fd, myaddr, i);
|
|
|
|
|
|
|
|
|
|
memaddr += i;
|
|
|
|
|
myaddr += i;
|
|
|
|
|
len -= i;
|
|
|
|
|
}
|
|
|
|
|
if (errno)
|
|
|
|
|
bzero (myaddr, len);
|
|
|
|
|
return errno;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Copy LEN bytes of data from debugger memory at MYADDR
|
|
|
|
|
to inferior's memory at MEMADDR.
|
|
|
|
|
Returns errno on failure (cannot write the inferior) */
|
|
|
|
|
|
|
|
|
|
int
|
|
|
|
|
write_inferior_memory (memaddr, myaddr, len)
|
|
|
|
|
CORE_ADDR memaddr;
|
|
|
|
|
char *myaddr;
|
|
|
|
|
int len;
|
|
|
|
|
{
|
|
|
|
|
errno = 0;
|
|
|
|
|
lseek (inferior_fd, memaddr, 0);
|
|
|
|
|
write (inferior_fd, myaddr, len);
|
|
|
|
|
return errno;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Here from create_inferior when the inferior process has been created
|
|
|
|
|
and started up. We must do a pattach to grab it for debugging.
|
|
|
|
|
|
|
|
|
|
Also, intercept the CONT command by altering its dispatch address. */
|
|
|
|
|
|
|
|
|
|
create_inferior_hook (pid)
|
|
|
|
|
int pid;
|
|
|
|
|
{
|
|
|
|
|
static char cont[] = "cont";
|
|
|
|
|
static char cont1[] = "c";
|
|
|
|
|
char *linep = cont;
|
|
|
|
|
char *linep1 = cont1;
|
|
|
|
|
char **line = &linep;
|
|
|
|
|
char **line1 = &linep1;
|
|
|
|
|
struct cmd_list_element *c;
|
|
|
|
|
|
|
|
|
|
c = lookup_cmd (line, cmdlist, "", 0);
|
|
|
|
|
c->function = convex_cont_command;
|
|
|
|
|
c = lookup_cmd (line1, cmdlist, "", 0);
|
|
|
|
|
c->function = convex_cont_command;
|
|
|
|
|
|
|
|
|
|
inferior_fd = pattach (pid, O_EXCL);
|
|
|
|
|
if (inferior_fd < 0)
|
|
|
|
|
perror_with_name ("pattach");
|
|
|
|
|
inferior_thread = 0;
|
|
|
|
|
set_fixed_scheduling (pid, parallel == 2);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Attach process PID for debugging. */
|
|
|
|
|
|
|
|
|
|
attach (pid)
|
|
|
|
|
int pid;
|
|
|
|
|
{
|
|
|
|
|
int fd = pattach (pid, O_EXCL);
|
|
|
|
|
if (fd < 0)
|
|
|
|
|
perror_with_name ("pattach");
|
|
|
|
|
attach_flag = 1;
|
|
|
|
|
/* wait for strange kernel reverberations to go away */
|
|
|
|
|
sleep (1);
|
|
|
|
|
|
|
|
|
|
setpgrp (pid, pid);
|
|
|
|
|
|
|
|
|
|
inferior_fd = fd;
|
|
|
|
|
inferior_thread = 0;
|
|
|
|
|
return pid;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Stop debugging the process whose number is PID
|
|
|
|
|
and continue it with signal number SIGNAL.
|
|
|
|
|
SIGNAL = 0 means just continue it. */
|
|
|
|
|
|
|
|
|
|
void
|
|
|
|
|
detach (signal)
|
|
|
|
|
int signal;
|
|
|
|
|
{
|
|
|
|
|
signal_stack = signal_stack_bot;
|
|
|
|
|
thread_continue (-1, 0, signal);
|
|
|
|
|
ioctl (inferior_fd, PIXDETACH, &ps);
|
|
|
|
|
close (inferior_fd);
|
|
|
|
|
inferior_fd = 0;
|
|
|
|
|
attach_flag = 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Kill off the inferior process. */
|
|
|
|
|
|
|
|
|
|
kill_inferior ()
|
|
|
|
|
{
|
|
|
|
|
if (inferior_pid == 0)
|
|
|
|
|
return;
|
|
|
|
|
ioctl (inferior_fd, PIXTERMINATE, 0);
|
|
|
|
|
wait (0);
|
|
|
|
|
target_mourn_inferior ();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Read vector register REG, and return a pointer to the value. */
|
|
|
|
|
|
|
|
|
|
static long *
|
|
|
|
|
read_vector_register (reg)
|
|
|
|
|
int reg;
|
|
|
|
|
{
|
|
|
|
|
if (have_inferior_p ())
|
|
|
|
|
{
|
|
|
|
|
errno = 0;
|
|
|
|
|
ps.pi_buffer = (char *) &vector_registers;
|
|
|
|
|
ps.pi_nbytes = sizeof vector_registers;
|
|
|
|
|
ps.pi_offset = 0;
|
|
|
|
|
ps.pi_thread = inferior_thread;
|
|
|
|
|
ioctl (inferior_fd, PIXRDVREGS, &ps);
|
|
|
|
|
if (errno)
|
|
|
|
|
bzero (&vector_registers, sizeof vector_registers);
|
|
|
|
|
}
|
|
|
|
|
else if (corechan >= 0)
|
|
|
|
|
{
|
|
|
|
|
lseek (corechan, tcontext_offset[inferior_thread], 0);
|
|
|
|
|
if (myread (corechan, &tc, sizeof tc) < 0)
|
|
|
|
|
perror_with_name (corefile);
|
|
|
|
|
lseek (corechan, tc.core_thread_p, 0);
|
|
|
|
|
if (myread (corechan, &th, sizeof th) < 0)
|
|
|
|
|
perror_with_name (corefile);
|
|
|
|
|
lseek (corechan, tc.core_vregs_p, 0);
|
|
|
|
|
if (myread (corechan, &vector_registers, 16*128) < 0)
|
|
|
|
|
perror_with_name (corefile);
|
|
|
|
|
vector_registers.vm[0] = th.t_vect_ctx.vc_vm[0];
|
|
|
|
|
vector_registers.vm[1] = th.t_vect_ctx.vc_vm[1];
|
|
|
|
|
vector_registers.vls = th.t_vect_ctx.vc_vls;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return read_vector_register_1 (reg);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Return a pointer to vector register REG, which must already have been
|
|
|
|
|
fetched from the inferior or core file. */
|
|
|
|
|
|
|
|
|
|
static long *
|
|
|
|
|
read_vector_register_1 (reg)
|
|
|
|
|
int reg;
|
|
|
|
|
{
|
|
|
|
|
switch (reg)
|
|
|
|
|
{
|
|
|
|
|
case VM_REGNUM:
|
|
|
|
|
return (long *) vector_registers.vm;
|
|
|
|
|
case VS_REGNUM:
|
|
|
|
|
return (long *) &vector_registers.vls;
|
|
|
|
|
case VL_REGNUM:
|
|
|
|
|
return 1 + (long *) &vector_registers.vls;
|
|
|
|
|
default:
|
|
|
|
|
return (long *) &vector_registers.vr[reg];
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Write vector register REG, element ELEMENT, new value VAL.
|
|
|
|
|
NB: must use read-modify-write on the entire vector state,
|
|
|
|
|
since pattach does not do offsetted writes correctly. */
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
|
write_vector_register (reg, element, val)
|
|
|
|
|
int reg, element;
|
|
|
|
|
REGISTER_TYPE val;
|
|
|
|
|
{
|
|
|
|
|
if (have_inferior_p ())
|
|
|
|
|
{
|
|
|
|
|
errno = 0;
|
|
|
|
|
ps.pi_thread = inferior_thread;
|
|
|
|
|
ps.pi_offset = 0;
|
|
|
|
|
ps.pi_buffer = (char *) &vector_registers;
|
|
|
|
|
ps.pi_nbytes = sizeof vector_registers;
|
|
|
|
|
|
|
|
|
|
ioctl (inferior_fd, PIXRDVREGS, &ps);
|
|
|
|
|
|
|
|
|
|
switch (reg)
|
|
|
|
|
{
|
|
|
|
|
case VL_REGNUM:
|
|
|
|
|
vector_registers.vls =
|
|
|
|
|
(vector_registers.vls & 0xffffffff00000000LL)
|
|
|
|
|
+ (unsigned long) val;
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case VS_REGNUM:
|
|
|
|
|
vector_registers.vls =
|
|
|
|
|
(val << 32) + (unsigned long) vector_registers.vls;
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
default:
|
|
|
|
|
vector_registers.vr[reg].el[element] = val;
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
ioctl (inferior_fd, PIXWRVREGS, &ps);
|
|
|
|
|
|
|
|
|
|
if (errno)
|
|
|
|
|
perror_with_name ("writing vector register");
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Return the contents of communication register NUM. */
|
|
|
|
|
|
|
|
|
|
static REGISTER_TYPE
|
|
|
|
|
read_comm_register (num)
|
|
|
|
|
int num;
|
|
|
|
|
{
|
|
|
|
|
if (have_inferior_p ())
|
|
|
|
|
{
|
|
|
|
|
ps.pi_buffer = (char *) &comm_registers;
|
|
|
|
|
ps.pi_nbytes = sizeof comm_registers;
|
|
|
|
|
ps.pi_offset = 0;
|
|
|
|
|
ps.pi_thread = inferior_thread;
|
|
|
|
|
ioctl (inferior_fd, PIXRDCREGS, &ps);
|
|
|
|
|
}
|
|
|
|
|
return comm_registers.crreg.r4[num];
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Store a new value VAL into communication register NUM.
|
|
|
|
|
NB: Must use read-modify-write on the whole comm register set
|
|
|
|
|
since pattach does not do offsetted writes correctly. */
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
|
write_comm_register (num, val)
|
|
|
|
|
int num;
|
|
|
|
|
REGISTER_TYPE val;
|
|
|
|
|
{
|
|
|
|
|
if (have_inferior_p ())
|
|
|
|
|
{
|
|
|
|
|
ps.pi_buffer = (char *) &comm_registers;
|
|
|
|
|
ps.pi_nbytes = sizeof comm_registers;
|
|
|
|
|
ps.pi_offset = 0;
|
|
|
|
|
ps.pi_thread = inferior_thread;
|
|
|
|
|
ioctl (inferior_fd, PIXRDCREGS, &ps);
|
|
|
|
|
comm_registers.crreg.r4[num] = val;
|
|
|
|
|
ioctl (inferior_fd, PIXWRCREGS, &ps);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Resume execution of the inferior process.
|
|
|
|
|
If STEP is nonzero, single-step it.
|
|
|
|
|
If SIGNAL is nonzero, give it that signal. */
|
|
|
|
|
|
|
|
|
|
void
|
|
|
|
|
resume (step, signal)
|
|
|
|
|
int step;
|
|
|
|
|
int signal;
|
|
|
|
|
{
|
|
|
|
|
errno = 0;
|
|
|
|
|
if (step || signal)
|
|
|
|
|
thread_continue (inferior_thread, step, signal);
|
|
|
|
|
else
|
|
|
|
|
thread_continue (-1, 0, 0);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Maybe resume some threads.
|
|
|
|
|
THREAD is which thread to resume, or -1 to resume them all.
|
|
|
|
|
STEP and SIGNAL are as in resume.
|
|
|
|
|
|
|
|
|
|
Global variable ALL_CONTINUE is set when we are here to do a
|
|
|
|
|
`cont' command; otherwise we may be doing `finish' or a call or
|
|
|
|
|
something else that will not tolerate an automatic thread switch.
|
|
|
|
|
|
|
|
|
|
If there are stopped threads waiting to deliver signals, and
|
|
|
|
|
ALL_CONTINUE, do not actually resume anything. gdb will do a wait
|
|
|
|
|
and see one of the stopped threads in the queue. */
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
|
thread_continue (thread, step, signal)
|
|
|
|
|
int thread, step, signal;
|
|
|
|
|
{
|
|
|
|
|
int n;
|
|
|
|
|
|
|
|
|
|
/* If we are to continue all threads, but not for the CONTINUE command,
|
|
|
|
|
pay no attention and continue only the selected thread. */
|
|
|
|
|
|
|
|
|
|
if (thread < 0 && ! all_continue)
|
|
|
|
|
thread = inferior_thread;
|
|
|
|
|
|
|
|
|
|
/* If we are not stepping, we have now executed the continue part
|
|
|
|
|
of a CONTINUE command. */
|
|
|
|
|
|
|
|
|
|
if (! step)
|
|
|
|
|
all_continue = 0;
|
|
|
|
|
|
|
|
|
|
/* Allow wait() to switch threads if this is an all-out continue. */
|
|
|
|
|
|
|
|
|
|
thread_switch_ok = thread < 0;
|
|
|
|
|
|
|
|
|
|
/* If there are threads queued up, don't resume. */
|
|
|
|
|
|
|
|
|
|
if (thread_switch_ok && ! signal_stack_is_empty ())
|
|
|
|
|
return;
|
|
|
|
|
|
|
|
|
|
/* OK, do it. */
|
|
|
|
|
|
|
|
|
|
for (n = 0; n < n_threads; n++)
|
|
|
|
|
if (thread_state[n] == PI_TALIVE)
|
|
|
|
|
{
|
|
|
|
|
select_thread (n);
|
|
|
|
|
|
|
|
|
|
if ((thread < 0 || n == thread) && ! thread_is_in_kernel[n])
|
|
|
|
|
{
|
|
|
|
|
/* Blam the trace bits in the stack's saved psws to match
|
|
|
|
|
the desired step mode. This is required so that
|
|
|
|
|
single-stepping a return doesn't restore a psw with a
|
|
|
|
|
clear trace bit and fly away, and conversely,
|
|
|
|
|
proceeding through a return in a routine that was
|
|
|
|
|
stepped into doesn't cause a phantom break by restoring
|
|
|
|
|
a psw with the trace bit set. */
|
|
|
|
|
scan_stack (PSW_T_BIT, step);
|
|
|
|
|
scan_stack (PSW_S_BIT, sequential);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
ps.pi_buffer = registers;
|
|
|
|
|
ps.pi_nbytes = REGISTER_BYTES;
|
|
|
|
|
ps.pi_offset = 0;
|
|
|
|
|
ps.pi_thread = n;
|
|
|
|
|
if (! thread_is_in_kernel[n])
|
|
|
|
|
if (ioctl (inferior_fd, PIXWRREGS, &ps))
|
|
|
|
|
perror_with_name ("PIXWRREGS");
|
|
|
|
|
|
|
|
|
|
if (thread < 0 || n == thread)
|
|
|
|
|
{
|
|
|
|
|
ps.pi_pc = 1;
|
|
|
|
|
ps.pi_signo = signal;
|
|
|
|
|
if (ioctl (inferior_fd, step ? PIXSTEP : PIXCONTINUE, &ps) < 0)
|
|
|
|
|
perror_with_name ("PIXCONTINUE");
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (ioctl (inferior_fd, PIXRUN, &ps) < 0)
|
|
|
|
|
perror_with_name ("PIXRUN");
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Replacement for system wait routine.
|
|
|
|
|
|
|
|
|
|
The system wait returns with one or more threads stopped by
|
|
|
|
|
signals. Put stopped threads on a stack and return them one by
|
|
|
|
|
one, so that it appears that wait returns one thread at a time.
|
|
|
|
|
|
|
|
|
|
Global variable THREAD_SWITCH_OK is set when gdb can tolerate wait
|
|
|
|
|
returning a new thread. If it is false, then only one thread is
|
|
|
|
|
running; we will do a real wait, the thread will do something, and
|
|
|
|
|
we will return that. */
|
|
|
|
|
|
|
|
|
|
pid_t
|
|
|
|
|
wait (w)
|
|
|
|
|
union wait *w;
|
|
|
|
|
{
|
|
|
|
|
int pid;
|
|
|
|
|
|
|
|
|
|
if (!w)
|
|
|
|
|
return wait3 (0, 0, 0);
|
|
|
|
|
|
|
|
|
|
/* Do a real wait if we were told to, or if there are no queued threads. */
|
|
|
|
|
|
|
|
|
|
if (! thread_switch_ok || signal_stack_is_empty ())
|
|
|
|
|
{
|
|
|
|
|
int thread;
|
|
|
|
|
|
|
|
|
|
pid = wait3 (w, 0, 0);
|
|
|
|
|
|
|
|
|
|
if (!WIFSTOPPED (*w) || pid != inferior_pid)
|
|
|
|
|
return pid;
|
|
|
|
|
|
|
|
|
|
/* The inferior has done something and stopped. Read in all the
|
|
|
|
|
threads' registers, and queue up any signals that happened. */
|
|
|
|
|
|
|
|
|
|
if (ioctl (inferior_fd, PIXGETTHCOUNT, &ps) < 0)
|
|
|
|
|
perror_with_name ("PIXGETTHCOUNT");
|
|
|
|
|
|
|
|
|
|
n_threads = ps.pi_othdcnt;
|
|
|
|
|
for (thread = 0; thread < n_threads; thread++)
|
|
|
|
|
{
|
|
|
|
|
ps.pi_thread = thread;
|
|
|
|
|
if (ioctl (inferior_fd, PIXGETSUBCODE, &ps) < 0)
|
|
|
|
|
perror_with_name ("PIXGETSUBCODE");
|
|
|
|
|
thread_state[thread] = ps.pi_otstate;
|
|
|
|
|
|
|
|
|
|
if (ps.pi_otstate == PI_TALIVE)
|
|
|
|
|
{
|
|
|
|
|
select_thread (thread);
|
|
|
|
|
ps.pi_buffer = registers;
|
|
|
|
|
ps.pi_nbytes = REGISTER_BYTES;
|
|
|
|
|
ps.pi_offset = 0;
|
|
|
|
|
ps.pi_thread = thread;
|
|
|
|
|
if (ioctl (inferior_fd, PIXRDREGS, &ps) < 0)
|
|
|
|
|
perror_with_name ("PIXRDREGS");
|
|
|
|
|
|
|
|
|
|
registers_fetched ();
|
|
|
|
|
|
|
|
|
|
thread_pc[thread] = read_pc ();
|
|
|
|
|
thread_signal[thread] = ps.pi_osigno;
|
|
|
|
|
thread_sigcode[thread] = ps.pi_osigcode;
|
|
|
|
|
|
|
|
|
|
/* If the thread's stack has a context frame
|
|
|
|
|
on top, something fucked is going on. I do not
|
|
|
|
|
know what, but do I know this: the only thing you
|
|
|
|
|
can do with such a thread is continue it. */
|
|
|
|
|
|
|
|
|
|
thread_is_in_kernel[thread] =
|
|
|
|
|
((read_register (PS_REGNUM) >> 25) & 3) == 0;
|
|
|
|
|
|
|
|
|
|
/* Signals push an extended frame and then fault
|
|
|
|
|
with a ridiculous pc. Pop the frame. */
|
|
|
|
|
|
|
|
|
|
if (thread_pc[thread] > STACK_END_ADDR)
|
|
|
|
|
{
|
|
|
|
|
POP_FRAME;
|
|
|
|
|
if (is_break_pc (thread_pc[thread]))
|
|
|
|
|
thread_pc[thread] = read_pc () - 2;
|
|
|
|
|
else
|
|
|
|
|
thread_pc[thread] = read_pc ();
|
|
|
|
|
write_register (PC_REGNUM, thread_pc[thread]);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (ps.pi_osigno || ps.pi_osigcode)
|
|
|
|
|
{
|
|
|
|
|
signal_stack++;
|
|
|
|
|
signal_stack->pid = pid;
|
|
|
|
|
signal_stack->thread = thread;
|
|
|
|
|
signal_stack->signo = thread_signal[thread];
|
|
|
|
|
signal_stack->subsig = thread_sigcode[thread];
|
|
|
|
|
signal_stack->pc = thread_pc[thread];
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* The following hackery is caused by a unix 7.1 feature:
|
|
|
|
|
the inferior's fixed scheduling mode is cleared when
|
|
|
|
|
it execs the shell (since the shell is not a parallel
|
|
|
|
|
program). So, note the 5.4 trap we get when
|
|
|
|
|
the shell does its exec, then catch the 5.0 trap
|
|
|
|
|
that occurs when the debuggee starts, and set fixed
|
|
|
|
|
scheduling mode properly. */
|
|
|
|
|
|
|
|
|
|
if (ps.pi_osigno == 5 && ps.pi_osigcode == 4)
|
|
|
|
|
exec_trap_timer = 1;
|
|
|
|
|
else
|
|
|
|
|
exec_trap_timer--;
|
|
|
|
|
|
|
|
|
|
if (ps.pi_osigno == 5 && exec_trap_timer == 0)
|
|
|
|
|
set_fixed_scheduling (pid, parallel == 2);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (signal_stack_is_empty ())
|
|
|
|
|
error ("no active threads?!");
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Select the thread that stopped, and return *w saying why. */
|
|
|
|
|
|
|
|
|
|
select_thread (signal_stack->thread);
|
|
|
|
|
|
|
|
|
|
stop_signal = signal_stack->signo;
|
|
|
|
|
stop_sigcode = signal_stack->subsig;
|
|
|
|
|
|
|
|
|
|
WSETSTOP (*w, signal_stack->signo);
|
|
|
|
|
w->w_thread = signal_stack->thread;
|
|
|
|
|
return (signal_stack--)->pid;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Select thread THREAD -- its registers, stack, per-thread memory.
|
|
|
|
|
This is the only routine that may assign to inferior_thread
|
|
|
|
|
or thread_regs[]. */
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
|
select_thread (thread)
|
|
|
|
|
int thread;
|
|
|
|
|
{
|
|
|
|
|
if (thread == inferior_thread)
|
|
|
|
|
return;
|
|
|
|
|
|
|
|
|
|
bcopy (registers, thread_regs[inferior_thread], REGISTER_BYTES);
|
|
|
|
|
ps.pi_thread = inferior_thread = thread;
|
|
|
|
|
if (have_inferior_p ())
|
|
|
|
|
ioctl (inferior_fd, PISETRWTID, &ps);
|
|
|
|
|
bcopy (thread_regs[thread], registers, REGISTER_BYTES);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Routine to set or clear a psw bit in the psw and also all psws
|
|
|
|
|
saved on the stack. Quits when we get to a frame in which the
|
|
|
|
|
saved psw is correct. */
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
|
scan_stack (bit, val)
|
|
|
|
|
long bit, val;
|
|
|
|
|
{
|
|
|
|
|
long ps = read_register (PS_REGNUM);
|
|
|
|
|
long fp;
|
|
|
|
|
if (val ? !(ps & bit) : (ps & bit))
|
|
|
|
|
{
|
|
|
|
|
ps ^= bit;
|
|
|
|
|
write_register (PS_REGNUM, ps);
|
|
|
|
|
|
|
|
|
|
fp = read_register (FP_REGNUM);
|
|
|
|
|
while (fp & 0x80000000)
|
|
|
|
|
{
|
|
|
|
|
ps = read_memory_integer (fp + 4, 4);
|
|
|
|
|
if (val ? (ps & bit) : !(ps & bit))
|
|
|
|
|
break;
|
|
|
|
|
ps ^= bit;
|
|
|
|
|
write_memory (fp + 4, &ps, 4);
|
|
|
|
|
fp = read_memory_integer (fp + 8, 4);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Set fixed scheduling (alliant mode) of process PID to ARG (0 or 1). */
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
|
set_fixed_scheduling (pid, arg)
|
|
|
|
|
int arg;
|
|
|
|
|
{
|
|
|
|
|
struct pattributes pattr;
|
|
|
|
|
getpattr (pid, &pattr);
|
|
|
|
|
pattr.pattr_pfixed = arg;
|
|
|
|
|
setpattr (pid, &pattr);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void
|
|
|
|
|
core_file_command (filename, from_tty)
|
|
|
|
|
char *filename;
|
|
|
|
|
int from_tty;
|
|
|
|
|
{
|
|
|
|
|
int n;
|
|
|
|
|
|
|
|
|
|
/* Discard all vestiges of any previous core file
|
|
|
|
|
and mark data and stack spaces as empty. */
|
|
|
|
|
|
|
|
|
|
if (corefile)
|
|
|
|
|
free (corefile);
|
|
|
|
|
corefile = 0;
|
|
|
|
|
|
|
|
|
|
if (corechan >= 0)
|
|
|
|
|
close (corechan);
|
|
|
|
|
corechan = -1;
|
|
|
|
|
|
|
|
|
|
data_start = 0;
|
|
|
|
|
data_end = 0;
|
|
|
|
|
stack_start = STACK_END_ADDR;
|
|
|
|
|
stack_end = STACK_END_ADDR;
|
|
|
|
|
n_core = 0;
|
|
|
|
|
|
|
|
|
|
/* Now, if a new core file was specified, open it and digest it. */
|
|
|
|
|
|
|
|
|
|
if (filename)
|
|
|
|
|
{
|
|
|
|
|
filename = tilde_expand (filename);
|
|
|
|
|
make_cleanup (free, filename);
|
|
|
|
|
|
|
|
|
|
if (have_inferior_p ())
|
|
|
|
|
error ("To look at a core file, you must kill the inferior with \"kill\".");
|
|
|
|
|
corechan = open (filename, O_RDONLY, 0);
|
|
|
|
|
if (corechan < 0)
|
|
|
|
|
perror_with_name (filename);
|
|
|
|
|
|
|
|
|
|
if (myread (corechan, &filehdr, sizeof filehdr) < 0)
|
|
|
|
|
perror_with_name (filename);
|
|
|
|
|
|
|
|
|
|
if (!IS_CORE_SOFF_MAGIC (filehdr.h_magic))
|
|
|
|
|
error ("%s: not a core file.\n", filename);
|
|
|
|
|
|
|
|
|
|
if (myread (corechan, &opthdr, filehdr.h_opthdr) < 0)
|
|
|
|
|
perror_with_name (filename);
|
|
|
|
|
|
|
|
|
|
/* Read through the section headers.
|
|
|
|
|
For text, data, etc, record an entry in the core file map.
|
|
|
|
|
For context and tcontext, record the file address of
|
|
|
|
|
the context blocks. */
|
|
|
|
|
|
|
|
|
|
lseek (corechan, (long) filehdr.h_scnptr, 0);
|
|
|
|
|
|
|
|
|
|
n_threads = 0;
|
|
|
|
|
for (n = 0; n < filehdr.h_nscns; n++)
|
|
|
|
|
{
|
|
|
|
|
if (myread (corechan, &scnhdr, sizeof scnhdr) < 0)
|
|
|
|
|
perror_with_name (filename);
|
|
|
|
|
if ((scnhdr.s_flags & S_TYPMASK) >= S_TEXT
|
|
|
|
|
&& (scnhdr.s_flags & S_TYPMASK) <= S_COMON)
|
|
|
|
|
{
|
|
|
|
|
core_map[n_core].mem_addr = scnhdr.s_vaddr;
|
|
|
|
|
core_map[n_core].mem_end = scnhdr.s_vaddr + scnhdr.s_size;
|
|
|
|
|
core_map[n_core].file_addr = scnhdr.s_scnptr;
|
|
|
|
|
core_map[n_core].type = scnhdr.s_flags & S_TYPMASK;
|
|
|
|
|
if (core_map[n_core].type != S_TBSS
|
|
|
|
|
&& core_map[n_core].type != S_TDATA
|
|
|
|
|
&& core_map[n_core].type != S_TTEXT)
|
|
|
|
|
core_map[n_core].thread = -1;
|
|
|
|
|
else if (n_core == 0
|
|
|
|
|
|| core_map[n_core-1].mem_addr != scnhdr.s_vaddr)
|
|
|
|
|
core_map[n_core].thread = 0;
|
|
|
|
|
else
|
|
|
|
|
core_map[n_core].thread = core_map[n_core-1].thread + 1;
|
|
|
|
|
n_core++;
|
|
|
|
|
}
|
|
|
|
|
else if ((scnhdr.s_flags & S_TYPMASK) == S_CONTEXT)
|
|
|
|
|
context_offset = scnhdr.s_scnptr;
|
|
|
|
|
else if ((scnhdr.s_flags & S_TYPMASK) == S_TCONTEXT)
|
|
|
|
|
tcontext_offset[n_threads++] = scnhdr.s_scnptr;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Read the context block, struct user, struct proc,
|
|
|
|
|
and the comm regs. */
|
|
|
|
|
|
|
|
|
|
lseek (corechan, context_offset, 0);
|
|
|
|
|
if (myread (corechan, &c, sizeof c) < 0)
|
|
|
|
|
perror_with_name (filename);
|
|
|
|
|
lseek (corechan, c.core_user_p, 0);
|
|
|
|
|
if (myread (corechan, &u, sizeof u) < 0)
|
|
|
|
|
perror_with_name (filename);
|
|
|
|
|
lseek (corechan, c.core_proc_p, 0);
|
|
|
|
|
if (myread (corechan, &pr, sizeof pr) < 0)
|
|
|
|
|
perror_with_name (filename);
|
|
|
|
|
comm_registers = pr.p_creg;
|
|
|
|
|
|
|
|
|
|
/* Core file apparently is really there. Make it really exist
|
|
|
|
|
for xfer_core_file so we can do read_memory on it. */
|
|
|
|
|
|
|
|
|
|
if (filename[0] == '/')
|
|
|
|
|
corefile = savestring (filename, strlen (filename));
|
|
|
|
|
else
|
1991-11-12 17:50:14 +00:00
|
|
|
|
corefile = concat (current_directory, "/", filename, NULL);
|
1991-03-28 16:28:29 +00:00
|
|
|
|
|
|
|
|
|
printf_filtered ("Program %s ", u.u_comm);
|
|
|
|
|
|
|
|
|
|
/* Read the thread registers and fill in the thread_xxx[] data. */
|
|
|
|
|
|
|
|
|
|
for (n = 0; n < n_threads; n++)
|
|
|
|
|
{
|
|
|
|
|
select_thread (n);
|
|
|
|
|
|
|
|
|
|
lseek (corechan, tcontext_offset[n], 0);
|
|
|
|
|
if (myread (corechan, &tc, sizeof tc) < 0)
|
|
|
|
|
perror_with_name (corefile);
|
|
|
|
|
lseek (corechan, tc.core_thread_p, 0);
|
|
|
|
|
if (myread (corechan, &th, sizeof th) < 0)
|
|
|
|
|
perror_with_name (corefile);
|
|
|
|
|
|
|
|
|
|
lseek (corechan, tc.core_syscall_context_p, 0);
|
|
|
|
|
if (myread (corechan, registers, REGISTER_BYTES) < 0)
|
|
|
|
|
perror_with_name (corefile);
|
|
|
|
|
|
|
|
|
|
thread_signal[n] = th.t_cursig;
|
|
|
|
|
thread_sigcode[n] = th.t_code;
|
|
|
|
|
thread_state[n] = th.t_state;
|
|
|
|
|
thread_pc[n] = read_pc ();
|
|
|
|
|
|
|
|
|
|
if (thread_pc[n] > STACK_END_ADDR)
|
|
|
|
|
{
|
|
|
|
|
POP_FRAME;
|
|
|
|
|
if (is_break_pc (thread_pc[n]))
|
|
|
|
|
thread_pc[n] = read_pc () - 2;
|
|
|
|
|
else
|
|
|
|
|
thread_pc[n] = read_pc ();
|
|
|
|
|
write_register (PC_REGNUM, thread_pc[n]);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
printf_filtered ("thread %d received signal %d, %s\n",
|
|
|
|
|
n, thread_signal[n],
|
1992-04-22 16:46:47 +00:00
|
|
|
|
safe_strsignal (thread_signal[n]));
|
1991-03-28 16:28:29 +00:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Select an interesting thread -- also-rans died with SIGKILL,
|
|
|
|
|
so find one that didn't. */
|
|
|
|
|
|
|
|
|
|
for (n = 0; n < n_threads; n++)
|
|
|
|
|
if (thread_signal[n] != 0 && thread_signal[n] != SIGKILL)
|
|
|
|
|
{
|
|
|
|
|
select_thread (n);
|
|
|
|
|
stop_signal = thread_signal[n];
|
|
|
|
|
stop_sigcode = thread_sigcode[n];
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
core_aouthdr.a_magic = 0;
|
|
|
|
|
|
|
|
|
|
flush_cached_frames ();
|
|
|
|
|
set_current_frame (create_new_frame (read_register (FP_REGNUM),
|
|
|
|
|
read_pc ()));
|
|
|
|
|
select_frame (get_current_frame (), 0);
|
|
|
|
|
validate_files ();
|
|
|
|
|
|
1991-09-11 01:49:50 +00:00
|
|
|
|
print_stack_frame (selected_frame, selected_frame_level, -1);
|
1991-03-28 16:28:29 +00:00
|
|
|
|
}
|
|
|
|
|
else if (from_tty)
|
|
|
|
|
printf_filtered ("No core file now.\n");
|
|
|
|
|
}
|